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TASK INTRODUCTION




TTS
BACKGROUND
— OR HOW
COMPUTERS
LEARNED TO
SPEAK

« TTIS synthesis: render natural sounding speech

given a ftext

« Sequence mapping problem: text — speech

signals (time series)

« Typical TTS pipeline:

e Text Normalization

» Sentence/Word Segmentation
* POS-Tagging

* Input: Word
* Output: Phoneme sequence

* Input: Phoneme sequence
e Qutput: synthesized speech waveform




TTS
BACKGROUND
— OR HOW
COMPUTERS
LEARNED TO
SPEAK

« Two approaches of speech synthesis:
* Non-parametric
« Parametric




PRELIMINARIES




CAUSAL
CONVOLUTIONS

» EqQual to masked convolutions

 Does not look into the future of
the sequence

» Element-wise multiplication of
mask with kernel

* Problem: our receptive field is
quite small
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DILATED CAUSAL
CONVOLUTIONS

« Dilation of 1 is equal to filter size

« Dilation scale is doubled for
each layer (up to a factor of
512)

» receptive field grows
exponential

« Total receptive field: filter size
times dilation factor
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SOFTMAX
COMPLEXITY
PROBLEM &
u-TRANSFORMATION

* Raw audio is saved in 16bit
integers := 65536 probabilities
each timestep

* Is solved by u-law companding
transformation

u-law is used to reduce the
dynamic range of audio signals

In(1 + plxe|)
In(1+p) '

= sign(x;)

where sign(x;) € {—1,0,1}, u = 255
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WAVENET
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— Output

16kHZ audio sample (1-hot

encoding), already
transformed with u-law




Residual connection from
P(x¢| ..., x¢-1)

— Output
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Sum all “hidden states”, and

pass them through a learnable
skip connection weight matrix
with RelLU
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Skip-cog@ections

Forward pass through two 1D
convolutions to fransform them
back into the dimensionality for

the probability distribution
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EXPERIMENTS & RESULTS




MULTISPEAKER
SPEECH
GENERATION

Model was only globally
condifioned, not on linguistic
features

Generated somewhat
natural voices with a hint of
natural sounding prosody

Model was able to learn all
speakers characteristics




MULTISPEAKER
SPEECH
GENERATION
EXAMPLES
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Single speaker NA-English and
Mandarin data used

Local conditioning such as
phones, syllables, word, phrase,
and utterance (vocal features)

Also global Fy-conditioning
WaveNet beats baseline

| Subjective 5-scale MOS in naturalness

Speech samples |  North American English Mandarin Chinese
LSTM-RNN parametric 3.67 = 0.098 3.79 £ 0.084
HMM-driven concatenative 3.86 +0.137 3.47 £ 0.108
WaveNet (L+F) 4.21 + 0.081 4.08 + 0.085
Natural (8-bit p-law) 4.46 + 0.067 4.25 + 0.082
Natural (16-bit linear PCM) 4.55 + 0.075 4.21 £ 0.071

Table 1: Subjective 5-scale mean opinion scores of speech samples from LSTM-RNN-based sta-
tistical parametric, HMM-driven unit selection concatenative, and proposed WaveNet-based speech
synthesizers, 8-bit y-law encoded natural speech, and 16-bit linear pulse-code modulation (PCM)
natural speech. WaveNet improved the previous state of the art significantly, reducing the gap be-
tween natural speech and best previous model by more than 50%.




TTS

» Single speaker NA-English and
Mandarin data used

» Local conditioning such as
phones, syllables, word, phrase,
and utterance (vocal features)

» Also global Fy-conditioning
« WaveNet beats baseline
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Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and log F; values.
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CONCLUSION




Impressive and strong model, as far as you can understand it.

WaveNet is a versatile model to use for different audio/speech tasks where
raw audio is a good fit.

Parallel WaveNet even faster

Paper explained the architecture itself not that well, eventually even
mistakes in the paper (see mu-law)?






THANKS FOR LISTENING!



DISCUSSION




* In section 2.2 of the paper, | don't understand the formula. The authors
mention a y-laow companding transformation, what is thate How does it help
to reduce the amount of probabilities that need to be considerede

* Mu-law is a common compression technigue used for audio signals, it's used with

the mu constant of 255 (in NA, Japan). Mu-law helps us to eliminate the negative
values of our 16bit integers and also compress them into 255 possibilities.

* In section 2.5 of the paper, for local conditioning, the authors use a
transposed convolutional network to map the more coarse-grained linguistic
features to the audio signal. What is a fransposed CNN and how does it

worke Why the 1x1 convolution mentioned below?
* You switch the dimensions to learn not how to reduce the input but how to
upsample if.



 What is exactly the one time step input of "16-bit linear pulse-code
modulation (PCM)", do you know the pre-processing approach for obtaining
these featurese

* Not deep enough into speech to answer this properly.

« With respect to doing conditioning the model on local conditioning: what is
the intuition for conditioning on additional timeseries?

« How else would you add your featurese



« Why does the wavenet use soffmax as an output layer when the value for
each sample is continuous(ish) between -1 and 1¢ Would regression be
possible instead?

 It's not between -1 and 1, the output of sign(x) is.

« How do they feed the text to the model because it doesn't seem like there is
an encoder layer. Is this done with the local conditioning of the wavenet
model¢

« Correct, however they do use linguistic features extracted from text, like phones,
words, phrases and other voice characteristics.



« About the output: What is the reason for the multiple combination of RELU
and 1x1 Convolutione

« My guess; to transform the features into a suitable softmax dimension.

« As far as | understand, the output keeps the fime dimensionality of the input.
This is done through the output from the soffmax layer. What happens now o
the summation of the residual values and the 1x1 convoluted values?

* The elementwise addition after the first 1x1 conv. is passed back intfo the next
layer.



« Could you explain how the non-linear quantization works (section 2.2) and
why it works better than a linear quantization scheme?

« At the inifial release of the WaveNet the authors found it required a lot of
computational power. How was the performance of WaveNets imporved in
terms of computational cost/ How could it be improvede

* [t's not the computational power, it's the complexity that makes it quite slow.
When working with 16kHZ samples, we have an input of 16000 samples/sec. The

figures showed only 3 layers of the network to cover a receptive field size of 16.
Therefore we are dealing with about 30 layers for all to infer from w.r.t. to the fact

that we only process 1 second of audio. See follow up paper.



* In Section 2.6, they mention the term dilation stages. What is that?
 Dilatfion stage is the growth of the dilation factor (doubled for each layer).

« Also in Section 2.6, they describe context stacks, but | don't
understand their description. What are context stacks?

« Contextual representations over a limited receptive field learned by a seperate
network which may also use pooling layers.
 What is the approximate training time for such a model?

« 16000 samples per second, which need 30 layers to pass through plus 16000
times of inference. People said it may take 2 GPU minutes for a single inference.



* Have there been other approaches at producing classical music or are
there more examples available which were produced by wavenet?
The ones available on the website sound a bit clustered and not very
diverse. Would it be possible to obtain different genres of music just as
different types of voices (male, female, etc.) were produced?

« Not that | know of. Yes, because we learn from raw audio signals.

* |s the global/local conditioning (sect. 2.5) applied in every layere
* In every time step rather than layer.

« How do the skip connections compare to soft-attentione

« Skip connections let gradients flow more freely. They are also said that they
provide faster convergence.




What is a y-law companding transformation and what is a logarithmic
fundamental frequency value?

« Mu-law answered. Fundamental Frequency (F,) is the frequency of the lowest-
frequency component of a complex sound, Qs evident in the repetition rate of the
waveform, or the the rate of vocal fold vibration during sound production

Regarding the context stack: Could you explain what exactly is done
here, why'is the confext stack the best/competitive way to increase the
receptive field size of WaveNet?

« Think of a kind of fine-tuning for the local conditioning in WaveNet.
Can you explain how the inputs to equation in section 2.2 can be between -1 and 1
when raw audio is stored as 16 bit integerse

« Been there done that.
What is a speaker embedding in a TTS Model? Where do we get it from<e How does it

worke
 It's alearned embedding through another (vocoder) network.



