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Introduction

Modeling the Frog’s Perceptual System

I [Lettvin et al. 1959] show that the frog’s perceptual system
constructs reality by four separate operations:
I contrast detection: presence of sharp boundary?
I convexity detection: how curved and how big is object?
I movement detection: is object moving?
I dimming speed: how fast does object obstruct light?

I The frog’s goal: Capture any object of the size of an insect or
worm providing it moves like one.

I Can we build a model of this perceptual system and learn to
capture the right objects?
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Introduction

Learning from Data

I Assume training data of edible (+) and inedible (-) objects
convex speed label convex speed label
small small - small large +
small medium - medium large +
small medium - medium large +

medium small - large small +
large small - large large +
small small - large medium +
small large -
small medium -

I Learning model parameters from data:
I p(+) = 6/14, p(-) = 8/14
I p(convex = small|-) = 6/8, p(convex = med|-) = 1/8, p(convex = large|-) = 1/8

p(speed = small|-) = 4/8, p(speed = med|-) = 3/8, p(speed = large|- ) = 1/8
p(convex = small|+) = 1/6, p(convex = med|+) = 2/6, p(convex = large|+) = 3/6
p(speed = small|+) = 1/6, p(speed = med|+) = 1/6, p(speed = large|+ ) = 4/6

I Predict unseen p(label = ?, convex = med, speed = med)
I p(-) · p(convex = med|-) · p(speed = med|-) = 8/14 · 1/8 · 3/8 = 0.027
I p(+) · p(convex = med|+) · p(speed = med|+) = 6/14 · 2/6 · 1/6 = 0.024
I Inedible: p(convex = med, speed = med, label = -) > p(convex = med, speed = med, label = +)!
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Introduction

Machine Learning is a Frog’s World

I Machine learning problems can be seen as problems of
function estimation where
I our models are based on a combined feature representation of

inputs and outputs
I similar to the frog whose world is constructed by

four-dimensional feature vector based on detection operations

I learning of parameter weights is done by optimizing fit of
model to training data

I frog uses binary classification into edible/inedible objects as
supervision signals for learning

I The model used in the frog’s perception example is called
Naive Bayes: It measures compatibility of inputs to outputs by
a linear model and optimizes parameters by convex
optimization
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Introduction

Lecture Outline
I Preliminaries

I Data: input/output
I Feature representations
I Linear models

I Convex optimization for linear models
I Naive Bayes
I Logistic Regression
I Perceptron
I Large-Margin Learners (SVMs)

I Regularization

I Online learning
I Non-linear models

I Kernel machines: Convex optimization for non-linear models
I Neural networks: Nonconvex optimization for non-linear

models
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Preliminaries

Inputs and Outputs

I Input: x ∈ X
I e.g., document or sentence with some words x = w1 . . .wn

I Output: y ∈ Y
I e.g., document class, translation, parse tree

I Input/Output pair: (x,y) ∈ X × Y
I e.g., a document x and its class label y,
I a source sentence x and its translation y,
I a sentence x and its parse tree y
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Preliminaries

Feature Representations

I Most NLP problems can be cast as multiclass classification
where we assume a high-dimensional joint feature map on
input-output pairs (x,y)
I φ(x,y) : X × Y → Rm

I Common ranges:
I categorical (e.g., counts): φi ∈ {1, . . . ,Fi}, Fi ∈ N+

I binary (e.g., binning): φ ∈ {0, 1}m
I continuous (e.g., word embeddings): φ ∈ Rm

I For any vector v ∈ Rm, let vj be the j th value
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Preliminaries

Example: Text Classification

I x is a document and y is a label

φj(x,y) =


1 if x contains the word “interest”

and y =“financial”
0 otherwise

We expect this feature to have a positive weight, “interest” is
a positive indicator for the label “financial”
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Preliminaries

Example: Text Classification

φj(x,y) = % of words in x containing punctuation and y =“scientific”

Q&A: Punctuation symbols - positive indicator or negative
indicator for scientific articles?
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Preliminaries

Example: Part-of-Speech Tagging

I x is a word and y is a part-of-speech tag

φj(x,y) =

{
1 if x = “bank” and y = Verb
0 otherwise

Q&A: What weight would it get?
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Preliminaries

Example: Named-Entity Recognition

I x is a name, y is a label classifying the name

φ0(x,y) =

 1 if x contains “George”
and y = “Person”

0 otherwise

φ1(x,y) =

 1 if x contains “Washington”
and y = “Person”

0 otherwise

φ2(x,y) =

 1 if x contains “Bridge”
and y = “Person”

0 otherwise

φ3(x,y) =

 1 if x contains “General”
and y = “Person”

0 otherwise

φ4(x,y) =

 1 if x contains “George”
and y = “Object”

0 otherwise

φ5(x,y) =

 1 if x contains “Washington”
and y = “Object”

0 otherwise

φ6(x,y) =

 1 if x contains “Bridge”
and y = “Object”

0 otherwise

φ7(x,y) =

 1 if x contains “General”
and y = “Object”

0 otherwise

I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

I x=George Washington Bridge, y=Object → φ(x,y) = [0 0 0 0 1 1 1 0]

I x=George Washington George, y=Object → φ(x,y) = [0 0 0 0 1 1 0 0]
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Preliminaries

Block Feature Vectors

I x=General George Washington, y=Person → φ(x,y) = [1 1 0 1 0 0 0 0]

I x=General George Washington, y=Object → φ(x,y) = [0 0 0 0 1 1 0 1]

I x=George Washington Bridge, y=Object → φ(x,y) = [0 0 0 0 1 1 1 0]

I x=George Washington George, y=Object → φ(x,y) = [0 0 0 0 1 1 0 0]

I Each equal size block of the feature vector corresponds to one
label

I Non-zero values allowed only in one block
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Preliminaries

Example: Statistical Machine Translation

I x is a source sentence and y is translation

φj(x,y) =


1 if “y a-t-il” present in x

and “are there” present in y
0 otherwise

φk(x,y) =


1 if “y a-t-il” present in x

and “are there any” present in y
0 otherwise

Q&A: Which phrase indicator should be preferred?
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Preliminaries

Example: Parsing

Note: Label y includes sentence x
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Linear Models

Linear Models

I Linear model: Defines a discriminant function that is based
on a linear combination of features and weights

f (x;ω) = argmax
y∈Y

ω · φ(x,y)

= argmax
y∈Y

m∑
j=0

ωj × φj(x,y)

I Let ω ∈ Rm be a high dimensional weight vector
I Assume that ω is known

I Multiclass Classification: Y = {0, 1, . . . ,N}

y = argmax
y′∈Y

ω · φ(x,y′)

I Binary Classification just a special case of multiclass
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Linear Models

Linear Models for Binary Classification

I ω defines a linear decision boundary that divides space of
instances in two classes
I 2 dimensions: line
I 3 dimensions: plane
I n dimensions: hyperplane of n − 1 dimensions

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0
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Linear Models

Multiclass Linear Model

Defines regions of space. Visualization difficult.

I + are all points (x,y) where + = argmaxy ω · φ(x,y)
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Convex Optimization

Convex Optimization for Supervised Learning

How to learn weight vector ω in order to make decisions?
I Input:

I i.i.d. (independent and identically distributed) training

examples T = {(xt ,yt)}|T |t=1
I feature representation φ

I Output: ω that maximizes an objective function on the
training set
I ω = argmaxL(T ;ω)
I Equivalently minimize: ω = argmin−L(T ;ω)
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Convex Optimization

Objective Functions

I Ideally we can decompose L by training pairs (x,y)
I L(T ;ω) ∝

∑
(x,y)∈T loss((x,y);ω)

I loss is a function that measures some value correlated with
errors of parameters ω on instance (x,y)

I Example:
I y ∈ {1,−1}, f (x;ω) is the prediction we make for x using ω
I zero-one loss function:

loss((x,y);ω) =

{
1 if f (x;ω)× y ≤ 0
0 else
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Convex Optimization

Convexity

I A function is convex if its graph lies on or below the line
segment connecting any two points on the graph

f (αx+ βy) ≤ αf (x) + βf (y) for all α, β ≥ 0, α + β = 1

Q&A: Is the zero-one loss function convex?
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Convex Optimization

Gradient

I Gradient of function f is vector of partial derivatives.

∇f (x) =
(

∂
∂x1

f (x), ∂
∂x2

f (x), ..., ∂
∂xn

f (x)
)

I Rate of increase of f at point x in each of the axis-parallel
directions.

Q&A: What is the gradient at x for the function in the image
above?

Statistical Methods for CL 22(161)



Convex Optimization

Convex Optimization
I Objectives for linear models can be defined as convex upper

bounds on zero-one loss
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Convex Optimization

Unconstrained Optimization

I Unconstrained optimization tries to find a point that
minimizes our objective function

I In order to find minimum, follow opposite direction of gradient

I Global minimum lies at point where ∇f (x) = 0

Q&A: How can maximization be defined as minimization problem?
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Convex Optimization

Constrained Optimization with Equality
Constraints

I Optimization problem is finding a point among the feasible
points that satisfy constraints gi (x) = 0 where f (x) is minimal

I Example: For 3-dimensional domain of f (x), feasible points
constitute intersection of surfaces g1(x) = 0 and g2(x) = 0
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Convex Optimization

Equality Constraints

I Gradients ∇g1(x), ∇g2(x) define a normal plane to feasible
set curve C : α1∇g1(x) + α2∇g2(x), generally

∑
i
αi∇gi (x)

I Goal: move along C looking for point that minimizes f
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Convex Optimization

Equality Constraints

I ∇f (x) is a sum of vector a (= tangent to C , pointing in
direction of increase of f ) and vector b (= lying in normal
plane to C )

I To minimize f , move in opposite direction of a

I Minimium reached when there is no direction of further
decrease
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Convex Optimization

Lagrange Multipliers

I At minimum, gradient of f lies entirely in plane perpendicular
to feasible set curve C : ∇f (x) =

∑
i
αi∇gi (x)

I Solving for x solves constrained optimization problem.
I Define Lagrangian L(x) = f (x)−

∑
i
αigi (x) where equality

constraints have standard form gi = 0, ∀i .
I Setting ∇L(x) = 0 and solving for x gives same solution as for

constrained problem, but by unconstrained optimization
problem.
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Convex Optimization

Inquality Constraints

I For 3-dimensional domain of f (x), inequality constraints
g1(x) ≤ 0, g2(x) ≤ 0 describe convex solids

I Feasible set is intersection, a lentil shaped solid

I Goal: Minimize f while remaining within feasible set.
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Convex Optimization

Inquality Constraints

I Three cases, all reducable to equality constraints
I Global minimum a within feasible set, constraints satisfied
I Global minimum b closer to surface of binding constraint g1;

solve ∇f (x) = α1∇g1(x); ignore slack constraint g2 by α2 = 0
I Global minimum c near edge where g1(x) = 0 and g2(x) = 0

I Kuhn-Tucker conditions: Either gi (x) = 0 (binding) or αi = 0
(slack): αigi (x) = 0,∀i
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Naive Bayes

Naive Bayes
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Naive Bayes

Naive Bayes

I Probabilistic decision model:

argmax
y

P(y|x) ∝ argmax
y

P(y)P(x|y)

I Uses Bayes Rule:

P(y|x) =
P(y)P(x|y)

P(x)
for fixed x

I Generative model since P(y)P(x|y) = P(x,y) is a joint
probability
I Because we model a distribution that can randomly generate

outputs and inputs, not just outputs

Statistical Methods for CL 32(161)



Naive Bayes

Naivety of Naive Bayes

I We need to decide on the structure of P(x,y)

I P(x|y) = P(φ(x)|y) = P(φ1(x), . . . ,φm(x)|y)

Naive Bayes Assumption
(conditional independence)

P(φ1(x), . . . ,φm(x)|y) =
∏

i P(φi(x)|y)
I P(x,y) = P(y)

∏m
i=1 P(φi (x)|y)

Q&A: How would P(x,y) be defined without independence?
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Naive Bayes

Naive Bayes – Learning

I Input: T = {(xt ,yt)}|T |t=1

I Let φi (x) ∈ {1, . . . ,Fi}
I Parameters P = {P(y),P(φi (x)|y)}
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Naive Bayes

Maximum Likelihood Estimation

I What’s left? Defining an objective L(T )

I P plays the role of ω

I What objective to use?

I Objective: Maximum Likelihood Estimation (MLE)

L(T ) =

|T |∏
t=1

P(xt ,yt) =

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)
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Naive Bayes

Naive Bayes – Learning

MLE has closed form solution

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]

where [[p]] =

{
1 if p is true,
0 otherwise.

Thus, these are just normalized counts over events in T
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Naive Bayes

Deriving MLE

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

= argmax
P

|T |∑
t=1

(
logP(yt) +

m∑
i=1

logP(φi (xt)|yt)

)

= argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

such that
∑
y P(y) = 1,

∑Fi
j=1 P(φi (x) = j |y) = 1, P(·) ≥ 0
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Naive Bayes

Deriving MLE

P = argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

Both optimizations are of the form

argmaxP
∑

v count(v) logP(v), s.t.
∑

v P(v) = 1, P(v) ≥ 0

where v is event in T , either (yt = y) or (φi (xt) = φi (x),yt = y)

Q&A: How can this problem be classified in terms of optimization
theory?
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Naive Bayes

Deriving MLE

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

I Derivative w.r.t P(v) is
count(v)

P(v) − λ

I Setting this to zero P(v) =
count(v)

λ

I Use
∑

v P(v) = 1, P(v) ≥ 0, then P(v) =
count(v)∑
v′ count(v ′)
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Naive Bayes

Deriving MLE

Reinstantiate events v in T :

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]
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Naive Bayes

Naive Bayes is a linear model

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y)

= argmax
y

log P(y) +
m∑
i=1

log P(φi (x)|y)

= argmax
y

ωy +
m∑
i=1

ωφi (x),y

= argmax
y

∑
y′
ωyψy′ (y) +

m∑
i=1

Fi∑
j=1

ωφi (x),yψi,j (x)

where ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]
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Naive Bayes

Smoothing

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I New doc: “washington hockey is fast”

I Q&A: What are probabilities of classes ‘sports’ or ‘politics for
“washington hockey is fast”?

I Smoothing aims to assign a small amount of probability to
unseen events

I E.g., Additive/Laplacian smoothing

P(v) =
count(v)∑
v ′ count(v ′)

=⇒ P(v) =
count(v) + α∑

v ′ (count(v ′) + α)

Statistical Methods for CL 42(161)



Naive Bayes

Discriminative versus Generative Models

I Generative models attempt to model inputs and outputs
I e.g., Naive Bayes = MLE of joint distribution P(x,y)
I Statistical model must explain generation of input

I Occam’s Razor: “Among competing hypotheses, the one with
the fewest assumptions should be selected”

I Discriminative models
I Use L that directly optimizes P(y|x) (or something related)
I Logistic Regression – MLE of P(y|x)
I Perceptron and SVMs – minimize classification error

I Generative and discriminative models use P(y|x) for
prediction; differ only on what distribution they use to set ω
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Logistic Regression

Logistic Regression
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Logistic Regression

Logistic Regression

Define a conditional probability:

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

Note: still a linear model

argmax
y

P(y|x) = argmax
y

eω·φ(x,y)

Zx

= argmax
y

eω·φ(x,y)

= argmax
y

ω · φ(x,y)
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Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx

I Q: How do we learn weights ω
I A: Set weights to maximize log-likelihood of training data:

ω = argmax
ω

L(T ;ω)

= argmax
ω

|T |∏
t=1

P(yt |xt) = argmax
ω

|T |∑
t=1

logP(yt |xt)

I In a nutshell we set the weights ω so that we assign as much
probability to the correct label y for each x in the training set
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Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

ω = argmax
ω

|T |∑
t=1

logP(yt |xt) (*)

I The objective function (*) is concave

I Therefore there is a global maximum
I No closed form solution, but lots of numerical techniques

I Gradient methods ((stochastic) gradient ascent, conjugate
gradient, iterative scaling)

I Newton methods (limited-memory quasi-newton)
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Logistic Regression

Gradient Ascent
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Logistic Regression

Gradient Ascent

I Let L(T ;ω) =
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argmaxω L(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 + αOL(T ;ωi−1)

I α > 0 is a step size / learning rate
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = ( ∂
∂ω1
L(T ;ω), ∂

∂ω2
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient ascent will always find ω to maximize L
Q&A: How do we turn this into a minimization problem?
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Logistic Regression

Gradient Descent

I Let L(T ;ω) = −
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argminωL(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 − αOL(T ;ωi−1)

I α > 0 is step size / learning rate
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = ( ∂
∂ω1
L(T ;ω), ∂

∂ω2
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient descent will always find ω to minimize L
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Logistic Regression

Deriving Gradient

I We apply gradient descent to minimize a convex functional

I Need to find the gradient = vector of partial derivatives

I Definition of conditional negative log-likelihood:

L(T ;ω) = −
∑
t

logP(yt |xt)

= −
∑
t

log
eω·φ(xt ,yt)∑
y′∈Y e

ω·φ(xt ,y′)

= −
∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt
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Logistic Regression

Deriving Gradient

∂

∂ωi
L(T ;ω) =

∂

∂ωi
−
∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

∂

∂ωi
− log

e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

(
∂

∂ωi
− log e

∑
j ωj×φj (xt ,yt) +

∂

∂ωi
logZxt

)
=

∑
t

(
−φi (xt ,yt) +

∂

∂ωi
logZxt

)
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Logistic Regression

Deriving Gradient

∂

∂ωi
L(T ;ω) =

∑
t

(
−φi (xt ,yt) +

∂

∂ωi
logZxt

)

=
∑
t

−φi (xt ,yt) +
∂

∂ωi
log

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)


=

∑
t

(
−φi (xt ,yt) +

∑
y′∈Y e

∑
j ωj×φj (xt ,y

′)φi (xt ,y
′)∑

y′∈Y e
∑

j ωj×φj (xt ,y′)

)

=
∑
t

−φi (xt ,yt) +
∑
y′∈Y

P(y′|xt)φi (xt ,y
′)


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Logistic Regression

FINALLY!!!

I After all that,

∂

∂ωi
L(T ;ω) = −

∑
t

φi (xt ,yt) +
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I And the gradient is:

OL(T ;ω) = (
∂

∂ω0
L(T ;ω),

∂

∂ω1
L(T ;ω), . . . ,

∂

∂ωm
L(T ;ω))

I So we can now use gradient descent to find ω!!
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Logistic Regression

Logistic Regression Summary

I Define conditional probability

P(y|x) =
eω·φ(x,y)

Zx

I Minimize conditional negative log-likelihood of training data

ω = argmin
ω

−
∑
t

logP(yt |xt)

I Calculate gradient and apply gradient descent optimization

∂

∂ωi
L(T ;ω) = −

∑
t

φi (xt ,yt) +
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)
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Logistic Regression

Logistic Regression = Maximum Entropy

I Maximum Entropy distribution P = arg maxP H(P) maximizes
entropy H(P) over all P subject to constraints stating that
I empirical feature counts must equal expected counts

I Quick intuition
I Partial derivative in logistic regression

∂

∂ωi
L(T ;ω) = −

∑
t

φi (xt ,yt) +
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I First term is empirical feature counts and second term is
expected counts

I At optimum of logistic regression objective we have found the
optimal parameter settings for a maximum entropy model

Q&A: How can uniform distribution be shown to maximize
unconstrained entropy?
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Perceptron

Perceptron
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Perceptron

Perceptron Learning Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. i = i + 1
8. return ωi

Statistical Methods for CL 58(161)



Perceptron

Perceptron: Separability and Margin

I Given an training instance (xt ,yt), define:
I Ȳt = Y − {yt}
I i.e., Ȳt is the set of incorrect labels for xt

I A training set T is separable with margin γ > 0 if there exists
a vector u with ‖u‖ = 1 such that:

u · φ(xt ,yt)− u · φ(xt ,y
′) ≥ γ (1)

for all y′ ∈ Ȳt and ||u|| =
√∑

j u2
j

I Assumption: the training set is separable with margin γ

Q&A: Why do we require ‖u‖ = 1?
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Perceptron

Perceptron Convergence Theorem

I Theorem: For any training set separable with a margin of γ,
the following holds for the perceptron algorithm:

mistakes made during training ≤ R2

γ2

where R ≥ ||φ(xt ,yt)− φ(xt ,y
′)|| for all (xt ,yt) ∈ T and

y′ ∈ Ȳt
I Thus, after a finite number of training iterations, the error on

the training set will converge to zero

I Let’s prove it!
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Perceptron

Perceptron Convergence Theorem
Training data: T = {(xt ,yt )}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt )− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I Lower bound:

ω(k−1) are weights before kth error

Suppose kth error made at (xt ,yt)

y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

y′ 6= yt

ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

u · ω(k) = u · ω(k−1) + u · (φ(xt ,yt)− φ(xt ,y′)) ≥ u · ω(k−1) + γ, by (1)
Since ω(0) = 0 and u · ω(0) = 0, for all k: u · ω(k) ≥ kγ, by induction on k
Since u · ω(k) ≤ ||u|| × ||ω(k)||, by the Cauchy-Schwarz inequality, and ||u|| = 1,
then ||ω(k)|| ≥ kγ

Q&A: What does the Cauchy-Schwarz inequality state?
I Upper bound:

||ω(k)||2 = ||ω(k−1)||2 + ||φ(xt ,yt)− φ(xt ,y
′)||2 + 2ω(k−1) · (φ(xt ,yt)− φ(xt ,y

′))

||ω(k)||2 ≤ ||ω(k−1)||2 + R2, since R ≥ ||φ(xt ,yt)− φ(xt ,y
′)||

and ω(k−1) · φ(xt ,yt)− ω(k−1) · φ(xt ,y
′) ≤ 0

≤ kR2 for all k, by induction on k
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Perceptron

Perceptron Convergence Theorem

I We have just shown that ||ω(k)|| ≥ kγ and ||ω(k)||2 ≤ kR2

I Therefore,
k2γ2 ≤ ||ω(k)||2 ≤ kR2

I and solving for k

k ≤ R2

γ2

I Therefore the number of errors is bounded!
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Perceptron

Perceptron Objective

I What is the objective function corresponding to the
perceptron update if seen as gradient descent step?

I Perceptron loss:

loss((xt ,yt);ω) = (max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))+

where (z)+ = max(0, z).

I Stochastic (sub)gradient:

∇loss =

{
0 if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 0

φ(xt ,y)− φ(xt ,yt) else, where y = argmaxy ω · φ(xt ,y)
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Perceptron

Averaged Perceptron Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. else

6. ω(i+1) = ω(i)

7. i = i + 1

8. return
(∑

i ω
(i)
)
/ (N × T )
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Perceptron

Perceptron Summary

I Learns parameters of a linear model by minimizing error

I Guaranteed to find a ω in a finite amount of time
I Perceptron is an example of an Online Learning Algorithm

I ω is updated based on a single training instance, taking a step
into the negative direction of the stochastic gradient:

ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y
′)

where y′ = argmaxy′ ω
(i) · φ(xt ,y

′)

I More about online learning/stochastic gradient descent later!
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Support Vector Machines

Support Vector Machines (SVMs)
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Support Vector Machines

Margin

Training Testing

Denote the
value of the
margin by γ
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Support Vector Machines

Maximizing Margin

I For a training set T
I Margin of a weight vector ω is smallest γ such that

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ γ

I for every training instance (xt ,yt) ∈ T , y′ ∈ Ȳt
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Support Vector Machines

Maximizing Margin

I Intuitively maximizing margin makes sense

I By cross-validation, the generalization error on unseen test
data can be shown to be proportional to the inverse of the
margin

ε ∝ R2

γ2 × |T |
I Perceptron: we have shown that:

I If a training set is separable by some margin, the perceptron
will find a ω that separates the data

I However, the perceptron does not pick ω to maximize the
margin!
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Support Vector Machines

Maximizing Margin

Let γ > 0
max
||ω||=1

γ

such that:
ω · φ(xt ,yt)− ω · φ(xt ,y

′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Note: algorithm still minimizes error if data is separable

I ||ω|| is bound since scaling trivially produces larger margin

β(ω · φ(xt ,yt)− ω · φ(xt ,y
′)) ≥ βγ, for some β ≥ 1
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 1):

max
u

1

||u||

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 1):

min
u
||u||

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 2):

min
u
||u||

such that:

γu·φ(xt ,yt)−γu·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Statistical Methods for CL 75(161)



Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 2):

min
u
||u||

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 3):

min
u

1

2
||u||2

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Min Norm:

min
u

1

2
||u||2

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Intuition: Instead of fixing ||ω|| we fix the margin γ = 1
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Support Vector Machines

Support Vector Machines

I Constrained Optimization Problem

ω = argmin
ω

1

2
||ω||2

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T and y′ ∈ Ȳt
I Support Vectors: Examples where

ω · φ(xt ,yt)− ω · φ(xt ,y
′) = 1

for training instance (xt ,yt) ∈ T and all y′ ∈ Ȳt
Q&A: How can the Kuhn-Tucker conditions be used to explain the
concept of support vectors?
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Support Vector Machines

Support Vector Machines

I What if data is not separable?

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ T and y′ ∈ Ȳt
I ξt : slack variable representing amount of constraint violation

I If data is separable, optimal solution has ξi = 0, ∀i
I C balances focus on margin and on error

Q&A: Which ranges of C focus on margin vs. error?
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2 +

|T |∑
t=1

ξt λ =
1

C

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt

where ξt ≥ 0 and ∀(xt ,yt) ∈ T and y′ ∈ Ȳt

I Computing the dual form results in a quadratic programming
problem – a well-known convex optimization problem

I Can we have representation of this objective that allows more
direct optimization?

ω · φ(xt ,yt)− max
y′ 6=yt

ω · φ(xt ,y
′) ≥ 1− ξt

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example
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Support Vector Machines

Support Vector Machines

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example

I If ‖ω‖ classifies (xt ,yt) with margin 1, penalty ξt = 0

I Otherwise: ξt = 1 + maxy′ 6=yt ω · φ(xt ,y
′)− ω · φ(xt ,yt)

I That means that in the end ξt will be:

ξt = max{0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)}
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2+

|T |∑
t=1

ξt s.t. ξt ≥ 1+ max
y′ 6=yt

ω·φ(xt ,y
′)−ω·φ(xt ,yt)

Hinge loss

ω = argmin
ω

L(T ;ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) +
λ

2
||ω||2

= argmin
ω

 |T |∑
t=1

max (0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt))

+
λ

2
||ω||2

I Hinge loss allows unconstrained optimization (later!)
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Support Vector Machines

Summary

What we have covered
I Linear Models

I Naive Bayes
I Logistic Regression
I Perceptron
I Support Vector Machines

What is next
I Regularization

I Online learning

I Non-linear models
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Regularization

Regularization
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Regularization

Fit of a Model

I Two sources of error:
I Bias error, measures how well the hypothesis class fits the

space we are trying to model
I Variance error, measures sensitivity to training set selection
I Want to balance these two things
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Regularization

Fitting Training Data is not Sufficient

I Two functions fitting training data, but differing in predictions
on test data

I Need to restrict class of functions to one that has capacity
suitable for data in question
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Regularization

Overfitting

I Early in lecture we made assumption data was i.i.d.
I Rarely is this true, e.g., syntactic analyzers typically trained on

40,000 sentences from early 1990s WSJ news text

I Even more common: T is very small
I This leads to overfitting

I E.g.: ‘fake’ is never a verb in WSJ treebank (only adjective)
I High weight on “φ(x,y) = 1 if x=fake and y=adjective”
I Of course: leads to high log-likelihood / low error
I Other features might be more indicative, e.g., adjacent word

identities: ‘He wants to X his death’ → X=verb
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Regularization

Regularization

I In practice, we regularize models to prevent overfitting

argmax
ω

L(T ;ω)− λR(ω)

I Where R(ω) is the regularization function

I λ controls how much to regularize

I Most common regularizer
I L2: R(ω) ∝ ‖ω‖2 = ‖ω‖ =

√∑
i ω

2
i – smaller weights desired
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Regularization

Logistic Regression with L2 Regularization

I Perhaps most common learner in NLP

L(T ;ω)− λR(ω) =

|T |∑
t=1

log
(
eω·φ(xt ,yt)/Zx

)
− λ

2
‖ω‖2

I What are the new partial derivatives?
∂

∂wi
L(T ;ω)− ∂

∂wi
λR(ω)

I We know ∂
∂wi
L(T ;ω)

I Just need ∂
∂wi

λ
2 ‖ω‖

2 = ∂
∂wi

λ
2

(√∑
i ω

2
i

)2

= ∂
∂wi

λ
2

∑
i ω

2
i = λωi

Statistical Methods for CL 90(161)



Regularization

Support Vector Machines

I SVM in hinge-loss formulation: L2 regularization corresponds
to margin maximization!

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2
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Regularization

SVMs vs. Logistic Regression

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (ω · φ(xt ,y)− ω · φ(xt ,yt)))

ω = argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

Logistic Regression/log-loss: − log
(
eω·φ(xt ,yt )/Zx

)

ω = argmin
ω

|T |∑
t=1

− log
(
eω·φ(xt ,yt )/Zx

)
+
λ

2
‖ω‖2
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Regularization

Leave-one-out Generalization Bound for
Margin

I By cross-validation, the generalization error on unseen test
data can be shown to be proportional to the inverse of the
margin

ε ∝ R2

γ2 × |T |
I Shown for the perceptron by [Freund and Schapire 1999]

I True also for SVM which optimizes margin directly

I Generalizes to regularization of weight norm by equivalence of
margin maximization to L2 norm minimization
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Regularization

Leave-one-out Generalization Bound for
Support Vectors

I The generalization error on unseen test data can be shown to
be upper bounded by the number of support vectors found by
cross-validation on a training set of size m

ε ≤ #SV

m

I Shown by [Vapnik 1998]

I Support vectors thus can be seen as regularization in
example/dual space
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Regularization

Summary: Loss Functions

Q&A: Define zero-one, hinge, perceptron, and log loss as functions
L(y , f (x)) for y ∈ {−1,+1} and f (x) = w · φ(x)
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Online Learning

Online Learning
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Online Learning

Online vs. Batch Learning

Batch(T );

I for 1 . . . N

I ω ← update(T ;ω)

I return ω

E.g., SVMs, logistic regres-
sion, Naive Bayes

Online(T );

I for 1 . . . N

I for (xt ,yt) ∈ T
I ω ← update((xt ,yt);ω)

I end for

I end for

I return ω

E.g., Perceptron
ω = ω + φ(xt ,yt)− φ(xt ,y)
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Online Learning

Batch Gradient Descent

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)
I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 − αOL(T ;ωi−1)

= ωi−1 −
|T |∑
t=1

αOloss((xt ,yt);ωi−1)

I α > 0 is step size / learning rate
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Online Learning

Stochastic Gradient Descent

I Stochastic Gradient Descent (SGD)
I Approximate batch gradient OL(T ;ω) with stochastic

gradient Oloss((xt ,yt);ω)

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)
I Set ω0 = Om

I iterate until convergence
I sample (xt ,yt) ∈ T // “stochastic”
I ωi = ωi−1 − αOloss((xt ,yt);ωi−1)

I return ω
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Online Learning

Online Logistic Regression

I Stochastic Gradient Descent (SGD)

I loss((xt ,yt);ω) = log-loss

I Oloss((xt ,yt);ω) = O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
I From logistic regression section:

O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
= −

(
φ(xt ,yt)−

∑
y

P(y|x)φ(xt ,y)

)

I Plus regularization term (if part of model)
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Online Learning

Online SVMs
I Stochastic Gradient Descent (SGD)
I loss((xt ,yt);ω) = hinge-loss

Oloss((xt ,yt);ω) = O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)
I Subgradient is:

O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)

=

{
0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = argmaxy ω · φ(xt ,y)

I Plus regularization term (L2 norm for SVMs):

O
λ

2
||ω||2 = λω
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Online Learning

Perceptron and Hinge-Loss
SVM subgradient update looks like perceptron update

ωi = ωi−1−α
{
λω, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt) + λω, otherwise, where y = argmaxy ω · φ(xt ,y)

Perceptron

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 0

φ(xt ,y)− φ(xt ,yt), otherwise, where y = argmaxy ω · φ(xt ,y)

Perceptron = SGD optimization of no-margin hinge-loss (without
regularization):

max (0, 1+ max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))
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Online Learning

Online vs. Batch Learning

I Online algorithms
I Each update step relies only on the derivative for a single

randomly chosen example
I Computational cost of one step is 1/T compared to batch
I Easier to implement

I Larger variance since each gradient is different
I Variance slows down convergence
I Requires fine-tuning of decaying learning rate

I Batch algorithms
I Higher cost of averaging gradients over T for each update

I Implementation more complex
I Less fine-tuning, e.g., allows constant learning rates
I Faster convergence

Q&A: What would you choose in big data scenarios - online or
batch?
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Online Learning

Variance-Reduced Online Learning

I SGD update extended by velocity vector v weighted by
momentum coefficient 0 ≤ µ < 1 [Polyak 1964]:
I

ωi+1 = ωi − αOloss((xt ,yt);ωi ) + µvi

where
vi = ωi − ωi−1

I Momentum accelerates learning if gradients are aligned along
same direction, and restricts changes when successive gradient
are opposite of each other

I General direction of gradient reinforced, perpendicular
directions filtered out

I Best of both worlds: Efficient and effective!
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Online Learning

Online-to-Batch Conversion

I Classical online learning:
I data are given as an infinite sequence of input examples
I model makes prediction on next example in sequence

I Standard NLP applications:
I finite set of training data, prediction on new batch of test data
I online learning applied by cycling over finite data
I online-to-batch conversion: Which model to use at test time?

I Last model? Random model? Best model on heldout set?
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Online Learning

Online-to-Batch Conversion by Averaging

I Averaged Perceptron
I ω̄ =

(∑
i ω

(i)
)
/ (N × T )

I Use weight vector averaged over online updates for prediction

I How does the perceptron mistake bound carry over to batch?
I Let Mk be number of mistakes made during online learning,

then with probability of at least 1− δ:

E[loss((x,y); ω̄)] ≤ Mk +

√
2

k
ln

1

δ

I = generalization bound based on online performance
[Cesa-Bianchi et al. 2004]

I can be applied to all online learners with convex losses
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Summary

Quick Summary
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Summary

Linear Learners

I Naive Bayes, Perceptron, Logistic Regression and SVMs

I Linear models and convex objectives

I Gradient descent

I Regularization

I Online vs. batch learning
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Non-Linear Models

Non-Linear Models
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Non-Linear Models

Non-Linear Models

I Some data sets require more than a linear decision boundary
to be correctly modeled

I Decision boundary is no longer a hyperplane in the feature
space
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Kernel Machines

Kernel Machines = Convex Optimization for
Non-Linear Models

I Projecting a linear model into a higher dimensional feature
space can correspond to a non-linear model and make
non-separable problems separable

I For classifiers based on similarity functions (= kernels),
computing a non-linear kernel is often more efficient than
calculating the corresponding dot product in the high
dimensional feature space

I Thus, kernels allow us to efficiently learn non-linear models by
convex optimization
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Kernel Machines

Monomial Features and Polynomial Kernels

I Monomial features = d th order products of entries xj of
x ∈ Rn s.t. xj1 ∗ xj2 ∗ · · · ∗ xjd for j1, . . . , jd ∈ {1 . . . n}

I Ordered monomial feature map: φ : R2 → R4 s.t.
(x1, x2) 7→ (x2

1 , x
2
2 , x1x2, x2x1)

I Computation of kernel from feature map:

φ(x) · φ(x′) =
4∑

i=1

φi (x)φi (x
′) (Def. dot product)

= x2
1x
′2
1 + x2

2x
′2
2 + x1x2x

′
1x
′
2 + x2x1x

′
2x
′
1 (Def. φ)

= x2
1x
′2
1 + x2

2x
′2
2 + 2x1x2x

′
1x
′
2

=
(
x1x
′
1 + x2x

′
2

)2

I Direct application of kernel: φ(x) · φ(x′) = (x · x′)2
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Kernel Machines

Direct Application of Kernel

I Let Cd be a map from x ∈ Rm to vectors Cd(x) of all
d th-degree ordered products of entries of x.
Then the corresponding kernel computing the dot product of
vectors mapped by Cd is:

K (x,x′) = Cd(x) · Cd(x′) = (x · x′)d

I Alternative feature map satisfying this definition = unordered
monomial: φ2 : R2 → R3 s.t. (x1, x2) 7→ (x2

1 , x
2
2 ,
√

2x1x2)

Q&A: Suppose inputs x being vectors of pixel intensities. How can
monomial features help to distinguish handwritten 8 from 0 in
image recognition?
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Kernel Machines

Non-Linear Feature Map

I φ2 : R2 → R3 s.t. (x1, x2) 7→ (z1, z2, z3) = (x2
1 , x

2
2 ,
√

2x1x2)

I Linear hyperplane parallel to z3, e.g., mapping (1, 1) 7→
(1, 1, 1.4), (1,−1) 7→ (1, 1,−1.4), . . . , (2, 2) 7→ (4, 4, 5.7)
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Kernel Machines

Kernel Definition
I A kernel is a similarity function between two points that is

symmetric and positive definite, which we denote by:

K (xt ,xr ) ∈ R

I Let M be a n × n matrix such that ...

Mt,r = K (xt ,xr )

I ... for any n points. Called the Gram matrix.

I Symmetric:
K (xt ,xr ) = K (xr ,xt)

I Positive definite: positivity on diagonal

K (x,x) ≥ 0 forall x with equality only for x = 0
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Kernel Machines

Mercer’s Theorem

I Mercer’s Theorem: for any kernel K , there exists a φ in
some Rd , such that:

K (xt ,xr ) = φ(xt) · φ(xr )

I This means that instead of mapping input data via non-lineear
feature map φ and then computing dot product, we can apply
kernels directly without even knowing about φ!
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Kernel Machines

Kernel Trick

I Define a kernel, and do not explicitly use dot product between
vectors, only kernel calculations

I In some high-dimensional space, this corresponds to dot
product

I In that space, the decision boundary is linear, but in the
original space, we now have a non-linear decision boundary

I Note: Since our features are over pairs (x,y), we will write
kernels over pairs

K ((xt ,yt), (xr ,yr )) = φ(xt ,yt) · φ(xr ,yr )

I Let’s do it for the Perceptron!
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Kernel Machines

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y = argmaxy ω
(i) · φ(xt ,y)

5. if y 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y)
7. i = i + 1
8. return ωi

I Each feature function φ(xt ,yt) is added and φ(xt ,y) is
subtracted to ω say αy,t times
I αy,t is proportional to number of times label y is predicted for

example t and caused an update because of misclassification

I Thus,
ω =

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)]
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Kernel Machines

Kernel Trick – Perceptron Algorithm

I We can re-write the argmax function as:

y∗ = argmax
y∗

ω(i) · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)] · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt) · φ(x,y∗)− φ(xt ,y) · φ(x,y∗)]

= argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (x,y
∗))− K ((xt ,y), (x,y∗))]

I We can then re-write the perceptron algorithm strictly with
kernels
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Kernel Machines

Kernel Trick – Perceptron Algorithm

I Training: T = {(xt ,yt)}|T |t=1

1. ∀y, t set αy,t = 0
2. for n : 1..N
3. for t : 1..T
4. Let y∗ = argmaxy∗

∑
t,y αy,t [K((xt ,yt), (xt ,y∗))− K((xt ,y), (xt ,y∗))]

5. if y∗ 6= yt
6. αy∗,t = αy∗,t + 1

I Testing on unseen instance x:

y∗ = argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (x,y
∗))−K ((xt ,y), (x,y∗))]

Intuition: y∗ is label that is most similar to gold standard labels
and least similar to non-gold labels.
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Kernel Machines

Kernels Summary

I Can turn a linear model into a non-linear model
I Kernels project feature space to higher dimensions

I Sometimes exponentially larger
I Sometimes an infinite space!

I Can “kernelize” algorithms to make them non-linear

I Convex optimization methods still applicable to learn
parameters

I Disadvantage: Exact kernel methods depend polynomially on
the number of training examples - infeasible for large datasets
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Kernel Machines

Kernels for Large Training Sets

I Alternative to exact kernels: Explicit randomized feature map
[Rahimi and Recht 2007, Lu et al. 2016]

I Shallow neural network by random Fourier/Binning
transformation:

I Random weights from input to hidden units
I Cosine as transfer function
I Convex optimization of weights from hidden to output units
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Neural Networks

Neural Networks: Nonconvex Optimization for
Learning Nonlinear Feature Representations

I Kernel Machines
I Kernel Machines introduce nonlinearity by using specific

feature maps or kernels
I Feature map or kernel is not part of optimization problem, thus

convex optimization of loss function for linear model possible

I Neural Networks
I Similarities and nonlinear combinations of features are learned:

representation learning
I We lose the advantages of convex optimization since objective

functions will be nonconvex
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Neural Networks

Perceptron as Single-Unit Neural Network

I New notation:
I input vector: x ∈ Rdin

I weight matrix: W ∈ Rdin×dout

I linear model: y = xW

I Example: din = 5, dout = 1, y =
∑5

i=1 xiwi

Q&A: We are implicitly assuming that x is a row vector. How
would a perceptron look like if we assumed that x is a column
vector?
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Neural Networks

Multilayer Perceptron (MLP)

I Multilayer Perceptron for 1 hidden layer:

h = f (xW(1)),

y = g(hW(2))

I input vector: x ∈ Rdin

I weights between input and hidden layer: W(1) ∈ Rdin×d1

I weights between hidden layer and output: W(2) ∈ Rd1×d2

I non-linear functions f and g , applied elementwise
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Neural Networks

Multilayer Perceptron (MLP)

I Example:
I din = 5, d1 = 5, d2 = dout = 1,
I yk = g(

∑5
j=1 hjw

(2)
kj ),

I hj = f (
∑5

i=1 xiw
(1)
ji ).
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Neural Networks

Layering and Non-linear Activation Functions

I Layering structure feeds outputs of previous layers as input
into following layers

I Each hidden node performs feature combination and feature
selection by turning input feature configuration on and off

I Non-linear activation (threshold, transfer) function is
important
I Without non-linear activation function models stays linear

I Our example of a 1-hidden layer MLP is an universal
approximator (of any measurable function)
[Hornik et al. 1989]
I n-layer MLP is composition of n functions h
I Multiple layers are used in practice
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Neural Networks

Non-linear Activation Functions

Logistic function
sigmoid(x) = σ(x) = 1

1+e−x

output ranges from 0 to +1

-

6

Statistical Methods for CL 128(161)



Neural Networks

Non-linear Activation Functions

Hyperbolic tangent

tanh(x) = sinh(x)
cosh(x)

= ex−e−x

ex+e−x

output ranges from –1 to +1

-

6
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Neural Networks

Non-linear Activation Functions

Rectified Linear

relu(x) = max(0,x)

output ranges from 0 to ∞

-

6

�
�
�
�
�
�
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Neural Networks

Example: XOR

I XOR problem:
I Suppose two input features x1 and x2. Classes “true” and

“false” fall into opposite quadrants of the decision space and
cannot be separated linearly by a hyperplane.
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Neural Networks

Example: XOR

11

5

-5

-2-4

-2

3
2

4

3

x0

x1

x2

h0

h1

h2

y0

I Bias nodes x2 and h2 with fixed value 1, set activation
thresholds by their outgoing weights

I Computation of hidden node h0 for input x0 = 1, x1 = 0:

h0 = σ(
∑
i

xiw0i )

= σ (1× 3 + 0× 4 + 1×−2)

= 0.73
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Neural Networks

Example: XOR

Input x0 Input x1 Hidden h0 Hidden h1 Output y0

0 0 0.12 0.02 0.18 → 0
0 1 0.88 0.27 0.74 → 1
1 0 0.73 0.12 0.74 → 1
1 1 0.99 0.73 0.33 → 0

I h0 acts as OR node, h1 acts as AND node

I XOR is subtraction of value of AND node from OR node

Q&A: Show that nonlinearity is crucial on the example input (1, 1).
Value of h1 needs to be pushed up by sigmoid in order to push
down final value below threshold 0.5.
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Neural Networks

Optimizing MLPs by Backpropagation

I Backpropagation:
I Apply stochastic gradient descent to each training example
I Start at input layer, feed forward computation of total input to

output layer (thus alternative name feed-forward neural
networks for MLPs)

I Compute error at output layer, propagate error back to
previous layers (thus ...)
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Neural Networks

Backpropagation

I Weight update at output nodes
I Output node calculation: si =

∑
j wi←jhj , yi = σ(si )

I Squared error compared to target t: E =
∑

i
1
2 (ti − yi )

2

I Chain rule applied to gradient: dE
dwi←j

= dE
dyi

dyi
dsi

dsi
dwi←j

I dE
dyi

= d
dyi

1
2
(ti − yi )

2 = −(ti − yi )

I dyi
dsi

= d σ(si )
dsi

= σ(si )(1− σ(si )) = yi (1− yi ) := y ′i
I ds

dwi←j
= d

dwi←j

∑
j wi←jhj = hj

I Alltogether dE
dwi←j

= dE
dyi

dyi
dsi

ds
dwi←j

= −(ti − yi ) y ′i hj

I Weight update: ∆wi←j = µ δi hj ,
where δi = (ti − yi ) y

′
i is an error term and µ is a learning rate

Q&A: Show how to recover a single-unit binary perceptron.
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Neural Networks

Backpropagation

I Weight update at hidden nodes
I Hidden node computation: zj =

∑
k wj←kxk , hj = σ(zj)

I Chain rule applied to gradient of squared error:
dE

dwj←k
= dE

dhj

dhj
dzj

dzj
dwj←k

I Chain rule to track how error at output of hidden node
contributes to error in next layer: dE

dhj
=
∑

i
dE
dyi

dyi
dsi

dsi
dhj

I dE
dyi

dyi
dsi

= −(ti − yi ) y ′i = δi , dsi
dhj

= d
dhj

∑
i wi←jhj = wi←j

I Alltogether: dE
dhj

=
∑

i δiwi←j

I dhj
dzj

=
d σ(zj )
dzj

= σ(zj)(1− σ(zj)) = hj(1− hj) = h′j
I dzj

dwj←k
= d

dwj←k

∑
k wj←kxk = xk

I Alltogether: dE
dwj←k

= dE
dhj

dhj
dzj

dzj
dwj←k

=
∑

i (δiwi←j) h′j xk

I Weight update: ∆wj←k = µ δj xk where δj =
∑

i (δiwi←j) h′j
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Neural Networks

Backpropagation

I Error at output node compared to target: δi = (ti − yi ) y
′
i

I Error at hidden nodes by backpropagating error term δi from
subsequent nodes connected by weights wi←j :
δj =

∑
i (δiwi←j) h′j

I Similar weight updates:
I ∆wi←j = µ δi hj ,
I ∆wj←k = µ δj xk
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Neural Networks

Refinements

I Task-dependent network architecture:
I MLP for regression: dout = 1
I MLP for binary classification: dout = 2
I MLP for k-fold multiclass classification: dout = k

I Task-dependent loss functions:
I Squared error for regression, hinge loss for multiclass

classification

I Optimization issues:
I Known techniques such as SGD/momentum/regularization

applicable
I Special considerations regarding weight initialization/learning

rates/gradient flow
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Neural Networks

Feed-Forward Neural Language Model

Word i-4

Word i-3

Word i-2

Word i-1

Word i

H
id

de
n 

La
ye

r

I Goal: Word-wise learning of probability of next word given
context: p(wi |wi−4,wi−3,wi−2,wi−1)

I Key idea: Learn a feature representation for each word as
continuous vector in first layer of MLP simultaneously with
optimizing language model probability
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Neural Networks

Word Embeddings

C

C

C

C

Context Words Embeddings Hidden Layer Predicted Word

I Represent each word by setting its index i to 1 in a vocabulary
sized vector of 0s (= 1-hot vector xi )

I Use shared weight matrix C for all words

I Words occurring in similar contexts will get similar embeddings
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Neural Networks

Learning Word Embeddings

I Train weights of embedding matrix C as part of application

I OR: Train C separately, lookup embedding vector by
multiplying xiC, concatenate embeddings into input vector x

I ALSO: Embeddings can be learned for arbitrary core features,
e.g., by representing words by POS tags and associating a
lookup table to each POS tag
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Neural Networks

Training Feed-Forward Neural Language
Models

I Use standard MLP model with input x being concatenation of
embedding vectors for each input feature for context words

I Output layer is probability distribution over all words in
vocabulary, guaranteed by using softmax activation function
over output nodes si : pi = esi∑

j e
sj

I Given context x and one-hot output vector y, optimize
negative log-likelihood: L(W) = −

∑
k yk log pk

I Stochastic gradient: dL
dW = (p− y)h>

I Weight update: ∆wi←j = µ (pi − yi ) hj
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Neural Networks

Recurrent Neural Networks (RNN)

I Problem with MLP Language Model: Fixed context size

I RNNs can use unlimited context by recurrent definition
ht = f (xt ,ht−1) where hidden layer of previous word is reused:

ht = f (xt ,ht−1)

= σ(xtW
(x1) + ht−1W(h1)),

yt = softmax(htW
(h2)).

I xt ∈ Rdx , ht ∈ Rdh , yt ∈ Rdy ,
I W(x1) ∈ Rdx×dh ,
I W(h1) ∈ Rdh×dh ,
I W(h2) ∈ Rdh×dy .

I Note: Columns of W(x1) can also be used as word embeddings

Q&A: Unfold the RNN definition recursively over time.
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Neural Networks

RNN Language Model

Word 1 Word 2EC

1

H1

Word 2 Word 3EC H2

H1

copy values

Word 3 Word 4EC H3

H2

copy values

I Capture long term dependencies by copying contexts over time
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Neural Networks

Training RNNs

Word 1 Word 2E

H

H

Word 2 Word 3E H

Word 3 Word 4E H

I Truncated back-propagation through time by unfolding
network for a fixed number of words in context
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Neural Networks

Shortcomings and Refinements

I Neural language models require computing the value of each
output node in each training step; requires expensive
normalization constant Z =

∑
j e

sj over full vocabulary
I Self-normalization: Regularize logZ in objective s.t.

log Z ' 0 leads to Z ' 1
I Noise-contrastive estimation: Train the model to separate

correct training examples from noise examples; only requires
output node values for training and noise examples

I Vanishing and exploding gradients in deep networks
I Clip exploding gradients g ← threshold

||g || g if ||g || > threshold
I Avoid vanishing gradients by memory cells, e.g., LSTMs
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Neural Networks

Refinement: Regularization by Dropout

I For each training example, drop out hidden units with
probability 1− p

I At test time, keep all units and multiply outgoing weights by p

I → ensures that output equals expected output under
distribution used to drop out units during training
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Neural Networks

Refinement: Regularization by Dropout

I Dropout regularizes networks by training each sampled
thinned network very rarely

I Dropout prevents overfitting by approximately combining 2n

possible thinned networks for n-hidden unit architecture
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Neural Networks

Refinement: LSTM (Long Short-Term
Memory)

I LSTMs were designed to preserve gradients over time in
memory cells which are accessed via gates
I input gates regulate how much a new input changes the

memory state,
I forget gates regulate how much of the prior memory state is

retained or forgotten,
I output gates regulate how strongly a memory state is passed

on to the next layer.

I Gates are set via component-wise multiplication ⊗ of a
(thresholded) gate vector a ∈ [0, 1]n with a vector b ∈ Rn

I components of b corresponding to near-one values in a may
pass; those corresponding to near-zero values are blocked

I Memory update via addition (won’t vanish in backprop)
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Neural Networks

Refinement: LSTM
I Similar recurrent definition ht = f (xt ,ht−1) as RNNs, but

including explicit memory component m:

ht = f (xt ,ht−1)

= tanh(mt ⊗ o),

mt = mt−1 ⊗ f + g ⊗ i,

i = σ(xtW
(xi) + ht−1W(hi)),

f = σ(xtW
(xf) + ht−1W(hf)),

o = σ(xtW
(xo) + ht−1W(ho)),

g = tanh(xtW
(xg) + ht−1W(hg)),

xt ∈ Rdx ,mt ,ht , i, f, o, g ∈ Rdh ,

W(x∗) ∈ Rdx×dh ,W(h∗) ∈ Rdh×dh .
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Neural Networks

Refinement: LSTM

input gate  

output gate  

forget gate  

X i

m o

⊗ ⊕

⊗ h

m

⊗

LSTM Layer Time t-1

Next Layer
Y

LSTM Layer Time t

Preceding Layer
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Neural Networks

RNN Encoder-Decoder for Statistical Machine
Translation (SMT)

I Training data D = {(xi , yi )}Ni=1 where
I x = (x1, x2, . . . , xTx ) is a sequence of source words,
I y = (y1, y2, . . . , yTy ) is a sequence of target words.

I Conditional language model:
I p(y|x) =

∏Ty

t=1 p(yt |y<t , x) where y<t = y1, . . . , yt−1

I Negative log-likelihood objective:

I − 1
N

∑N
i=1

∑Ty

t=1 log p(y i
t |y i

<t , x
i )
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Neural Networks

Simple RNN Encoder-Decoder for SMT

I RNN Encoder:
I Map source-language input sentence into single context vector

by using last memory state of RNN/LSTM:

ht = f (xt ,ht−1),

c = q(h1,h2, . . . ,hTx ) = hTx .

I RNN Decoder:
I Use RNN/LSTM to decode target language words by

concatenating context vector c to hidden output state
representation:

st = f (yt−1‖c, st−1),

p(yt |y<t , x) = softmax(stW
(h2)).
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Neural Networks

Example: Translation with Simple RNN
Encoder-Decoder
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Neural Networks

Refinement: Bi-directional RNN Encoder

I Forward RNN reads input from x1 to xTx and calculates the

forward hidden state sequence
→
h1, . . . ,

→
hTx where

→
h t= f (xt ,

→
h t−1),

I Backward RNN reads input from xTx to x1 and calculates the

backward hidden state sequence
←
h1, . . . ,

←
hTx where

←
h t= f (xt ,

←
h t+1),

I Concatenate hidden states of forward and backward RNNs:

ht =
←
h t ‖

→
h t ,
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Neural Networks

Refinement: Attention-Based RNN Decoder

I Attention Mechanism:
I Instead of encoding whole source sentence into c, use weighted

average of source context vectors ci =
∑Tx

j=1 aijhj ,

I Attention weights aij = eeij∑T
j′=1

e
e
ij′ are computed by softmax

over the relevance of a source-word context vector hj for
translating the next target word represented by target word
context si−1 just before emitting word yi

I This matrix encodes a soft alignment model for translation
I Can be learned by MLP eij = v tanh(si−1W + hjU)
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Neural Networks

Attention Mechanism: Example

I Soft alignments learned by attention mechanism
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Neural Networks

Attention-Based RNN Encoder-Decoder for
SMT

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

Alignment

Input Context

Hidden State

fj

aij

ci

si

I Encoder: Concatenate left-to-right and right-to-left RNNs

I Decoder: Predict next output word, given previous output
words and contexts, and alignment-weighted input contexts

I Not shown: Generate output words from hidden output states
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Neural Networks

Summary

I Basic principles of machine learning:
I To do learning, we set up an objective function that tells the

fit of the model to the data
I For linear models, the objective will be convex

I Apply optimization techniques to train model parameters
(weights, probabilities, etc.)

I For linear models, even if non-linearity is introduced by
kernels, we can apply convex optimization techniques

I Algorithms can by set up as batch or online learners, with and
without regularization
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Neural Networks

Summary

I Extension of models
I Kernel Machines

I Kernel Machines introduce nonlinearity by using specific
feature maps or kernels

I Feature map or kernel is not part of optimization problem,
thus convex optimization of loss function for linear model
possible

I Neural Networks
I Similarities and nonlinear combinations of features are learned:

representation learning
I We lose the advantages of convex optimization since objective

functions will be nonconvex
I However, basic building blocks (e.g. perceptron) and

optimization techniques (e.g. stochastic gradient descent,
regularization) stay the same
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