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About me

• Mail: steen@cl.uni-heidelberg.de


• Office Hours: Wednesday, 13:00-14:00, R. 123a

mailto:steen@cl.uni-heidelberg.de


What you should already 
know about

• Neural Networks and how to train them


• Structure of neurons, backpropagation etc.


• Common NLP-architectures/concepts


• LSTMs


• CNNs


• seq2seq


• attention



Useful, but not required

• Transformers


• Reinforcement-learning



What is Summarization?

• „[A] reductive transformation of source text to summary 
text through content reduction by selection and/or 
generalisation on what is important in the source“.¹


• Input: Long text(s) with irrelevant and/or redundant 
information


• Output: Concise, non-redundant summary

(1) Jones, K. Sparck. "Automatic summarizing: factors and directions." Advances in automatic text summarization (1999): 2



Extractive vs. Abstractive 
Summarization

• Summarization has two subcategories


• Extractive Summarization only identifies key 
sentences from input, possible rearranging them.


• Abstractive Summarization generates new text „from 
scratch“


• Intermediate category: Compressive Summarization 
uses no new words, but may remove/rearrange on the 
word level



Summarization Tasks
• Sentence Summarization/Headline Generation 

• Generate a headline based, e.g. on the initial sentence of a document 
(Not the focus of this seminar)


• Single Document Summarization (SDS) 

• Generate a short summary based on a single input document


• Multi Document Summarization (MDS) 

• Generate a concise summary based on multiple documents


• Many others: Query Summarization, Timeline Summarization etc. (not in 
this seminar)



Impact of Neural Methods

• Before neural summarization


• Focus on extractive methods


• Relatively small, but well curated datasets (DUC)


• Many unsupervised systems, some supervision, focus 
on global optimization of scoring functions (Integer 
Linear Programming, Submodular Functions, 
Determinantal Point Processes, …)



Impact of Neural Methods

• With Neural Summarization


• Viable abstractive systems


• Huge, but noisy datasets with unclear summarization 
schemas (CNN/Dailymail)


• Initially focused on Sentence Summarization and later 
SDS, now some work on MDS



Relation to NMT
• Abstractive Text Summarization is similar to and often influenced by 

Neural Machine Translation (NMT)


• Translate document in „document language“ to „summary language“


• Same basic seq2seq architecture can be used for abstractive 
summarization 


• However, there are important differences


• Copying turns out to be very important


• Input are full documents, or even multiple documents


• Not all content should be preserved (content selection)



Organization



This Seminar
• Rest of today: Organisation and paper overview


• Next week: Fundamentals


• Some datasets


• Evaluation Measures (ROUGE)


• Possibly some fun summarization theory


• After that: presentations by students/reading groups


• Literature list with schedule on the course page



How to get points
• Active Participation 

• No more than one unexcused absence


• Active Participation in classroom discussion


• Preparation 

• Read all papers due to be presented (at most two)


• Hand in two questions or comments about each paper via mail (steen@cl)


• Deadline: Each Monday before the seminar, 3pm


• Part of your participation grade



How to get points

• Additionally, one of the following


• Term paper 

• A small implementation project 

• Second presentation



Presentation
• PS 

• usually one paper


• 30 minutes


• HS 

• usually two papers


• 60 minutes


• Discuss the presentation with me before the seminar (in my 
office hours)



Presentation Grading
• Presentation Content


• Explain methods and results


• Point out strengths, weaknesses


• Compare to what we have seen before in the seminar


• Presentation Style


• Structure


• Clarity of the presentation


• Design of the slides, use of illustration etc.



Term Paper
• Max. 10 (PS) or 14 (HS) pages (standard latex article 

template)


• Contextualise the contents of one of the papers


• Compare with others (other approaches, or earlier 
research on summarization)


• Find similarities among approaches


• Approaches should be well explained, show that you 
understood them



Project
• Max 8 pages (both PS and HS)


• Submit (working) code + project report


• Possibilities


• A clean reimplementation of one of the approaches


• An exploration of one of your own ideas


• Corpus analysis


• …



Submission and Final Grade
• Submission of all final projects and papers by 30th of April via mail as 

PDF


• If you do a second presentation, you are done by the end of the 
semester of course


• Final grade is made up of


• Participation (30%)


• Presentation (40%)


• Project, term paper or second presentation (30%)


• If you do a second presentation, the better one will count 40%



Selecting a Paper
• Papers are tentatively labeled for HS or PS


• HS papers are generally more difficult, cover a wider area


• If you want to do PS, but are interested in HS: no problem


• If you want to cover PS papers, but want HS points:


• Write this in your registration mail


• We can possibly add more background, comparison


• If you want to present a paper not listed here, this might also be 
possible



The Papers



Nallapati et. al. (2017) (PS)
• Simple classification task for 

every sentence


• Should it be in the summary 
or not?


• This can be framed as a sequence 
labelling task => RNN


• Derive ground-truth labels from abstractive gold 
summaries via heuristic


• CE-loss for training

Source: Nallapati et. al. (2017)



Yasunaga et. al. (2017) (PS)

• Built on a classical two step procedure: salience 
estimation, followed by selection for MDS


• Salience estimation = regression on ROUGE-scores


• Construct a graph based on sentence similarity, 
discourse markers and salience


• Use a graph convolutional network over the graph for 
ROUGE prediction



Pointer Mechanisms (PS)

• Problem in abstractive summarization: how to deal with 
unknown words?


• Extending the vocabulary increases parameter count 
massively


• We can never cover all words


• Idea: Point to the unknown words


• Two approaches: (See 2017, Nallapati 2016)



Grusky et. al. (2018) (PS)

• Not all Summarization Datasets are equal


• Important measure: How abstractive are the datasets?


• Introduces new datasets


• New metrics for dataset analysis



Narayan et. al. (2018) (PS)
• Existing methods tend towards extraction


• Analysis reveals that this is also due to dataset 
characteristics


• New dataset: XSUM (Extreme Summarization)


• Very short summaries


• High abstraction


• Also describes a CNN-based seq2seq model for the problem



Extractive Summarization 
without Labels (HS)

• Heuristic labels for extractive summarization are only 
approximations


• Can we directly optimise evaluation metrics (ROUGE)?


• Solution: Reinforcement-learning over sentence labels



Extractive Summarization 
without Labels

• Narayan et. al. (2018b)


• Sample complete sentence labelling


• Compute ROUGE as feedback score 



• Zhang et. al. (2018)


• Trains additional compression model


• Uses compression model to identify an alignment between 
extracted sentences and gold summary for feedback

∇L(θ) = − 𝔼 ̂y∼pθ
[r( ̂y)∇pθ( ̂y |θ, D)]



Extractive Summarization 
without Labels
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Figure 1: Extractive summarization model with reinforcement learning: a hierarchical encoder-decoder
model ranks sentences for their extract-worthiness and a candidate summary is assembled from the top
ranked sentences; the REWARD generator compares the candidate against the gold summary to give a
reward which is used in the REINFORCE algorithm (Williams, 1992) to update the model.

sentence si and makes a binary prediction, con-
ditioned on the document representation (obtained
from the document encoder) and the previously la-
beled sentences. This way, the sentence extractor
is able to identify locally and globally important
sentences within the document. We rank the sen-
tences in a document D by p(yi = 1|si,D,θ), the
confidence scores assigned by the softmax layer
of the sentence extractor.

We learn to rank sentences by training our
network in a reinforcement learning framework,
directly optimizing the final evaluation metric,
namely ROUGE (Lin and Hovy, 2003). Before we
describe our training algorithm, we elaborate on
why the maximum-likelihood cross-entropy ob-
jective could be deficient for ranking sentences
for summarization (Section 3). Then, we define
our reinforcement learning objective in Section 4
and show that our new way of training allows the
model to better discriminate amongst sentences,
i.e., a sentence is ranked higher for selection if it
often occurs in high scoring summaries.

3 The Pitfalls of Cross-Entropy Loss

Previous work optimizes summarization models
by maximizing p(y|D,θ) = ∏

n
i=1 p(yi|si,D,θ),

the likelihood of the ground-truth labels
y = (y1,y2, ...,yn) for sentences (s1,s2, . . . ,sn),
given document D and model parameters θ. This
objective can be achieved by minimizing the

cross-entropy loss at each decoding step:

L(θ) =−
n

∑
i=1

log p(yi|si,D,θ). (1)

Cross-entropy training leads to two kinds of
discrepancies in the model. The first discrep-
ancy comes from the disconnect between the
task definition and the training objective. While
MLE in Equation (1) aims to maximize the
likelihood of the ground-truth labels, the model
is (a) expected to rank sentences to generate
a summary and (b) evaluated using ROUGE
at test time. The second discrepancy comes
from the reliance on ground-truth labels. Docu-
ment collections for training summarization sys-
tems do not naturally contain labels indicating
which sentences should be extracted. Instead,
they are typically accompanied by abstractive
summaries from which sentence-level labels are
extrapolated. Cheng and Lapata (2016) follow
Woodsend and Lapata (2010) in adopting a rule-
based method which assigns labels to each sen-
tence in the document individually based on their
semantic correspondence with the gold summary
(see the fourth column in Table 1). An al-
ternative method (Svore et al., 2007; Cao et al.,
2016; Nallapati et al., 2017) identifies the set of
sentences which collectively gives the highest
ROUGE with respect to the gold summary. Sen-
tences in this set are labeled with 1 and 0 otherwise
(see the column 5 in Table 1).

Source:  Narayan et. al. (2018 b)



More Architectures for 
Abstractive Summarization (HS)

• There are many tweaks to abstractive summarization 
architectures


• Another way to improve(?) results: reinforcement learning 
to directly optimise ROUGE


• Self-critical policy gradient (Rennie et. al. 2016)



Paulus et. al. (2018)

Figure 1: Illustration of the encoder and decoder attention functions combined. The two context
vectors (marked “C”) are computed from attending over the encoder hidden states and decoder
hidden states. Using these two contexts and the current decoder hidden state (“H”), a new word is
generated and added to the output sequence.

takes into account which words have already been generated by the decoder. (ii) we propose a new
objective function by combining the maximum-likelihood cross-entropy loss used in prior work with
rewards from policy gradient reinforcement learning to reduce exposure bias.

Our model achieves 41.16 ROUGE-1 on the CNN/Daily Mail dataset. Moreover, we show, through
human evaluation of generated outputs, that our model generates more readable summaries com-
pared to other abstractive approaches.

2 NEURAL INTRA-ATTENTION MODEL

In this section, we present our intra-attention model based on the encoder-decoder network
(Sutskever et al., 2014). In all our equations, x = {x1, x2, . . . , xn} represents the sequence of input
(article) tokens, y = {y1, y2, . . . , yn0} the sequence of output (summary) tokens, and k denotes the
vector concatenation operator.

Our model reads the input sequence with a bi-directional LSTM encoder {RNNe fwd,RNNe bwd}
computing hidden states he

i = [he fwd
i khe bwd

i ] from the embedding vectors of xi. We use a single
LSTM decoder RNNd, computing hidden states hd

t from the embedding vectors of yt. Both input
and output embeddings are taken from the same matrix Wemb. We initialize the decoder hidden state
with hd

0 = he
n.

2.1 INTRA-TEMPORAL ATTENTION ON INPUT SEQUENCE

At each decoding step t, we use an intra-temporal attention function to attend over specific parts
of the encoded input sequence in addition to the decoder’s own hidden state and the previously-
generated word (Sankaran et al., 2016). This kind of attention prevents the model from attending
over the sames parts of the input on different decoding steps. Nallapati et al. (2016) have shown
that such an intra-temporal attention can reduce the amount of repetitions when attending over long
documents.

We define eti as the attention score of the hidden input state he
i at decoding time step t:

eti = f(hd
t , h

e
i ), (1)

where f can be any function returning a scalar eti from the hd
t and he

i vectors. While some attention
models use functions as simple as the dot-product between the two vectors, we choose to use a
bilinear function:

f(hd
t , h

e
i ) = hd

t
T
W e

attnh
e
i . (2)

2

Source:  Paulus et. al. (2018)



Celikyilmaz et. al. (2018)

Source:  Celikyilmaz et. al. (2018)
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Figure 2: Multi-agent-encoder-decoder overview. Each agent a encodes a paragraph using a local encoder followed
by multiple contextual layers with agent communication through concentrated messages z

(k)
a at each layer k.

Communication is illustrated in Figure 3. The word context vectors c
t
a are condensed into agent context c⇤t .

Agent specific generation probabilities, p
t
a, enable voting for the suitable out-of-vocabulary words (e.g., ’yen’) in

the final distribution.

peat the process across multiple layers, generat-
ing new messages at each layer. Once each agent
completes encoding, they deliver their information
to the decoder with a novel contextual agent atten-

tion (Figure 2). Contextual agent attention enables
the decoder to integrate information from multiple
agents smoothly at each decoding step. The net-
work is trained end-to-end using self-critical rein-
forcement learning (Rennie et al., 2016) to gener-
ate focused and coherent summaries.

Empirical results on the CNN/DailyMail and
New York Times datasets demonstrate that multi-
ple communicating encoders lead to higher quality
summaries compared to strong baselines, includ-
ing those based on a single encoder or multiple
non-communicating encoders. Human evaluations
indicate that our model is able to produce more fo-
cused summaries. The agents gather salient infor-
mation from multiple areas of the document, and
communicate their information with one another,
thus reducing common mistakes such as missing
key facts, repeating the same content, or including
unnecessary details. Further analysis reveals that
our model attains better performance when the de-
coder interacts with multiple agents in a more bal-
anced way, confirming the benefit of representing
a long document with multiple encoding agents.

2 Model

We extend the CommNet model of Sukhbaatar
et al. (2016) for sequence generation.

Notation Each document d is a sequence of
paragraphs xa, which are split across multiple en-
coding agents a=1,..,M (e.g., agent-1 encodes the
first paragraph x1, agent-2 the second paragraph
x2, so on). Each paragraph xa={wa,i}I , is a se-
quence of I words. We construct a V -sized vocab-
ulary from the training documents from the most
frequently appearing words. Each word wa,i is
embedded into a n-dimensional vector ea,i. All
W variables are linear projection matrices.

2.1 Multi-Agent Encoder
Each agent encodes the word sequences with the
following two stacked encoders.
Local Encoder The first layer is a local encoder
of each agent a, where the tokens of the corre-
sponding paragraph xa are fed into a single layer
bi-directional LSTM (bLSTM), producing the lo-
cal encoder hidden states, h(1)

i
2 RH :

�!
h

(1)
i

,
 �
h

(1)
i

= bLSTM(ei,
�!
h

(1)
i�1,
 �
h

(1)
i+1) (1)

h
(1)
i

= W1[
�!
h

(1)
i

,
 �
h

(1)
i

] (2)

where H is the hidden state dimensionality. The

1663



Controllability (PS/HS)

• „Traditional“ summarization put a lot of emphasis on 
length constraints


• Neural methods have difficulty sticking to exact 
constraints


• We might also want to influence style, or focus of the 
summary


• How can we integrate this into (abstractive) summarizers?



Controllability (PS)

• Fan et. al. (2018)


• General approach to control for length and additional 
summary characteristics


• Liu et. al. (2018)


• Focus on length control


• Directly integrated into CNN architecture



Controllability - Global 
Optimization (HS)

• Control-methods only give hints to the network


• Can we do better? => Global optimization based on 
Minimum Risk Training (Shen et. al. 2016)



Pretraining for 
Summarization (HS)

• Pretrained transformer architectures have proven useful 
for many tasks


• Zhang et. al. (2019b) use BERT to encode and generate 
summaries


• Challenge: BERT is bidirectional, how can we decode 
with that?


• Zhang et. al. (2019a) introduce a hierarchical transformer 
architecture for extractive summarization



Improving Summary 
Coherence (PS/HS)

• The commonly used CNN/DM has bullet-point like 
summaries and lack global coherence


• Gabriel et. al (2019) introduce a new dataset with 
scientific summarization


• They also integrate a coherence model into the 
decoding process


• Improve global coherence



Improving Summary 
Coherence (PS/HS)

• Wu and Hu (2018) integrate a coherence reward into RL-
based extractive summarization


• Sharma et. al. (2019) improve coherence for abstractive 
summarization


• They also integrate coreference information into 
encoding


• Coherence model is used in conjunction with 
reinforcement learning 



Factual Correctness (PS)
• Abstractive Summarizers can „hallucinate“ information that is not 

in the summary


• Cao et. al. (2017) observe the following example


• Source: the repatriation of at least #,### bosnian moslems was 
postponed friday after the unhcr pulled out of the first       joint 
scheme to return refugees to their homes in northwest bosnia


• seq2seq: bosnian moslems postponed after unhcr pulled out of 
bosnia


• They propose an IE-based method to alleviate this 



Integrating Knowledge (PS)
• Summarization is often focused on real-world news


• Giving background knowledge might help in creating better summaries


• Amplayo et. al. (2018) integrate KB-information

The Los Angeles Dodgers acquired 

South Korean right-hander Jae Seo

from the New York Mets on 

Wednesday in a four-player swap.

Input Text

Entity List

① /wiki/Los_Angeles_Dodgers

② /wiki/South_Korean

③ /wiki/Seo_Jae-woong

④ /wiki/New_York_Mets

⑤ /wiki/Wednesday_Night_Baseball

⑥ /wiki/Trade_(sports)

Entity Linking System

The Los Angeles Dodgers acquired South

…

Sequence-to-Sequence with Attention

<START> Korea’s Seo

Korea’s Seo headed

…

Attention Mechanism

Bi-GRU

Text

Encoder

GRU

Text

Decoder

1 2 3 4 5 6

Entity Encoder with Selective Disambiguation

Entity2Topic Module

Pooling with Firm Attention

Figure 2: Full architecture of our proposed sequence-to-sequence model with Entity2Topic (E2T) module.

The context vector ct is computed using the
additive attention mechanism (Bahdanau et al.,
2014), which matches the current decoder state
st and each encoder state hi to get an importance
score. The scores are then passed to a softmax and
are used to pool the encoder states using weighted
sum. The final pooled vector is the context vector,
as shown in the equations below.

gt,i = v>a tanh(Wast�1 + Uahi)

at,i =
exp(gt,i)P
i exp(gt,i)

ct =
X

i

at,ihi

Finally, the previous token yt�1, the current
context vector ct, and the current decoder state
st are used to generate the current word yt with
a softmax layer over the decoder vocabulary, as
shown below.

ot = Wwwt�1 +Wcct +Wsst

p(yt|y<t) = softmax(Woot)

3.2 Entity encoding submodule
After performing entity linking to the input text us-
ing the ELS, we receive a sequential list of linked
entities, arranged based on their location in the
text. We embed these entities to d-dimensional
vectors E = {e1, e2, ..., em} where ei 2 Rd.
Since these entities may still contain ambiguity,
it is necessary to resolve them before applying
them to the base model. Based on the idea that
an ambiguous entity can be disambiguated using
its neighboring entities, we introduce two kinds of
disambiguating encoders below.

Globally disambiguating encoder One way to
disambiguate an entity is by using all the other
entities, putting more importance to entities that
are nearer. For this purpose, we employ an RNN-
based model to globally disambiguate the entities.
Specifically, we use BiGRU and concatenate the
forward and backward hidden state vectors as the
new entity vector:

�!
h i = GRU(ei,

�!
h i�1)

 �
h i = GRU(ei,

 �
h i+1)

e0i = [
�!
h i;
 �
h i]

Locally disambiguating encoder Another way
to disambiguate an entity is by using only the di-
rect neighbors of the entity, putting no importance
value to entities that are far. To do this, we em-
ploy a CNN-based model to locally disambiguate
the entities. Specifically, we do the convolution
operation using filter matrices Wf 2 Rh⇥d with
filter size h to a window of h words. We do this
for different sizes of h. This produces new fea-
ture vectors ci,h as shown below, where f(.) is a
non-linear function:

ci,h = f([ei�(h�1)/2; ...; ei+h(+1)/2]
>Wf + bf )

The convolution operation reduces the number
of entities differently depending on the filter size
h. To prevent loss of information and to produce
the same amount of feature vectors ci,h, we pad
the entity list dynamically such that when the filter
size is h, the number of paddings on each side is
(h� 1)/2. The filter size h therefore refers to the
number of entities used to disambiguate a middle
entity. Finally, we concatenate all feature vectors

700

Source: Amplayo et. al. (2018)



Abstractive MDS (HS)

• Acquiring training data for MDS is difficult


• Lebanoff at. al. (2018) propose adapting the Pointer 
Generator trained on SDS to MDS


• Recently Fabbri et. al. (2019) have introduced a Multi-
Document Corpus and corresponding architecture using 
maximum marginal relevance to modify attention weights

MMR = argmaxDi∈R∖S [λSim1(Di, Q) − (1 − λ) max
Dj∈S

Sim2(Di, Dj)]



What now?
• Write a mail to steen@cl… by Sunday (26th) containing…


• Three papers/sessions that you would like to present, ranked by your 
preferences


• If you are interested in a second presentation, two more papers you 
would like to present


• At most one date on which you can absolutely not present on (current 
dates might change)


• Your name


• For next time: Read the ROUGE-Paper (Lin, 2004) and write two 
comments/questions


