1 Overview

This document is a preliminary schedule for the seminar and subject to change based on the number of students and their interests.

To complete the course you need to participate regularly (no more than one unexcused absence) and be active in the discussions. Each student will also have to give a graded presentation. In addition, you need to do one of the following to complete the course:

1. Write a term paper
2. Do an implementation project
3. Give a second presentation (subject to availability)

Students are expected to read the presented papers (at most two) and hand in questions or comments about them via mail to me each Monday before 3pm. These questions will be a part of your final grade.

2 Getting a presentation slot

To get a presentation slot, write an email to steen@cl.uni-heidelberg.de by the 26th October with a ranked list of three presentations that you would be interested in. If you want to do two presentations in lieu of a term paper, please indicate that in your mail and list an additional two or three presentations.

The dates given for the presentations are tentative and might change based on your interests and the number of PS vs. HS participants. If there is any date where it would not be possible to give your presentation, you can indicate at most one session where you can absolutely not give your presentation.

3 Differences between HS and PS

The course can be taken both as a main seminar (HS) and as a bachelor seminar (PS). The differences for the purpose of the presentation are:
• HS presentations cover a full lecture (sixty minutes, plus thirty minutes of questions and discussion), PS presentations are half a lecture (30 minutes, plus 15 minutes of questions and discussion)

• HS presentations are generally expected to cover (at least) two papers, PS presentations only need to cover one paper

• PS papers are generally easier than HS papers.

I have tentatively marked which sessions are appropriate for either HS or PS. This is subject to change based on attendance and interests of the participants. The categorization is not binding. If you find one of the HS-papers interesting, but want to do a PS, you can tell me and I will try to reschedule accordingly. If you are doing a HS and are interested in the topics for a PS-session, you can similarly tell me. You will most likely have to add in another paper or some extensive discussion, so the workload and difficulty are still fair.

4 Schedule

23.10 - Topic Overview
No student presentation

30.10 - Introduction
No student presentation
Prepare: Lin [2004]

06.11 - Canceled
No Seminar

13.11 - Extractive Single- and Multi-Document-Summarization (PS)
Presentation 1: Nallapati et al. [2017]
Presentation 2: Yasunaga et al. [2017]
Alternative: Cheng and Lapata [2016]

20.11 - Abstractive Summarization with Pointer Mechanisms (PS/HS)
Presentation 1: Nallapati et al. [2016]
Presentation 2: See et al. [2017]
Background: Gulcehre et al. [2016]

For HS:

Main Papers: Both papers from above

Additionally: Compare with Gu et al. [2016]

27.11 - Datasets and Task-Variations (PS)

Presentation 1: Grusky et al. [2018]

Presentation 2: Narayan et al. [2018a]

04.12 - Extractive Summarization with reinforcement learning (HS)

Main Paper: Zhang et al. [2018] or Narayan et al. [2018b]

Additionally: An introduction to the REINFORCE-algorithm [Williams, 1992]

11.12 - More Architectures for Abstractive Summarization (HS)

Main Paper: Paulus et al. [2018] or Celikyilmaz et al. [2018]

Additionally: Rennie et al. [2016] with a focus on the self-critical gradient algorithm

18.12 - Controllability (PS/HS)

For PS:

Presentation 1: Fan et al. [2018]

Presentation 2: Liu et al. [2018]

For HS:

Main Paper: Makino et al. [2019]

Additionally: Shen et al. [2016]

08.01 - Pretraining for Summarization (HS)

Paper 1: Zhang et al. [2019b]

Paper 2: Zhang et al. [2019a]

Alternatively, depending on prior knowledge of participants: An overview over transformer architecture [Vaswani et al., 2017] and/or BERT [Devlin et al., 2018]
15.01 - Improving Summary Coherence (PS/HS)
For PS:

Presentation 1: Wu and Hu [2018]

Presentation 2: Gabriel et al. [2019]

For HS:

Main Paper Sharma et al. [2019]

Additionally: Wu and Hu [2018]

22.01 - Factual Correctness, Background knowledge (PS)

Presentation 1: Cao et al. [2017]

Presentation 2: Amplayo et al. [2018]

29.01 - Abstractive Multi-Document-Summarization (PS/HS)

Presentation 1: Lebanoff et al. [2018]

Presentation 2: Fabbri et al. [2019]

For HS:

Paper 1: Liu* et al. [2018]

Paper 2: Fan et al. [2019]

05.02 - Discussion (no presentation)

Prepare: Kryściński et al. [2019]

Backup (possibly instead of correctness/KB and/or Datasets)
- **Unsupervised Abstractive Summarization (HS)**

Variant 1:

Paper 1: Chu and Liu [2018]

Paper 2: Isonuma et al. [2019]

Variant 2:

Main Paper: Jernite [2019]

Additionally as background: Lample et al. [2018]
References

Haoyu Zhang, Yeyun Gong, Yu Yan, Nan Duan, Jianjun Xu, Ji Wang, Ming Gong, and Ming Zhou. Pretraining-based natural language generation for
