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• Text summarization background

Abstraction-based summarization.
Example:
Source text: Joseph and Mary rode on a donkey to attend the annual event in Jerusalem. In the city, 
Mary gave birth to a child named Jesus.

Abstractive summary: Joseph and Mary came to Jerusalem where Jesus was born.

Definition: 

Automatic text summarization is the task of producing a concise and fluent summary while preserving key 
information content and overall meaning of text.

Approach:
Two main types of text summarization.

Extraction-based summarization.
Example:

Source text: Joseph and Mary rode on a donkey to attend the annual event in Jerusalem. In the city, 
Mary gave birth to a child named Jesus.

Extractive summary: Joseph and Mary attend event Jerusalem. Mary birth Jesus.



• Text summarization background

1. Pre-processing 
• Tokenization, lemmatization, stop-words, non-sense words, etc.


2. Word, sentence representation 
• Represent Words and sentences as vectors

    Bag Of Words. / LDA. / Word Embedding. / TF-IDF-weighting. 


3. Sorting 
• Sorting based on graph 
Using each sentence of the document as a node, the similarity between the sentences is used as the weight 
of edges to construct the graph model, and then use traditional sorting algorithm to sort each sentence.

—TextRank and LexRank.


• Sorting based on features 
Features used here include:

1) The length of a sentence

2) The position of the sentence

3) Whether the sentence contains the title word

4) Sentence keyword scoring.


Finally we can get the importance score of each sentence by weighted sum above feature scores.


4. Output 
• The output result is normally the first N sentences after sorting.

How does a simple extractive summarization algorithm works?



• GRU simplified introduction

The structure of GRU input and output. 

The input and output structure of GRU is same as the normal RNN.

There is a current input xt, and a hidden state ht-1 passed from the previous node. This hidden state contains the 
information in previous step.


Combined xt and ht-1, GRU will get the output of current state output yt and the hidden state ht in current step and also 
can passed to the next node.



• GRU simplified introduction

GRU internal structure 

Firstly, we get the two gated states by the hidden state  from previous node and the input of the current node. As 
shown in Figure below, the reset gate r is to control the reset gate, while the update gate z is to control the update gate.


Tips:  is sigmoid function, which used to convert the data to a value in the range of 0-1 and act as a gate signal.

After obtaining the gate signal, the reset gate is used to get the ‘reset’ data , and concatenate the  and 

xt, then a tanh activation function is used to scale the data to the range of (-1, 1). That is the value , as shown in 
Figure below.

The  here mainly contains the information of current input . Adding  to the current hidden state, which is 
equivalent to "memorize the information of current state.”  This is quite similar to the memory selection phase of LSTM.



• GRU simplified introduction

“Memory update" phase. 
At this stage, GRU carried out two steps memory ‘forget’ and ‘memorize’ process at same time. And We use the 
previously obtained update gate z.


The Update formula: 


: Indicates the selective "forget" of the original hidden state. Here you can imagine it as a forget gate, forget 
some unimportant information in .


: Indicates selective "memory" of the information in current node.


:  this step is to forget some unimportant information in previous , and add some 
important information from the current input .



• GRU simplified introduction



• SummaRuNNer

The representation of the entire document is then modeled as a non-linear transformation of the average pooling of the concatenated hidden 
states of the bi-directional sentence-level GRU, as shown below, formula (5). 

The author used GRU as the features extractor (representation method) of the sequence classifier. 

And the model consists of a two-layer bi-directional GRU.

Bi-directional GRU in word-level Bi-directional GRU in sentence-level



• SummaRuNNer

Figure 1: SummaRuNNer: A two-layer GRU based sequence classifier: 

The bottom layer operates at word level within each sentence, while the top layer runs over sentences. Double-pointed arrows 
indicate a bi-directional RNN. The top layer with 1’s and 0’s is the sigmoid activation based classification layer that decides whether 
or not each sentence belongs to the summary.



• SummaRuNNer

Logistic layer for classification

In Eqn. (6), the term Wchj represents the information content of the j th sentence, hTj Ws d denotes 
the salience of the sentence with respect to the document, hTj Wr tanh(sj) captures the redundancy of 
the sentence with respect to the current state of the summary, while the next two terms model the 
notion of the importance of the absolute and relative position of the sentence with respect to the 
document.



• SummaRuNNer

sj is the dynamic representation of the summary at the jth sentence position, given by: 

In other words, the summary representation is simply a running weighted summation of all the 
sentence-level hidden states visited till sentence j, where the weights are given by their respective 
probabilities of summary membership. 



• SummaRuNNer

Loss function: We minimize the negative log-likelihood of the observed labels at training time. 



• Training process

Solution: 

A greedy approach that can maximize the Rouge score.
They add one sentence at one time incrementally to the summary, such that the Rouge score of the current set of selected 
sentences is maximized with respect to the entire gold summary.

They stop when none of the remaining candidate sentences improves the Rouge score upon addition to the current summary 
set. Finally return this subset of sentences as the extractive ground-truth.

Extractive Training 

Problem of extractive training.
Lack of ground truth in the form of sentence-level binary labels for each document, representing their membership in the 
summary.



• Training process

Why?
It can eliminate the need to generate approximate extractive labels. 

To train SummaRuNNer using reference summaries, we couple it with an RNN decoder that models the generation of 
abstractive summaries at training time only. The RNN decoder uses the summary representation at the last time-step of 
SummaRuNNer as context, which modifies Eqs. 1 through 3 as follows: 

Abstractive Training 

where s−1 is the summary representation as computed at  the last  sentence of the sentence-level bidirectional GRU of 
SummaRuNNer as shown in Eq. 7. 



• Training process

The decoder  is  equipped  with  a  soft-max  layer  to  emit  a  word  at  each  time-step.  The  emission  at  each  time-step  is 
determined by a feed-forward layer f followed by a softmax layer that assigns pk, probabilities over the entire vocabulary at 
each time-step, as shown below. 

Abstractive Training 



• Training process

Loss function:
Instead of optimizing the log-likelihood of the extractive ground truth as shown in Eq. 8, we minimize 
the negative log-likelihood of the words in the reference summary as follows. 

Abstractive Training 

where Ns is the number of words in the reference summary. 

How the abstractive training helps for the extractive sammarization?
Since the summary representation s−1 acts as the only information channel between the SummaRuNNer 
encoder model and the decoder, maximizing the probability of abstractive summary words as computed 
by the decoder will require the model to learn a good summary representation s-1 which in turn depends 
on accurate estimates of extractive probabilities p(yj) at same time.



• Experiment & Setting & Evaluation

Corpora   

• CNN/DailyMail： 196557 training documents, 12147 validation documents and 10396 test documents. On average, 
about 28 sentences per document in the training set, and an average of 3-4 sentences in the reference summaries. 


• DUC2002：567 documents； 


Evaluation 

• Rouge metric: Rouge-1、Rouge-2、Rouge-L


SummaRuNNer Settings  
• 100-dimensional word2vec embeddings trained on the CNN/Daily Mail corpus as initial embedding. 

• Limited the vocabulary size to 150K and the maximum number of sentences per document to 100, and the 

maximum sentence length to 50 words, to speed up computation. 

• Fixed the model hidden state size at 200. Batch size is 64 at training time, and adadelta to train our model. 

• Trained SummaRuNNer both extractively as well as abstractively. 



• Experiment & Setting & Evaluation

Figure 2: Visualization of SummaRuNNer output on a representative document. Each row is a sentence in the document, while the shading-
color intensity is proportional to its probability of being in the summary, as estimated by the RNN-based sequence classifier. 

In the columns are the normalized scores from each of the abstract features in Eqn. (6) as well as the final prediction probability (last column). 

Sentence 2 is estimated to be the most salient, while the longest one, sentence 4, is considered the most content-rich, and not surprisingly, the 
first sentence the most novel. The third sentence gets the best position based score. 



• Experiment & Setting & Evaluation

Table 1: Performance of various models on the entire Daily Mail test set summary length restricted to 75 bytes.

Table 2: Performance of various models on the entire Daily Mail test set with summary length restricted to 275 bytes.

Cheng et al,16 designed a rule- based system that determines whether a document sentence matches a highlight and 
should be la- beled with 1 (must be in the summary), and 0 otherwise manually.



• Conclusion

Most important contribution of this paper. 
• Proposed a RNN based sequence classifier: SummaRuNNer, which is quite simple and interpretable.

• Proposed a novelty abstractive training mechanism to eliminate the need for extractive labels at training time.


Further work. 
Author plans to further explore combining extractive and abstractive approaches as part of future work. 


One simple approach could be to pre-train the extractive model using abstractive training. 


Further, they also plan to construct a joint extractive-abstractive model where the predictions of their extractive 
component form stochastic intermediate units to be consumed by the abstractive component. 



• Problems

• If we work on sentence level, how sensitive is the model when it comes to sentences splittings errors, as sentence splitting 
is not a trivial task? 


   Normally we splitting sentence by some specified punctuation, like full stop mark, question mark, etc. Even there is sentence  

   splitting error, I think it will not have much influence on the extractive summarization,


• Does the greedy approach described in 2.1 has a beam search setup, as used in nmt? 

   No, they only used greedy method, instead of beam search and no such setup in greedy progress.


• How are the scores in Figure 2 computed exactly? More specifically, what are they normalized against? And where did the 
other position score go? (I guess, they added the position scores (before normalizing probably), but I don’t see where they 
say that.)


• Taking the intuitive names content, saliency and novelty atface-value, I would expect long sentences to get high scores, 
because they tend to include lots of new information. But from my own intuition,it seems like they would also tend to include 
lots of uninteresting information. How is this accounted for? Maybe parts of the content,saliency and novelty scores also 
include something like length or tend to penalize too much information? Then again, the long sentence in Figure 2 did get a 
very high score.


• I am wondering why GRU instead of LSTM where used in the “SummaRuNNer” paper, especillay as in “Neural 
Summarization by Extracting Sentences and Words” they compare their work to uses LSTMs. Is this maybe because of 
bidirectionality in their architecture? But there are also Bidirectional LSTMs.


   More simple and efficient for training but get comparable result of LSTM. 




• Problems

• I think that calling the rules to select which sentences to extract in “Neural Summarization by Extracting Sentences 
and Words” handcrafted features is wrong. In SummaRuNNer the authors use ROUGE scores instead of unigram and 
bigram overlap between sentences and highlights. Both methods do not seam like handcrafted features to me.


• The authors from this paper claim, that their model is very interpretable. According to this, one expect an examination 
of features, which is not given. In my opinion, future work of SummaRuNNer should also concentrate on this study.


• For the Nallapati paper I'm wondering how much sense it makes to have the summarization vector be all the sentence 
vectors scaled by their probability of being included. For the method where they train an abstractive model on top of 
their extractive model it makes sense so that they can backpropagate through the decision to include a sentence or 
not, but with the extractive model, since it has to make a hard decision anyways, it seems like the sentence vectors 
shouldn't be scaled at all before being added to the summarization vector. 


Further discussion


