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Fourier Analysis: Mathematics of Spectral
Analysis

I Any complex function can be described as summation of
sinusoidal functions of increasing frequency
(Jean-Baptiste Joseph Fourier, 1822)

I Fourier transformation is transformation of time varying
signals into frequency space

I Based on complex numbers since complete description gives
magnitude at frequency band (real part) and phase angle
(imaginary part)
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Complex Numbers

I Complex number in Cartesian coordinate system: R + iI
I Consists of real part R and imaginary part I , where R, I ∈ R,

i =
√
−1

I Numbers sitting on plane above/below real numbers (I = 0)

I Polar coordinate representation, determined by radius r and
angle θ, where r =

√
R2 + I 2, θ = arctan( I

R )

I Equivalence: r(cos(θ) + i sin(θ)) = r(R
r + i Ir ) = R + iI

I Euler’s formula:
I e iθ = cos(θ) + i sin(θ), for all θ ∈ R
I Complex number: re iθ

I r is magnitude, θ is phase angle
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Complex Phasors

I Complex numbers visualized as complex phasors in
frequency domain, corresponding to sinusoidal waves in
time domain

I real axis given by cosine, imaginary axis given by sine
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Fourier Transformation into Sum of Phasors

I Components in frequency domain visualized as list of phasors
I Frequency visualized by speed of rotation, amplitude by size of

radius
I Phasors are harmonically related, i.e., frequencies are multiples

of each other

I Goal: Reproduce time domain signal by summing phasors
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Fourier Transformation into Sum of Phasors

I Summation is visualized by attaching center of next phasor at
tip of previous phasor

I Time domain is reproduced by vertical distance of tip of last
phasor to origin

I Mathematically: a1 sin(f1 ∗ θ) + a2 sin(f2 ∗ θ) . . . where ai and
fi are amplitude and frequency of i-th sine
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Discrete Fourier Transform (DFT)

DFT (k) =
N−1∑
n=0

x [n]e−iθ

=
N−1∑
n=0

x [n](cos(θ)− i sin(θ)), where θ =
2πkn

N

I x [n] is signal measured at time n out of N samples per cycle

I DFT (k) transforms sequence x [n] into magnitude and phase
of discrete frequency component k for k = 0, . . . ,N − 1

I At the core: Measure correlation of complex wave with
sinusoidal components, by taking dot products of input
signal with sinusoidal waves of varying frequency
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Dot Products

I Sinusoidal waves with different frequencies (here: 100 Hz and
500 Hz) are orthogonal, i.e., zero correlation

I The only correlation of a sinusoidal wave and a complex wave
will be with components at same frequency
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Dot Products

I Complex wave at fundamental frequency 100Hz, sine at 100Hz
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Dot Products

I Complex wave at fundamental frequency 100Hz, sine at 200Hz
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Dot Products

I Complex wave at fundamental frequency 100Hz, sine at 300Hz
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Extracting Digital Features from Analog
Sound Signals: MFCC Pipeline

I Pipeline for extracting 39-dimensional mel frequency ceptral
coefficient (MFCC) feature vector from sound signal
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Analog-to-digital Conversion

I We measure the amplitude of an analog signal at a particular
time by taking a certain number of samples per second

I Knowing highest frequency component in signal, sampling
rate, i.e., number of samples per second, has to be chosen
twice as high (since at least two samples per cycle needed)

I Nyquist frequency is maximum frequency that can be
analyzed accurately at given sampling rate (= half of
sampling rate)

I Signal x [n] is then digitized quantized waveform
(measurements closer together than quantum size are
represented identically)
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Preemphasis

I Preemphasis boosts energy in high frequencies which are
underrepresented in signal

I Filter equation: y [n] = x [n]− αx [n − 1], where 0.9 ≤ α ≤ 1.0
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Windowing

I For spectral analysis of phone, we assume that frequencies in
a signal are stationary for a small time frame

I Signal extraction is done by multiplying signal value y [n] by
window value w [n]
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Hamming Window

I Rectangular window cuts out L samples from original signal

I Hamming window shrinks values at boundaries to zero:

w [n] = 0.54− 0.46 cos(
2πn

L
) for 0 ≤ n ≤ L− 1; 0 otherwise
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Frequency Resolution, Window Length and
Sampling Rate

I Window length will determine fundamental frequency,
and thus frequency resolution in harmonics in spectral analysis

I Assume sampling rate of 10,000 Hz. Nyquist frequency is
5,000 Hz. Taking window of length 25.6 ms corresponds to
256 samples per cycle. Fundamental frequency of sampled
wave is 10,000/256 = 39 Hz.

I Longer windows will create smaller intervals between frequency
components, but might be too long to assume stationarity

I Lowering sample rate will have same effect, but it will also
lower Nyquist frequency
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DFT

I DFT
I Look for frequency components in a complex sound wave that

are multiples of the fundamental frequency
I Determine correlation of each possible frequency component

and complex wave
I Magnitudes at these frequency bands determine spectrum of

sound wave
I Mathematics explained above

I Since DFT has complexity O(N2), mostly more efficient fast
Fourier transform (FFT) used in implementations
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Mel Scale

I mel scale (as in “melody”) tries to model non-linear human
hearing which is less sensitive at higher frequencies, so that
equidistant pitches are separated by equal mels

I mel frequency:

mel(f ) = 1123 ln(1 +
f

700
)

I Linear mapping of frequency f into mel below 1,000 Hz,
logarithmic above
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Mel Filterbank

I Mel scale is realized by triangular filters with value 1 at
center frequency, linear decrease to 0 at boundaries, spaced
linearily below 1,000 Hz, logarithmically above
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Cepstrum: Inverse DFT

I Shortcomings of spectrum generated by DFT:
I Frequency components are highly correlated (harmonics)
I Fundamental frequency is not important for phone detection

I Cepstrum (anagram of spectrum):
I Spectrum of the log magnitude of the spectrum:

c[n] =
N−1∑
n=0

log
(∣∣ N−1∑

n=0

x [n]e−i 2πkn
N

∣∣)e−i 2πkn
N

I Intuition: Treat log-spectrum as “pseudo-signal”, analyze its
components
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Cepstrum

I Spectrum (a), log spectrum (b), cepstrum (c)

I High frequency component in (b) caused by F0: glottal pulse

I Lower frequencies in (b) are F1, F2, etc.: vocal tract filter

I Phone detection relies of first 12 cepstral values in (c)
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Deltas and Energy

I Each window is represented by 12 cepstral features

I Energy feature of window:
∑tj

t=ti (x [t])2 from ti to tj
I Helps to distinguish vowels from consonants

I For each of these 13 features, delta and double delta features
for change in feature value between windows is computed

I Helps to identify features phone properties such as stop closure
and burst
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Summary: MFCC features

I 12 cepstral features, 12 delta cepstral, 12 delta-delta cepstral,
1 energy, 1 energy delta, 1 energe delta-delta

I Advantages:
I Noise robustness: Additive noise in non-speech regions, and

average noise of microphone, can be easily detected and
substracted from each frame

I Speaker variation: Lower formants indicate differences like
longer vocal tract in speakers, can be normalized by vocal tract
length normalization

I Possible criticism:
I DFT is linear operation, discards non-linear information
I Decorrelation due to inverse DFT might not be necessary with

deep learning (next lecture)
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Visualizations

I DFT

I correlation

I complex correlation

I complete example
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https://jackschaedler.github.io/circles-sines-signals/dft_introduction.html
https://jackschaedler.github.io/circles-sines-signals/dotproduct3.html
https://jackschaedler.github.io/circles-sines-signals/dotproduct4.html
https://jackschaedler.github.io/circles-sines-signals/dft_walkthrough.html
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