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Fourier Analysis: Mathematics of Spectral
Analysis

> Any complex function can be described as summation of
sinusoidal functions of increasing frequency
(Jean-Baptiste Joseph Fourier, 1822)

» Fourier transformation is transformation of time varying
signals into frequency space

» Based on complex numbers since complete description gives
magnitude at frequency band (real part) and phase angle
(imaginary part)
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Complex Numbers

» Complex number in Cartesian coordinate system: R + i/
» Consists of real part R and imaginary part /, where R,/ € R,
i=+/-1

» Numbers sitting on plane above/below real numbers (/ = 0)
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Complex Numbers

» Complex number in Cartesian coordinate system: R + i/
» Consists of real part R and imaginary part /, where R,/ € R,
i=+-1
» Numbers sitting on plane above/below real numbers (/ = 0)

» Polar coordinate representation, determined by radius r and
angle 6, where r = VR2 + 12, 6 = arctan(%)
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Complex Numbers

» Complex number in Cartesian coordinate system: R + i/
» Consists of real part R and imaginary part /, where R,/ € R,
i=y—1
» Numbers sitting on plane above/below real numbers (/ = 0)
» Polar coordinate representation, determined by radius r and
angle 6, where r = VR2 + 12, 6 = arctan(%)
> Equivalence: r(cos(0) +isin(9)) = r(B +il)y =R+l
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Complex Numbers

» Complex number in Cartesian coordinate system: R + i/

» Consists of real part R and imaginary part /, where R,/ € R,

= -1

» Numbers sitting on plane above/below real numbers (/ = 0)

» Polar coordinate representation, determined by radius r and
angle 6, where r = VR2 + 12, 6 = arctan(%)

> Equivalence: r(cos(0) +isin(9)) = r(B +il)y =R+l
> Euler’s formula:

» el% = cos(f) +isin(f), for all @ € R

» Complex number: re®

» r is magnitude, @ is phase angle
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Complex Phasors

Imaginary Axis
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» Complex numbers visualized as complex phasors in
frequency domain, corresponding to sinusoidal waves in
time domain

> real axis given by cosine, imaginary axis given by sine
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Fourier Transformation into Sum of Phasors

Time Domain Representation

Frequency Domain Representation
"A List of Samples"

\ \ /\/\ V\\/\/\ \\/
» Components in frequency domain visualized as list of phasors

» Frequency visualized by speed of rotation, amplitude by size of

radius
» Phasors are harmonically related, i.e., frequencies are multiples

of each other
» Goal: Reproduce time domain signal by summing phasors
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Fourier Transformation into Sum of Phasors

Summing Phasors - The Inverse Fourier Transform Time Domain
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» Summation is visualized by attaching center of next phasor at
tip of previous phasor

» Time domain is reproduced by vertical distance of tip of last
phasor to origin

» Mathematically: aj sin(f; * 0) + axsin(f, x 6) ... where a; and
f; are amplitude and frequency of i-th sine
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Discrete Fourier Transform (DFT)
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» x[n] is signal measured at time n out of N samples per cycle
» DFT (k) transforms sequence x[n| into magnitude and phase
of discrete frequency component k for k=0,...,N—1

» At the core: Measure correlation of complex wave with
sinusoidal components, by taking dot products of input
signal with sinusoidal waves of varying frequency
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Dot Products

» Sinusoidal waves with different frequencies (here: 100 Hz and
500 Hz) are orthogonal, i.e., zero correlation

» The only correlation of a sinusoidal wave and a complex wave
will be with components at same frequency
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Dot Products

Complex 100 Hz Accumulating

Time(s) ~Amplitude  Amplitude  Product  Sum of Products
0.00083 60 30 1800 1800
0.00167 52 52 2704 4504
4 0.00250 30 60 1800 6304
! 0.00333 52 52 2704 9008
| i 0.00417 60 30 1800 10808
0.00500 0 0 0 10808
0.00583 -60 -30 1800 12608
0.00667 -52 -52 2704 15312
0.00750 -30 ~60 1800 17112
0.00833 -52 -52 2704 19816
b ! 0.00917 -60 -30 1800 21616
] o1 0.01000 0 0 0 21616

Time in seconds

» Complex wave at fundamental frequency 100Hz, sine at 100Hz




Dot Products

Complex 200 Hz
Time(s) Amplitude  Amplitude
0.00083 60 52
0.00167 52 52

I 0.00250 30 0
0.00333 52 -52

0.00417 60 -52

) 0.00500 0 0
0.00583 ~60 52

0.00667 -52 52

0.00750 -30 0

. ., 0.00833 =52 —52
1 0.00917 —60 -52
° Time in seconds 01 oot 0 0

» Complex wave at fundamental frequency 100Hz, sine at 200Hz




Dot Products

Complex 200Hz Accumulating

Time(s) Amplitude  Amplitude  Product Sum of Products
0.00083 60 52 3120 3120
0.00167 52 52 2704 5824
0.00250 30 0 0 5824
0.00333 52 -52 ~2704 3120
0.00417 60 -52 ~3120 0
0.00500 0 0 0 0
0.00583 -60 52 -3120 -3120
0.00667 -52 52 ~2704 ~5824
0.00750 -30 0 0 —5824
L ,  0.00833 -52 -52 2704 -3120
0 0t 000917 -60 -52 3120 o
Time in seconds ‘ 0.01000 0 0 o 0

» Complex wave at fundamental frequency 100Hz, sine at 200Hz




Dot Products

Complex 300Hz Accumulating

Time(s) Amplitude  Amplitude  Product  Sum of Products
0.00083 60 60 3600 3600
0.00167 52 0 0 3600
0.00250 30 —60 ~1800 1800
0.00333 52 0 0 1800
0.00417 60 60 3600 5400
0.0050 0 0 0 5400
0.0058 —60 =60 3600 9000
0.00667 —-52 0 0 9000
0.0075 =30 60 1800 7200
1 o‘ 0.00833 —52 0 0 7200
s 01 000917 -60 ~60 3600 10800
0 Time in seconds 0.01000 o o o 10800

» Complex wave at fundamental frequency 100Hz, sine at 300Hz




Extracting Digital Features from Analog
Sound Signals: MFCC Pipeline

speech MFCC 12 12 MFCC
signal pre- Mel fiter- coefficients 1122 AAA l’cli%(é
emphasis window DFT Rare) —b-—k IDFT deltas. T energy —>
1A energy
1 AA energy

1 energy feature

HRE

» Pipeline for extracting 39-dimensional mel frequency ceptral
coefficient (MFCC) feature vector from sound signal
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Analog-to-digital Conversion

» We measure the amplitude of an analog signal at a particular
time by taking a certain number of samples per second

» Knowing highest frequency component in signal, sampling
rate, i.e., number of samples per second, has to be chosen
twice as high (since at least two samples per cycle needed)

» Nyquist frequency is maximum frequency that can be
analyzed accurately at given sampling rate (= half of
sampling rate)

» Signal x[n] is then digitized quantized waveform
(measurements closer together than quantum size are
represented identically)
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Preemphasis

Soundprassur level (/).
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» Preemphasis boosts energy in high frequencies which are

underrepresented in signal

» Filter equation: y[n] = x[n] — ax[n — 1], where 0.9 < o < 1.0
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Windowing
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» For spectral analysis of phone, we assume that frequencies in
a signal are stationary for a small time frame

» Signal extraction is done by multiplying signal value y[n] by
window value w]n]

16(27)
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Hamming Window

» Rectangular window cuts out L samples from original signal

» Hamming window shrinks values at boundaries to zero:

2
w[n] = 0.54 — 0.46 cos(%n) for 0 < n < L—1; 0 otherwise
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Frequency Resolution, Window Length and
Sampling Rate

» Window length will determine fundamental frequency,
and thus frequency resolution in harmonics in spectral analysis
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Frequency Resolution, Window Length and
Sampling Rate

» Window length will determine fundamental frequency,
and thus frequency resolution in harmonics in spectral analysis
» Assume sampling rate of 10,000 Hz. Nyquist frequency is
5,000 Hz. Taking window of length 25.6 ms corresponds to
256 samples per cycle. Fundamental frequency of sampled
wave is 10,000/256 = 39 Hz.
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Frequency Resolution, Window Length and
Sampling Rate

» Window length will determine fundamental frequency,
and thus frequency resolution in harmonics in spectral analysis

» Assume sampling rate of 10,000 Hz. Nyquist frequency is
5,000 Hz. Taking window of length 25.6 ms corresponds to
256 samples per cycle. Fundamental frequency of sampled
wave is 10,000/256 = 39 Hz.

» Longer windows will create smaller intervals between frequency
components, but might be too long to assume stationarity

» Lowering sample rate will have same effect, but it will also
lower Nyquist frequency
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DFT

» DFT

» Look for frequency components in a complex sound wave that
are multiples of the fundamental frequency

» Determine correlation of each possible frequency component
and complex wave

» Magnitudes at these frequency bands determine spectrum of
sound wave

» Mathematics explained above

» Since DFT has complexity O(N?), mostly more efficient fast
Fourier transform (FFT) used in implementations
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Mel Scale

» mel scale (as in “melody”) tries to model non-linear human
hearing which is less sensitive at higher frequencies, so that
equidistant pitches are separated by equal mels

» mel frequency:

f'
/(f) =1123In(1 4+ —

mel(f) n(1+ =00

> Linear mapping of frequency f into mel below 1,000 Hz,
logarithmic above
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Mel Filterbank
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> Mel scale is realized by triangular filters with value 1 at
center frequency, linear decrease to 0 at boundaries, spaced
linearily below 1,000 Hz, logarithmically above
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Cepstrum: Inverse DFT

» Shortcomings of spectrum generated by DFT:

» Frequency components are highly correlated (harmonics)
» Fundamental frequency is not important for phone detection

» Cepstrum (anagram of spectrum):
» Spectrum of the log magnitude of the spectrum:

N-1 N—1
cln] = Z log (| Z x[n]e~ %"
n=0 n=0

» Intuition: Treat log-spectrum as “pseudo-signal”, analyze its
components

_j2mkn
Je W
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Cepstrum
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» Spectrum (a), log spectrum (b), cepstrum (c)
» High frequency component in (b) caused by FO: glottal pulse
» Lower frequencies in (b) are F1, F2, etc.: vocal tract filter

» Phone detection relies of first 12 cepstral values in (c)
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Deltas and Energy

» Each window is represented by 12 cepstral features
» Energy feature of window: Z:j:tl.(x[t])2 from t; to t;
» Helps to distinguish vowels from consonants

» For each of these 13 features, delta and double delta features
for change in feature value between windows is computed
» Helps to identify features phone properties such as stop closure
and burst
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Summary: MFCC features

> 12 cepstral features, 12 delta cepstral, 12 delta-delta cepstral,
1 energy, 1 energy delta, 1 energe delta-delta
» Advantages:
> Noise robustness: Additive noise in non-speech regions, and
average noise of microphone, can be easily detected and
substracted from each frame
» Speaker variation: Lower formants indicate differences like
longer vocal tract in speakers, can be normalized by vocal tract
length normalization

» Possible criticism:

» DFT is linear operation, discards non-linear information
» Decorrelation due to inverse DFT might not be necessary with
deep learning (next lecture)
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Visualizations

DFT

correlation
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complex correlation
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complete example
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https://jackschaedler.github.io/circles-sines-signals/dft_introduction.html
https://jackschaedler.github.io/circles-sines-signals/dotproduct3.html
https://jackschaedler.github.io/circles-sines-signals/dotproduct4.html
https://jackschaedler.github.io/circles-sines-signals/dft_walkthrough.html
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