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Abstract
Different metrics have been proposed to
compare Abstract Meaning Representation
(AMR) graphs. The canonical SMATCH
metric (Cai and Knight, 2013) aligns the
variables of two graphs and assesses triple
matches. The recent SEMBLEU metric
(Song and Gildea, 2019) is based on the
machine-translation metric BLEU (Papineni
et al., 2002) and increases computational ef-
ficiency by ablating the variable-alignment.

In this paper, i) we establish criteria that
enable researchers to perform a principled
assessment of metrics comparing meaning
representations like AMR; ii) we undertake
a thorough analysis of SMATCH and SEM-
BLEU where we show that the latter exhibits
some undesirable properties. For example,
it does not conform to the identity of in-
discernibles rule and introduces biases that
are hard to control; iii) we propose a novel
metric S2MATCH that is more benevolent to
only very slight meaning deviations and tar-
gets the fulfilment of all established criteria.
We assess its suitability and show its advan-
tages over SMATCH and SEMBLEU.

1 Introduction

Proposed in 2013, the aim of Abstract Mean-
ing Representation (AMR) is to represent a sen-
tence’s meaning in a machine-readable graph for-
mat (Banarescu et al., 2013). AMR graphs are
rooted, acyclic, directed and edge-labeled. Enti-
ties, events, properties and states are represented
as variables that are linked to corresponding con-
cepts (encoded as leaf nodes) via is-instance rela-
tions (cf. Figure 1, left). This structure allows us
to capture complex linguistic phenomena such as
coreference, semantic roles or polarity.

When measuring the similarity between two
AMR graphs A and B, for instance for the pur-
pose of AMR parse quality evaluation, the met-
ric of choice is usually SMATCH (Cai and Knight,
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Figure 1: A cat drinks water. Simplified AMR graph
and underlying deep form with is-instance relations
( ) from variables (solid) to concepts (dashed).

2013). Its backbone is an alignment-search be-
tween the graphs’ variables. Recently, the SEM-
BLEU metric (Song and Gildea, 2019) has been
proposed that operates on the basis of a variable-
free AMR (Figure 1, right)1, converting it to a bag
of k-grams. Circumventing a variable alignment
search reduces computational cost and ensures full
determinacy. Also, grounding the metric in BLEU

(Papineni et al., 2002) has a certain appeal, since
BLEU is quite popular in Machine Translation.

However, we find that we are lacking a princi-
pled in-depth comparison of the properties of dif-
ferent AMR metrics which would help informing
researchers to answer questions such as: Which
metric should I use to assess the similarity of
two AMR graphs, e.g., in AMR parser evaluation?
What are the trade-offs when choosing one met-
ric over the other? Besides providing criteria for
such a principled comparison, we discuss a prop-
erty that none of the existing AMR metrics cur-
rently satisfies: they do not measure graded mean-
ing differences. Such differences may emerge due
to near-synonyms such as ruin – annihilate; skinny
– thin – slim; enemy – foe (Inkpen and Hirst, 2006;
Edmonds and Hirst, 2002) or paraphrases such as
be able to – can; unclear – not clear. In a clas-
sical syntactic parsing task, metrics do not need
to address this issue since input tokens are typi-

1Most research papers on AMR display the graphs in this
‘shallow’ form. This increases simplicity and readability.
(Lyu and Titov, 2018; Konstas et al., 2017; Zhang et al., 2019;
Damonte and Cohen, 2019; Song et al., 2016).



cally projected to lexical concepts by lemmatiza-
tion, hence two graphs for the same sentence tend
not to disagree on the concepts projected from the
input. This is different in semantic parsing where
the projected concepts are often more abstract.

This article is structured as follows: We first
establish seven principles that one may expect a
metric for comparing meaning representations to
satisfy, in order to obtain meaningful and appro-
priate scores for the given purpose (§2). Based
on these principles we provide an in-depth analy-
sis of the properties of the AMR metrics SMATCH

and SEMBLEU (§3). We then develop S2MATCH,
an extension of SMATCH that abstracts away from
a purely symbolic level, allowing for a graded se-
mantic comparison of atomic graph-elements (§4).
By this move, we enable SMATCH to take into ac-
count fine-grained meaning differences. We show
that our proposed metric retains valuable bene-
fits of SMATCH, but at the same time is more
benevolent to slight meaning deviations. Our code
is available online https://github.com/
Heidelberg-NLP/amr-metric-suite.

2 From principles to AMR metrics

The problem of comparing AMR graphs A,B ∈
D with respect to the meaning they express oc-
curs in several scenarios, for example, parser
evaluation or inter-annotator agreement calcula-
tion (IAA). To measure the extent to which A
and B agree with each other, we need a metric:
D×D → R that returns a score reflecting meaning
distance or meaning similarity (for convenience,
we use similarity). Below we establish seven prin-
ciples that seem desirable for this metric.

2.1 Seven metric principles

The first four metric principles are mathemati-
cally motivated:

I. continuity, non-negativity and upper-bound
A similarity function should be continuous, with
two natural edge cases: A,B are equivalent (max-
imum similarity) or unrelated (minimum similar-
ity). By choosing 1 as upper bound, we obtain the
following constraint on metric: D×D → [0, 1].2

II. identity of indiscernibles This focal princi-
ple is formalized by metric(A,B) = 1 ⇔ A =
B. It is violated if a metric assigns a value indicat-
ing equivalence to inputs that are not equivalent or

2At some places in this paper, due to conventions, we
project this score onto [0,100] and speak of points.

if it considers equivalent inputs as different.
III. symmetry In many cases, we want a metric

to be symmetric: metric(A,B) = metric(B,A).
A metric violates this principle if it assigns a pair
of objects different scores when argument order
is inverted. Together with principles I and II, it
extends the scope of the metric to usages beyond
parser evaluation, as it also enables sound IAA
calculation, clustering and classification of AMR
graphs when we use the metric as a kernel (e.g.,
SVM). In parser evaluation, one may dispense
with any (strong) requirements for symmetry—
however, the metric must then be applied in a stan-
dardized way, with a fixed order of arguments.

In cases where there is no defined reference,
the asymmetry could be handled by aggregating
metric(A,B) and metric(B,A), e.g., using the
mean. However, it is open what aggregation is
best suited and how to interpret results, e.g. for
metric(A,B) = 0.1 and metric(B,A) = 0.9.

IV. determinacy Repeated calculation over the
same inputs should yield the same score. This
principle is clearly desirable as it ensures reprodu-
cibility (a very small deviation may be tolerable).

The next three principles we believe to be de-
sirable specifically when comparing meaning rep-
resentation graphs such as AMR (Banarescu et al.,
2013). The first two of the following principles are
motivated by computer science and linguistics,
whereas the last one is motivated from a linguis-
tic and an engineering perspective.

V. no bias: Meaning representations consist of
nodes and edges encoding specific information
types. Unless explicitly justified, a metric should
not unjustifiably or in unintended ways favor cor-
rectness or penalize errors for specific substruc-
tures (e.g., leaf nodes). In case a metric favors or
penalizes certain substructures more than others,
in the interest of transparency, this should be made
clear and explicit, and should be easily verifiable
and consistent. E.g., if we wish to give negation of
the main predicate of a sentence a two times higher
weight compared to negation in an embedded sen-
tence, we want this to be made transparent. A con-
crete example for a transparent bias is found in Cai
and Lam (2019). They analyze the impact of their
novel top-down AMR parsing strategy by integrat-
ing a root-distance bias into SMATCH to focus on
structures situated at the top of a graph.

We now turn to properties that focus on
the nature of the objects we aim to compare:

https://github.com/Heidelberg-NLP/amr-metric-suite
https://github.com/Heidelberg-NLP/amr-metric-suite


graph-based compositional meaning representa-
tions. These graphs consist of atomic conditions
that determine the circumstances under which a
sentence is true. Hence, our metric score should
increase with increasing overlap of A and B,
which we denote f(A,B), the number of match-
ing conditions. This overlap can be viewed from
a symbolic or/and a graded perspective (cf., e.g.,
Schenker et al. (2005) who denote these perspec-
tives as ‘syntactic’ vs. ‘semantic’). From the sym-
bolic perspective, we compare the nodes and edges
of two graphs on a symbolic level, while from the
graded perspective, we take into account the de-
gree to which nodes and edges differ. Both types
of matching involve a precondition: If A and B
contain variables, we need a variable-mapping in
order to match conditions from A and B.3

VI. matching (graph-based) meaning repre-
sentations – symbolic match A natural symbolic
overlap-objective can be found in the Jaccard in-
dex J (Jaccard, 1912; Real and Vargas, 1996; Pa-
padimitriou et al., 2010): Let t(G) be the set of
triples of graph G, f(A,B) = |t(A) ∩ t(B)|
the size of the overlap of A,B, and z(A,B) =
|t(A) ∪ t(B)| the size of their union. Then, we
wish that A and B are considered more simi-
lar to each other than A and C iff A and B ex-
hibit a greater relative agreement in their (sym-
bolic) conditions: metric(A,B)>metric(A,C)

⇔ f(A,B)
z(A,B) = J(A,B) > f(A,C)

z(A,C) = J(A,C). An
allowed exception to this monotonic relationship
can occur if we want to take into account a graded
semantic match of atomic graph elements or sub-
structures, which we will now elaborate on.

VII. matching (graph-based) meaning repre-
sentations – graded semantic match: One moti-
vation for this principle can be found in engineer-
ing, e.g., when assessing the quality of produced
parts. Here, small deviations from a reference may
be tolerable within certain limits. Similarly, two
AMR graphs may match almost perfectly – except
for two small divergent components. The extent
of divergence can be measured by the degree of
similarity of the two divergent components. In
our case, we need linguistic knowledge to judge

3E.g., consider graph A in Figure 1 and its set of triples
t(A): {〈x1, instance, drink-1〉 〈x2, instance, cat〉, 〈x1, arg0,
x2〉, 〈x1, arg1, x3〉, 〈x3, instance, water〉}. When comparing
A against graph B we need to judge whether a triple t ∈
t(A) is also contained in B: t ∈ t(B). For this, we need
a mapping map: vars(A) → vars(B) where vars(A) =
{x1, .., xn}, vars(B) = {y1, .., ym} s.t. f is maximized.

what degree of divergence we are dealing with and
whether it is tolerable.

For example, consider that graph A contains
a triple 〈x, instance, conceptA〉 and graph B a
triple 〈y, instance, conceptB〉, while otherwise the
graphs are equivalent, and the alignment has set
x=y. Then f(A,B) should be higher when con-
ceptA is similar to conceptB compared to the
case where conceptA is dissimilar to conceptB. In
AMR, concepts are often abstract, so near-syno-
nyms may even be fully admissible (enemy–foe).
While such (near-)synonyms are bound to occur
frequently when we compare AMR graphs of dif-
ferent sentences that may contain paraphrases, we
will see, in Section §4, that this can also occur in
parser evaluation, where two different graphs rep-
resent the same sentence. By defining metric to
map to a range [0,1] we already defined it to be
globally graded. Here, we desire that graded sim-
ilarity may also hold of minimal units of AMR
graphs, such as atomic concepts or even sub-
graphs, e.g., to reflect that injustice(x) is very
similar to justice(x) ∧ polarity(x,−).

2.2 AMR metrics: SMATCH and SEMBLEU

With our seven principles for AMR similarity met-
rics in place, we now introduce SMATCH and
SEMBLEU, two metrics that differ in their design
and assumptions. We describe each of them in
detail and summarize their differences, setting the
stage for our in-depth metric analysis (§3).

Align and match – SMATCH The SMATCH

metric operates in two steps. First, (i) we align
the variables in A and B in the best possible
way, by finding a mapping map?: vars(A) →
vars(B) that yields a maximal set of matching
triples between A and B. E.g., if 〈xi, rel, xj〉 ∈
t(A) and 〈map?(xi), rel, map?(xj)〉 = 〈yk, rel,
ym〉 ∈ t(B), we obtain one triple match. (ii) We
compute Precision, Recall and F1 score based
on the set of triples returned by the alignment
search. The NP-hard alignment search problem
of step (i) is solved with a greedy hill-climber:
Let fmap(A,B) be the count of matching triples
under any mapping function map. Then,

map? = argmax
map

fmap(A,B). (1)

Multiple restarts with different seeds increase
the likelihood of finding better optima.



Simplify and match – SEMBLEU The SEM-
BLEU metric in Song and Gildea (2019) can also
be described as a two-step procedure. But unlike
SMATCH it operates on a variable-free reduction
of an AMR graphG, which we denote byGvf (vf :
variable-free, Figure 1, right-hand side).

In a first step, (i) SEMBLEU performs k-gram
extraction from Avf and Bvf in a breadth-first
traversal (path extraction). It then (ii) adopts the
BLEU score from MT (Papineni et al., 2002) to
calculate an overlap score based on the extracted
bags of k-grams:

SEMBLEU = BP · exp

(
n∑
k=1

wk log pk

)
(2)

BP = e
min
{
1− |Bvf |

|Avf |
,0
}

(3)

where pk is BLEU’s modified k-gram preci-
sion that measures k-gram overlap of a candidate
against a reference: pk = |kgram(Avf )∩kgram(Bvf )|

|kgram(Avf )| .
wk is the (typically uniform) weight over chosen
k-gram sizes. SEMBLEU uses NIST geometric
probability smoothing (Chen and Cherry, 2014).
The recall-focused ‘brevity penalty’ BP returns
a value smaller than 1 when the candidate length
|Avf | is smaller than the reference length |Bvf |.

The graph traversal performed in SEMBLEU

starts at the root node. During this traversal it sim-
plifies the graph by replacing variables with their
corresponding concepts (see Figure 1: the node
c becomes DRINK-01) and collects visited nodes
and edges in uni-, bi- and tri-grams (k=3 is recom-
mended). Here, a source node together with a re-
lation and its target node counts as a bi-gram. For
the graph in Figure 1, the extracted unigrams are
{cat, water, drink-01}; the extracted bi-grams
are {drink-01 arg1 cat, drink-01 arg2 water}.

SMATCH vs. SEMBLEU in a nutshell SEM-
BLEU differs significantly from SMATCH. A key
difference is that SEMBLEU operates on redu-
ced variable-free AMR graphs (Gvf ) – instead of
full-fledged AMR graphs. By eliminating vari-
ables, SEMBLEU bypasses an alignment search.
This makes the calculation faster and alleviates
a weakness of SMATCH: the hill-climbing search
is slightly imprecise. However, SEMBLEU is not
guided by aligned variables as anchors. Instead,
SEMBLEU uses an n-gram statistic (BLEU) to
compute an overlap score for graphs, based on k-
hop paths extracted from Gvf , using the root node

----------A------------Input-------------B----------
( p / predicate-01 ( p / predicate-01
:ARG0 ( x1 / man ) :ARG0 ( x1 / man )

:ARG1 ( x2 / man ) :ARG1 x1

:ARG2 x2 ) :ARG2 ( x2 / man ))
-----------------------Scores-----------------------
SMATCH -> 0.667
SEMBLEU -> 1.0
----------------------------------------------------

Figure 2: Two AMRs with semantic roles filled differ-
ently, SEMBLEU considers them as equivalent.

as the start for the extraction process. SMATCH,
by contrast, acts directly on variable-bound graphs
matching triples based on a selected alignment. If
in some application we wanted it, both metrics al-
low the capturing of more ‘global’ graph proper-
ties: SEMBLEU can increase its k-parameter and
SMATCH may match conjunctions of (intercon-
nected) triples. In the following analysis, however,
we will adhere to their default configurations since
this is how they are used in most applications.

3 Assessing AMR metrics with principles

This section evaluates SMATCH and SEMBLEU

against the seven principles we established above
by asking: Why does a metric satisfy or violate a
given principle? and What does this imply? We
start with principles from mathematics.

I. Continuity, non-negativity and upper-bound
This principle is fulfilled by both metrics as they
are functions of the formmetric : D×D → [0, 1].
II. Identity of indiscernibles This principle is
fundamental: An AMR metric must return maxi-
mum score if and only if the graphs are equivalent
in meaning. Yet, there are cases where SEMBLEU,
in contrast to SMATCH, does not satisfy this prin-
ciple. Figure 2 shows an example.

Here, SEMBLEU yields a perfect score for two
AMRs that differ in a single but crucial aspect:
two of its ARGx roles are filled with arguments that
are meant to refer to distinct individuals that share
the same concept. The graph on the left is an ab-
straction of, e.g. The man1 sees the other man2 in
the other man2, while the graph on the right is an
abstraction of The man1 sees himself1 in the other
man2. SEMBLEU does not recognize the differen-
ce in meaning between a reflexive and a non-refle-
xive relation, assigning maximum similarity score,
whereas SMATCH reflects such differences appro-
priately since it accounts for variables.

In sum, SEMBLEU does not satisfy principle II
because it operates on a variable-free reduction of



----------A------------Input-------------B----------
(a / and (k7 / know-01

:op1 (h / heat-01 :ARG0 (i / i
:ARG1 (t / thing) :ARG0-of (d9 / do-02
:loc (b / between :ARG1 t8

:op1 (w / we)) :ARG1 (t0 / thing
:degree (s / so)) :ARG1-of (h2 / heat-01

:op2 (k / know-01 :degree (s1 / so)
:polarity - :loc (b3 / between
:ARG0 (i / i) :op1 (w4 / we))))))
:ARG1 (t2 / thing :ARG1 (t8 / thing)
:ARG1-of (d / do-02)))) :polarity -)

-----------------------Scores-----------------------
SEMBLEU (A,B) = 0.422 << SEMBLEU (B,A) = 0.803)

SMATCH (A,B) = 0.829 == SMATCH (B,A) = 0.829)
-----------------------------------------------------

Figure 3: Symmetry violation for two parses of Things
are so heated between us, I don’t know what to do.

AMRs (Gvf ). One could address this problem by
reverting to canonical AMR graphs and adopting
variable alignment in SEMBLEU. But this would
adversely affect the advertised efficiency advan-
tages over SMATCH. Re-integrating the align-
ment step would make SEMBLEU less efficient
than SMATCH since it would add the complexity
of breadth-first traversal, yielding a total complex-
ity of O(SMATCH) plus O(|V |+ |E|).

III. Symmetry This principle is fulfilled if
∀A,B ∈ D : metric(A,B) = metric(B,A).
Figure 3 shows an example where SEMBLEU does
not comply with this principle, to a significant ex-
tent: when comparing AMR graph A against B,
it yields a score greater than 0.8, yet, when com-
paring B to A the score is smaller than 0.5. We
perform an experiment that quantifies this effect
on a larger scale by assessing the frequency and
the extent of such divergences. To this end, we
parse 1368 development sentences from an AMR
corpus (LDC2017T10) with an AMR parser (ob-
taining graph bank A) and evaluate it against an-
other graph bank B (gold graphs or another parser-
output). We quantify the symmetry violation by
the symmetry violation ratio (Eq. 4) and the mean
symmetry violation (Eq. 5) given some metric m:

svr =

∑|A|
i=1 I[m(Ai,Bi) 6= m(Bi,Ai)]

|A|
(4)

msv =

∑|A|
i=1 |m(Ai,Bi)−m(Bi,Ai)|

|A|
(5)

We conduct the experiment with three AMR
systems, CAMR (Wang et al., 2016), GPLA (Lyu
and Titov, 2018) and JAMR (Flanigan et al.,
2014), and the gold graphs. Moreover, to provide
a baseline that allows us to better put the results

symmetry violation

svr (%, ∆>0.0001) msv (in points)
Graph banks SMATCH SEMBLEU SMATCH SEMBLEU

Gold↔ GPLA 2.7 81.8 0.1 3.2
Gold↔ CAMR 7.8 92.8 0.2 3.1
Gold↔ JAMR 5.0 87.0 0.1 3.2
JAMR↔ GPLA 4.2 86.0 0.1 3.0
CAMR↔ GPLA 7.4 93.4 0.1 3.4
CAMR↔ JAMR 7.9 91.6 0.2 3.3

avg. 5.8 88.8 0.1 3.2

Table 1: svr (Eq. 4), msv (Eq. 5) of AMR metrics.

BLEU symmetry violation, MT

data: newstest2018↔ (·) svr (%, ∆>0.0001) msv (in points)

worst-case 81.3 0.2
avg-case 72.7 0.2

Table 2: svr (Eq. 4), msv (Eq. 5) of BLEU, MT setting.

into perspective, we also estimate the symmetry
violation of BLEU (SEMBLEU’s MT ancestor) in
an MT setting. Specifically, we fetch 16 system
outputs of the WMT 2018 EN-DE metrics task
(Ma et al., 2018) and calculate BLEU(A,B) and
BLEU(B,A) of each sentence-pair (A,B) from the
MT system’s output and the reference (using the
same smoothing method as SEMBLEU). As worst-
case/avg.-case, we use the outputs from the team
where BLEU exhibits maximum/median msv.4

Table 1 shows that more than 80% of the evalu-
ated AMR graph pairs lead to a symmetry viola-
tion with SEMBLEU (as opposed to less than 10%
for SMATCH). The msv of SMATCH is consider-
ably smaller compared to SEMBLEU: 0.1 vs. 3.2
points F1 score. Even though the BLEU metric is
inherently asymmetric, most of the symmetry vi-
olations are negligible when applied in MT (high
svr, low msv, Table 2). However, when applied
to AMR graphs ‘via’ SEMBLEU the asymmetry
is amplified by a factor of approximately 16 (0.2
vs. 3.2 points). Figure 4 visualizes the symme-
try violations of SEMBLEU (left), SMATCH (mid-
dle) and BLEU (right). The SEMBLEU-plots show
that the effect is widespread, some cases are ex-
treme, many others are less extreme but still con-
siderable. This stands in contrast to SMATCH but
also to BLEU, which itself appears well calibrated
and does not suffer from any major asymmetry.

In sum, symmetry violations with SMATCH are
much fewer and less pronounced than those ob-
served with SEMBLEU. In theory, SMATCH is
fully symmetric, however, violations can occur
due to alignment errors from the greedy variable-

4worst: LMU uns.; avg.: LMU NMT (Huck et al., 2017).
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Figure 4: Symmetry evaluations of metrics. SEMBLEU (left column) and SMATCH (middle column) and BLEU as
a ‘baseline’ in an MT task setting on newstest2018. SEMBLEU: large divergence, strong outliers. SMATCH: few
divergences, few outliers; BLEU: many small divergences, zero outliers. (a) marks the case in Figure 3.

# restarts
1 2 3 5 7

corpus vs. corpus 2.6e−4 1.7e−4 8.1e−5 5.7e−5 5.6e−5

graph vs. graph 1.3e−3 1.0e−3 8.5e−4 5.3e−4 4.0e−4

Table 3: Expected determinacy error ε in SMATCH F1.

alignment search (we discuss this issue in the next
paragraph). By contrast, the symmetry violation
of SEMBLEU is intrinsic to the method since the
underlying overlap measure BLEU is inherently
asymmetric, however, this asymmetry is amplified
in SEMBLEU compared to BLEU.5

IV. Determinacy This principle states that re-
peated calculations of a metric should yield identi-
cal results. Since there is no randomness in SEM-
BLEU, it fully complies with this principle. The
reference implementation of SMATCH does not
fully guarantee deterministic variable alignment
results, since it aligns the variables by means of
greedy hill-climbing. However, multiple random
initializations together with the small set of AMR
variables imply that the deviation will be ≤ ε (a
small number close to 0).6 In Table 3 we mea-
sure the expected ε: it displays the SMATCH F1
standard deviation with respect to 10 independent
runs, on a corpus level and on a graph-pair level
(arithmetic mean).7 We see that ε is small, even

5As we show below (principle V), this is due to the way in
which k-grams are extracted from variable-free AMR graphs.

6Additionally, ε = 0 is guaranteed when resorting to a
(costly) ILP calculation (Cai and Knight, 2013).

7Data: dev set of LDC2017T10, parses by GPLA.

when only one random start is performed (corpus
level: ε=0.0003, graph level: ε=0.0013). We con-
clude that the hill-climbing in SMATCH is unlikely
to have any significant effects on the final score.

V. No bias A similarity metric of (A)MRs
should not unjustifiably or unintentionally favor
the correctness or penalize errors pertaining to any
(sub-)structures of the graphs. However, we find
that SEMBLEU is affected by a bias that affects
(some) leaf nodes attached to high-degree nodes.
The bias arises from two related factors: (i) when
transforming G to Gvf , SEMBLEU replaces vari-
able nodes with concept nodes. Thus, nodes which
were leaf nodes in G can be raised to highly con-
nected nodes in Gvf . (ii) breadth-first k-gram ex-
traction starts from the root node. During graph
traversal, concept leaves – now occupying the po-
sition of (former) variable nodes with a high num-
ber of outgoing (and incoming) edges – will be
visited and extracted more frequently than others.

The two factors in combination make SEM-
BLEU penalize a wrong concept node harshly
when it is attached to a high-degree variable node
(the leaf is raised to high-degree when transform-
ing G to Gvf ). Conversely, correct or wrongly as-
signed concepts attached to nodes with low degree
are only weakly considered.8 E.g., consider Figure
5. SEMBLEU considers two graphs that express
quite distinct meanings (left and right) as more

8This may have severe consequences, e.g., for negation,
since negation always occurs as a leaf in G and Gvf . There-
fore, SEMBLEU, by-design, is benevolent to polarity errors.
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-----------------------Scores-----------------------
metric (leftA,leftB) metric (leftA,right)
--------------- ---------------
SEMBLEU -> 0.38 < SEMBLEU -> 0.46
SMATCH -> 0.87 > SMATCH -> 0.73

-----------------------------------------------------

Figure 5: Left: In April, a woman rides a car from
Rome to Pisa. root nodes A: travel-01 vs. B: drive-01.
Right: In Apr., a sailor travels with a ship from P. to N.

Figure 6: # of k-grams entered by a node in SEMBLEU.

√√√

SEMBLEU O(3d) O(d2 + d) O(d2 + 2d)
SMATCH O(d) O(d) O(d)

Table 4: Error impact depending on error location in a
tree with node degree d.

similar than graphs that are almost equivalent in
meaning (left, variant A vs. B). This is because the
leaf that is attached to the root is raised to a highly
connected node in Gvf and thus is over-frequently
contained in the extracted k-grams, whereas the
other leaves will remain leaves in Gvf .

Analyzing and quantifying SEMBLEU’s bias
To better understand the bias, we study three lim-
iting cases: (i) the root is wrong (

√√√
) (ii) d leaf

nodes are wrong ( ) and (iii) one branching node
is wrong ( ). Depending on a specific node and
its position in the graph, we would like to know
onto how many k-grams (SEMBLEU) or triples
(SMATCH) the errors are projected. For the sake of
simplicity, we assume that the graph always comes
in its simplified form Gvf , that it is a tree, and that
every non-leaf node has the same out-degree d.

The result of our analysis is given in Table 49

and exemplified in Figure 6. Both show that the
number of times k-gram extraction visits a node
heavily depends on its position and that with grow-

9Proof sketch, SMATCH, d leaves: d triples, a root: d
triples, a branching node: d+1 triples. SEMBLEU

wk=1/3
k=3 , d

leaves: 3d k-grams (d tri, d bi, d uni). A root: d2 tri, d bi, 1
uni. A branching node: d2+d+1 tri, d+1 bi, 1 uni.

ing d, the bias gets amplified (Table 4).10 E.g.,
when d=3, 3 wrong leaves yield 9 wrong k-grams,
and 1 wrong branching node can already yield
18 wrong k-grams. By contrast, in SMATCH the
weight of d leaves always approximates the weight
of 1 branching node of degree d.

In sum, in SMATCH the impact of a wrong node
is constant for all node types and rises linearly
with d. In SEMBLEU the impact of a node rises
approximately quadratically with d and it also de-
pends on the node type, since it raises some (but
not all) leaves in G to connected nodes in Gvf .

Eliminating biases A possible approach to re-
duce SEMBLEU’s biases could be to weigh the ex-
tracted k-gram matches according to the degree of
the contained nodes. However, this would imply
that we assume some k-grams (and thus also some
nodes and edges) to be of greater importance than
others – in other words, we would eliminate one
bias by introducing another. Since the breadth-first
traversal is the metric’s backbone, this issue may
be hard to address well. When BLEU is used for
MT evaluation, there is no such bias because the
k-grams in a sentence appear linearly.

VI. Graph matching: symbolic perspective
This principle requires that a metric’s score grows
with increasing overlap of the conditions that are
simultaneously contained in A and B. SMATCH

fulfills this principle since it matches two AMR
graphs inexactly (Yan et al., 2016; Riesen et al.,
2010) by aligning variables s.t. that the triple
matches are maximized. Hence, SMATCH can be
seen as a graph matching algorithm that works on
any pair of graphs that contain (some) nodes that
are variables. It fulfills the Jaccard-based over-
lap objective which symmetrically measures the
amount of triples on which two graphs agree, nor-
malized by their respective sizes (since SMATCH

F1 = 2J/(1 + J) is a monotonic relation).
Since SEMBLEU does not satisfy principles II

and III (id. of indescernibles and symmetry), it is
a corollary that it cannot fulfill the overlap ob-
jective.11 Generally, SEMBLEU does not com-

10Consider that in AMR, d can be quite high, e.g., a predi-
cate with multiple arguments and additional modifiers.

11Proof by symmetry violation:
w.l.o.g. ∃A,B: metric(A,B)>metric(B,A)⇒ f(A,B)
> f(B,A)→ � , since f(A,B) = |t(A)∩ t(B)| = |t(B)∩
t(A)| = f(B,A) /// Proof by identity of indiscernibles:
w.l.o.g. ∃ A,B,C : metric(A,B) = metric(A,C) = 1 ∧
f(A,B)/z(A,B) = 1 > f(A,C)/z(A,C)�
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-----------------------Scores-----------------------
metric (A,B) metric (B,C) metric (A,C)

--------------- --------------- ---------------
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-----------------------------------------------------

Figure 7: Three different AMR graphs representing
The cat sprints; The kitten runs; The giraffe sleeps and
pairwise similarity scores from SEMBLEU, SMATCH
and S2MATCH (see (§4) for S2Match).

pare and match two AMR graphs per se, instead
it matches the results of a graph-to-bag-of-paths
projection function (§2.2) and the input may not
be recoverable from the output (surjective-only).
Thus, matching the outputs of this function cannot
be equated to matching the inputs on a graph-level.

4 Towards a more semantic metric for
semantic graphs: S2MATCH

This section focuses on principle VII, semantically
graded graph matching, a principle that none of the
AMR metrics considered so-far satisfies. A fulfil-
ment of this principle also increases the capacity
of a metric to assess the semantic similarity of two
AMR graphs from different sentences. E.g., when
clustering AMR graphs or detecting paraphrases
in AMR-parsed texts, the ability to abstract away
from concrete lexicalizations is clearly desirable.
Consider Figure 7 with three different graphs. Two
of them (A,B) are similar in meaning and differ
significantly from C. However, both SMATCH and
SEMBLEU yield the same result in the sense that
metric(A,B) = metric(A,C). Put differently,
neither metric takes into account that giraffe and
kitten are two quite different concepts, while cat
and kitten are more similar. However, we would
like this to be reflected by our metric and obtain
metric(A,B) > metric(A,C) in such a case.

S2MATCH We propose the S2MATCH metric
(Soft Semantic match, pronounced: [estu:mætS])
that builds on SMATCH but differs from it in one
important aspect: instead of maximizing the num-
ber of (hard) triple matches between two graphs
during alignment search, we maximize the (soft)
triple matches by taking into account the semantic

determinacy error
avg. msv (Eq. 5) 1 restart 2 restarts 4 restarts

SMATCH 0.0011 1.3e−3 1.0e−3 5.3e−4

S2MATCH 0.0005 9.0e−4 6.1e−4 2.1e−4

relative change -54.6% -30.7% -39.0% -60.3%

Table 5: S2MATCH improves upon SMATCH by reduc-
ing the extent of its non-determinacy.

similarity of concepts. Recall that an AMR graph
contains two types of triples: instance and relation
triples (e.g., Figure 7, left: 〈a, instance, cat〉 and
〈c, arg0, a〉). In SMATCH, two triples can only
be matched if they are identical. In S2MATCH,
we relax this constraint, which has also the po-
tential to yield a different, and possibly, a better
variable alignment. More precisely, in SMATCH

we match two instance triples 〈a, instance, x〉 ∈ A
and 〈map(a), instance, y〉 ∈ B as follows:

hardMatch = I[x = y] (6)

where I(c) equals 1 if c is true and 0 otherwise.
S2MATCH relaxes this condition:

softMatch = 1− d(x, y), (7)

where d is an arbitrary distance function d : X×
X → [0, 1]. E.g., in practice, if we represent the
concepts as vectors x, y ∈ Rn, we can use

d(x, y) = min

{
1, 1− yTx

‖x‖2 ‖y‖2

}
. (8)

When plugged into Eq. 7, this results in the co-
sine similarity ∈ [0, 1]. It may be suitable to set
a threshold τ (e.g., τ = 0.5), to only consider the
similarity between two concepts if it is above τ
(softMatch = 0 if 1 − d(x, y) < τ ). In the fol-
lowing pilot experiments, we use cosine (Eq. 8)
and τ = 0.5 over 100 dimensional GloVe vectors
(Pennington et al., 2014).

To summarize, S2MATCH is designed to either
yield the same score as SMATCH – or a slightly in-
creased score when it aligns concepts that are sym-
bolically distinct but semantically similar. An ex-
ample, from parser evaluation, is shown in Figure
8. Here, S2MATCH increases the score to 63 F1
(+10 points) by detecting a more adequate align-
ment that accounts for the graded similarity of two
related AMR concepts pairs. We believe that this
is justified: The two graphs are very similar and
an F1 of 53 is too low, doing the parser injustice.

On a technical note, the changes in alignments
also have the outcome that S2MATCH mends some



input span region (excerpt) amr region gold (excerpt) amr region parser (excerpt) cos points F1↑ annotation

40 km southwest of :quant 40 :unit ( k2 / kilometer ) ( k22 / km :unit-of (d23 / distance-quantity 0.72 1.2 ex. similar
improving agricultural prod. (i2 / improve-01 ... :mod ( f2 / farming ) (i31 / improve-01 :mod ( a23 / agriculture ) 0.73 3.0 ex. similar
other deadly bacteria op3 ( b / bacterium ... :mod (o / other))) op3 ( b13 / bacteria :ARG0-of :mod (o12 / other))) 0.80 5.1 ex. similar
drug and law enforcement aid (a / and :op2 ( a3 / aid-01 :ARG1 (a9 / and :op1 ( d8 / drug ) :op2 (l10 / law))) 0.67 1.8 similar
Get a lawyer and get a divorce. :op1 (g / get-01 :mode imp. :ARG0 ( y / you ) :op1 ( g0 / get-01 :ARG1 (l2 / lawyer) :mode imp.) 0.80 4.8 dissimilar
The unusual development. ARG0 (d / develop-01 :mod ( u / usual :polarity -)) :ARG0 (d1 / develop-02 :mod ( u0 / unusual )) 0.60 14.0 dissimilar

Table 6: Examples where S2MATCH assigns a higher score, accounting for the similarity of aligned concepts .
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Figure 8: ‘6 Abu Sayyaf suspects were captured last
week in a raid in Metro Manila.’ gold (top) vs. parsed
AMR (bottom). SMATCH aligns criminal-organization
to city (red); S2MATCH aligns criminal-organization to
suspect-01, city to country-region (blue).

of SMATCH’s flaws: It better addresses principles
III and IV, reducing the symmetry violation and
determinacy error (Table 5).

Qualitative study: Probing S2MATCH’s choices
This study randomly samples 100 graph pairs from
those where S2MATCH assigned higher scores than
SMATCH.12 Two annotators were asked to judge
the similarity of all aligned concepts with similar-
ity score <1.0: Are the concepts dissimilar, simi-
lar or extremely similar? For concepts judged dis-
similar, we conclude that S2MATCH erroneously
increased the score; if judged as (extremely) sim-
ilar, we conclude that the decision was justified.
We calculate three agreement statistics that all
show large consensus among our annotators (Co-
hen’s kappa equals 0.79, squared kappa: 0.87,
Pearson’s ρ: 0.91) According to the annotations,
the decision to increase the score is mostly jus-
tified: in 56% and 12% of cases both annota-
tors voted that the newly aligned concepts are ex-
tremely similar and similar, respectively, while the

12Automatic graphs by GPLA, on LDC2017T10, dev set.

agreed dissimilar label makes up 25% of cases.
Table 6 lists examples of good or ill-founded

score increases. We observe, e.g., that S2MATCH

accounts for the similarity of two concepts of
different number: bacterium (gold) vs. bacteria
(parser) (line 3). It also captures abbreviations (km
– kilometer) and closely related concepts (farming
– agriculture). SEMBLEU and SMATCH would
penalize the corresponding triples in exactly the
same way as predicting a truly dissimilar concept.

An interesting case is seen in line 7. Here, usual
and unusual are correctly annotated as dissimi-
lar, since they are opposite concepts. S2MATCH,
equipped with GloVe embeddings, measures a co-
sine of 0.6, above the chosen threshold, which re-
sults in an increase of the score by 14 points (the
increase is large as these two graphs are tiny). It is
well-known that synonyms and antonyms are dif-
ficult to distinguish with distributional word rep-
resentations, since they often share similar con-
texts. However, the case at hand is orthogonal to
this problem: usual in the gold graph is modified
with the polarity ‘−’, whereas the predicted graph
assigned the (non-negated) opposite concept un-
usual. Hence, given the context in the gold graph,
the prediction is semantically almost equivalent.
This points to an aspect of principle VII that is not
yet covered by S2MATCH: it assesses graded simi-
larity at the lexical, but not at the phrasal level, and
hence cannot account for compositional phenom-
ena. In future work, we aim at alleviating this is-
sue by developing extensions that measure seman-
tic similarity for larger graph contexts, in order to
fully satisfy all seven principles.13

Quantitative study: metrics vs. human raters
This study investigates to what extent the judg-
ments of the three metrics under discussion re-
semble human judgements, based on the follow-
ing two expectations. First, the more a human
rates two sentences to be semantically similar in
their meaning, the higher the metric should rate

13As we have seen, this requires much care. We therefore
consider this next step to be out of scope of the present paper.



RMSE RMSE (quant) Pearson’s ρ Spearman’s ρ

task SB SM S2M SB SM S2M SB SM S2M SB SM S2M

STS 0.34 0.25 0.25 0.25 0.11 0.10 0.52 0.55 0.55 0.51 0.53 0.53
SICK 0.38 0.25 0.24 0.32 0.14 0.13 0.62 0.64 0.64 0.66 0.66 0.66

Table 7: RMSE (lower is better) and correlation results
of our metrics in our STS and SICK investigations.
RMSE (quant): RMSE on empirical quantile distribu-
tion with quantiles 0.1,0.2,...,0.9.
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Figure 9: Sentence meaning similarity distributions.

the corresponding AMR graphs (meaning simi-
larity). Second, the more a human rates two sen-
tences to be related in their meaning (maximum:
equivalence), the higher the score of our metric of
the corresponding AMR graphs should tend to be
(meaning relatedness). Albeit not the exact same
(Budanitsky and Hirst, 2006), the tasks are closely
related and both in conjunction should allow us to
better assess the performance of our AMR metrics.

As ground truth for the meaning similar-
ity rating task we use test data of the Seman-
tic Textual Similarity (STS) shared task (Cer
et al., 2017), with 1,379 sentence pairs anno-
tated for meaning similarity. For the meaning-
relatedness task we use SICK (Marelli et al.,
2014) with 9,840 sentence pairs that have been
additionally annotated for semantic relatedness.14

We proceed as follows: We normalize the hu-
man ratings to [0,1]. Then we apply GPLA to
parse the sentence tuples (si, s

′
i), obtaining tuples

(parse(si), parse(s
′
i)) and score the graph pairs

with the metrics: SMATCH(i), S2MATCH(i), SEM-
BLEU(i) and H(i), where H(i) is the human score.
For both tasks SMATCH and S2MATCH yield bet-
ter or equal correlations with human raters than
SEMBLEU (Table 7). When considering the RMS
error

√
n−1

∑n
i=1(H(i)−metric(i))2. the dif-

ference is even more pronounced. This deviation
in the absolute scores is also reflected by the score
density distributions plotted in Figure 9: SEM-

14An example from SICK. Max. score: A man is cooking
pancakes–The man is cooking pancakes.. Min. score: Two
girls are playing outdoors near a woman.–The elephant is
being ridden by the man. To further enhance the soundness
of the SICK experiment we discard pairs with a contradiction
relation and retain 8,416 pairs with neutral or entailment.

------------------Input Sentences-------------------

This is not a good idea. | But it is not a good idea.

------------ Human Similarity Judgement -------------

0.8 ("very similar, but not equivalent")

-----------------------Parses------------------------

(g2 / good-02 (c0 / contrast-01
:ARG1 (i3 / idea :ARG2 (i4 / idea

:domain (t0 / this)) :domain (it / it)
:polarity -) :ARG1-of (g3 / good-02

:polarity -)))

------------ Metric Similarity Judgement -----------

SEMBLEU = 0.38 < SMATCH = 0.63 < S2MATCH = 0.74

-----------------------------------------------------

Figure 10: An example from STS, where S2MATCH
yields a score that better reflects the human judge-
ment, due to detecting a similarity between the abstract
anaphora it and this .

BLEU underrates a good proportion of graph pairs
whose input sentences were rated as highly seman-
tically similar or related by humans. This may
well relate to the biases of different node types (cf.
§3). Overall S2MATCH appears to provide a better
fit with the score-distribution of the human rater
when measuring semantic similarity and related-
ness, the latter being notably closer to the human
reference in some regions than the otherwise sim-
ilar SMATCH. A concrete example from the STS
data is given in Figure 10. Here, S2MATCH detects
the similarity between the abstract anaphors it and
this and assigns a score that better reflects the hu-
man score compared to SMATCH and SEMBLEU,
the latter being far too low. However, in total,
we conclude that S2MATCH’s improvements seem
rather small and no metric is perfectly aligned with
human scores, possibly because gradedness of se-
mantic similarity that arises in combination with
constructional variation is not yet captured – more
research is needed to extend S2MATCH’s scope to
such cases.

5 Metrics’ effects on parser evaluation

We have seen that different metrics can assign dif-
ferent scores to the same pair of graphs. We now
want to assess to what extent this affects rank-
ings: Does one metric rank a graph higher or lower
than the other? And can this affect the ranking of
parsers on benchmark datasets?

Quantitative study: graph rankings In this
experiment, we assess whether our metrics rank
graphs differently. We use LDC2017T10 (dev)



SMG
A,B SM

A,B
G SBGA,B SBA,BG S2MG

A,B S2M
A,B
G

SMG
A,B 0.0 1.5 17.6† 19.0† 4.0 4.1

SM
A,B
G - 0.0 17.9† 19.5† 3.9 4.0

SBGA,B - - 0.0 8.1† 18.4† 19.2†

SBA,BG - - - 0.0 19.1† 19.3†

S2MG
A,B - - - - 0.0 1.2

S2M
A,B
G - - - - 0.0

Table 8: Cross-metric comparison on individual graph
rankings. % of cases where metrics differ in their pref-
erence for one parse over the other. metricYX : short for
metric(X,Y ). † indicates significance in score differ-
ences assigned to parse pairs at p<0.005.

parses by CAMR [c1...cn], JAMR [j1...jn] and
gold graphs [y1...yn]. Given metrics F and G we
obtain results FC := [F(c1, y1)...F(cn, yn)] and
analogously FJ , GC and GJ . We calculate two
statistics: (i) the ratio of cases i where the met-
rics differ in their preference for one parse over
the other (FJi − FCi ) · (GJi − GCi ) < 0, and, to
assess significance, (ii) a t-test for paired samples
on the differences assigned by the metrics between
the parsers: FJ −FC and GJ − GC .

Table 8 shows that SMATCH and S2MATCH both
differ (significantly) from SEMBLEU in 15% –
20% of cases. SMATCH and S2MATCH differ on
individual rankings in appr. 4% of cases. Fur-
thermore, we note a considerable amount of cases
(8.1%) where SEMBLEU disagrees with itself in
the preference for one parse over the other.15

The differing preferences of S(2)MATCH for ei-
ther candidate parse can be the outcome of small
divergences due to the alignment search or be-
cause S2MATCH accounts for the lexical similarity
of concepts, perhaps supported by a new variable
alignment. Figure 11 shows two examples where
S2MATCH prefers a different candidate parse com-
pared to SMATCH. In the first example (Figure
11a), S2MATCH prefers the parse produced by
JAMR and changes the alignment legally-NULL
(SMATCH) to legally-law (S2MATCH). In the sec-
ond example (11b), S2MATCH prefers the parse
produced by CAMR, because it detects the sim-
ilarity between military and navy and poor and
poverty. Therefore, S2MATCH can assess that
the CAMR parse and the gold graph substantially
agree on the root concept of the graph, which is
not the case in the JAMR parse.

Quantitative study: parser rankings Having
seen that our metrics disagree on the ranking of

15i.e., SB(A,G)>SB(B,G) albeit SB(G,A)<SB(G,B).

------------Gold Graph & Input Sentence-------------

(t / thing :quant 2 "Legally, there are
:ARG2-of (r / remedy-01) two remedies."
:mod (l / law))

----------CAMR Parse------------JAMR Parse----------

(x6 / remedy-01 (l / legally
:quant 2) :manner-of (r / remedy-01

:quant 2))

------------Alignments (parse, gold)----------------

SMATCH: x6=r l=NULL, r=r,

S2MATCH: x6=r l=l , r=r

---------------------Scores-------------------------

SMATCH: 0.200 >> 0.167

S2MATCH: 0.200 << 0.252
----------------------------------------------------

(a) S2MATCH prefers JAMR parse.
------------Gold Graph & Input Sentence-------------

(n3 / navy "The Navy of the Russian
:mod (c / country Federation is in poor shape."
:name (n2 / name
:op1 "Russian"
:op2 "Federation"))

:mod (s / shape
:mod (p / poverty)))

----------CAMR Parse------------JAMR Parse----------

(x2 / military (s / shape-01
:name (n / name :ARG1 (c / country
:op1 "Navy") :name (n / name

:poss (x5 / country :op1 "Russian"
:name (n1 / name :op2 "Federation")
:op1 "Russia" :poss (o / organization
:op2 "Federation")) :name (n2 / name

:prep-in (x10 / shape-01 :op1 "Navy" :op2 "of"
:mod (x9 / poor))) :op3 "the")))

:manner (p / poor))

------------Alignments (parse, gold)----------------

SMATCH: x2=NULL, n=NULL, o=n3, n2=NULL,
x5=c , n1=n2, c=c, n=n2,
x10=n3,x x9=s p=NULL, s=NULL

S2MATCH: x2=n3 , n=NULL, o=n3, n2=NULL,
x5=c , n1=n2, c=c, n=n2,

x10=s,x x9=p p=p, s=s

---------------------Scores-------------------------

SMATCH: 0.357 << 0.387

S2MATCH: 0.488 >> 0.460
----------------------------------------------------

(b) S2MATCH prefers CAMR parse.

Figure 11: Two examples, where S2MATCH disagrees
with SMATCH in its preference of a candidate parse (for
clarity, wiki-links are omitted in this display).

individual graphs, we now quantify the effects on
the ranking of parsers. We collect outputs of three
state-of-art parsers on the test set of LDC2017T10:
GPLA, a sequence-to-graph transducer (STOG)
and a neural top-down parser (TOP-DOWN).

Table 9 shows that SMATCH and S2MATCH

agree on the ranking of all three parsers, but both



metric scores structure error
SM SBGA SBAG S2M node degree graph density

STOG 76.3|1 59.6|1 58.9|1 77.9|1 0.08 0.0069
GPLA 74.5|2 54.2|3 52.9|3 76.2|2 0.08 0.0068
TOP-DOWN 73.2|3 54.5|2 53.1|2 75.0|3 0.11 0.0078

Table 9: Ranking parsers: STOG (Zhang et al.);
GPLA (Lyu and Titov); TOP-DOWN (Cai and
Lam, 2019). The structure error is defined as

1
1371

∑1371
i=1 |f(goldi) − f(predi)|, where f either is

node degree or graph density. All four metrics differ
significantly in their scores (paired t-test, p<0.05).

disagree with SEMBLEU on the ranks of the 2nd

and 3rd parser: unlike SEMBLEU, the SMATCH

variants rate GPLA higher than TOP-DOWN. A
factor that may have contributed to the different
rankings perhaps lies in SEMBLEU’s biases to-
wards connected nodes: Compared with TOP-
DOWN, GPLA delivers more complex parses,
with more edges (avg. |E|: 32.8 vs. 32.1) and
higher graph density (avg. density: 0.065 vs.
0.059). This is a nice property, since it indicates
that the graphs of GPLA better resemble the rich
gold graph structures (avg. density: 0.063, avg.
|E|: 34.2). When inspecting this more closely,
and looking at single (parse, gold) pairs, we ob-
serve further evidence for this: the structural error,
in degree and density, is lower for GPLA than for
TOP-DOWN (Table 9, right columns), with an er-
ror reduction of -27% (degree, 0.08 vs. 0.11) and
-14% (density, 0.0067 vs. 0.0078).

In sum, by building graphs of higher complex-
ity, GPLA takes a greater risk when attaching
wrong concepts to connected nodes where errors
are penalized more strongly by SEMBLEU than
SMATCH, according to the biases we have stud-
ied in §3 (Table 4). In that sense, STOG also takes
more risks, but it may get more of such concepts
right and so the bias transitions from penalty to re-
ward, potentially explaining the large performance
∆ (+6) of STOG to the other parsers, as measured
by SEMBLEU, in contrast to S(2)MATCH (∆: +2).

6 Summary of our metric analyses

Table 10 summarizes our analyses’ integral re-
sults. Principle I is fulfilled by all metrics as
they exhibit continuity, non-negativity and an up-
per bound. Principle II, however, is not satisfied
by SEMBLEU since it can mistake two graphs of
different meaning as equivalent. This is because
it ablates a variable-alignment and therefore can-
not capture facets of coreference. Yet, a positive
outcome of this is that it is fast to compute. This

principle SMATCH SEMBLEU S2MATCH Sec.

I. Cont., non-neg. &
upper-bound 3 3 3 -

II. id. of indescernibles 3ε 7 3δ<ε §3
III. symmetry 3ε 7 3δ<ε §3
IV. determinacy 3ε 3 3δ<ε §3
V. low bias 3 7 3 §3
VI. symbolic graph matching 3 7 3 §3
VII. graded graph matching 7 7 3LEX §4

Table 10: Evaluation of three AMR metrics using our
seven principles. 3ε: fulfilled with a very small ε-error.

could make it first choice in some recent AMR
parsing approaches that use reinforcement learn-
ing (Naseem et al., 2019), where rapid feedback
is needed. It also marks a point by fully satisfy-
ing Principle IV, yielding fully deterministic re-
sults. SMATCH, by contrast, either needs to re-
sort to a costly ILP solution or (in practice) uses
hill-climbing with multiple restarts to reduce di-
vergence to a negligible amount.

A central insight brought out by our analysis
is that SEMBLEU exhibits biases that are hard to
control. This is caused by two (interacting) fac-
tors: (i) The extraction of k-grams is applied on the
graph top to bottom and visits some nodes more
frequently than others. (ii) It raises some (but not
all) leaf nodes to connected nodes, and these nodes
will be overly frequently contained in extracted k-
grams. We have shown that these two factors in
combination lead to large biases that researchers
should be aware of when using SEMBLEU (§3).
Its ancestor BLEU does not suffer from such biases
since it extracts k-grams linearly from a sentence.

Given that SEMBLEU is built on BLEU, it is in-
herently asymmetric. However, we have shown
that the asymmetry (Principle III) measured for
BLEU in MT is amplified by SEMBLEU in AMR,
mainly due to the biases it incurs (Principle V).
While asymmetry can be tolerated in parser evalu-
ation if outputs are compared against gold graphs
in a standardized manner, it is difficult to apply an
asymmetric metric to measure IAA or to compare
parses for detecting paraphrases, or in tri-parsing,
where no reference is available. If the asymmetry
is amplified by a bias, it becomes harder to judge
the scores. Finally, considering that SEMBLEU

does not match AMR graphs on the graph-level
but matches extracted bags-of-k-grams, it turns
out that it cannot be categorized as a graph match-
ing algorithm as defined in Principle VI.

Principle VI is fulfilled by SMATCH without any
transformation on AMR graphs. It searches for an



optimal variable alignment and counts matching
triples. As a corollary, it fulfills principles I, II, III
and V. The fact that SMATCH fulfills all but one
principle backs up many prior works that use it as
sole criterion for IAA and parse evaluation.

Our principles also helped us detect a weakness
of all present AMR metrics: they operate on a dis-
crete level and cannot assess graded meaning dif-
ferences. As a first step, we propose S2MATCH:
it preserves beneficial properties of SMATCH but
is benevolent to slight lexical meaning deviations.
Besides parser evaluation, this property makes the
metric also more suitable for other tasks, e.g., it
can be used as a kernel in an SVM that classi-
fies AMRs to determine whether two sentences are
equivalent in meaning. In such a case, S2MATCH

is bound to detect meaning-similarities that cannot
be captured by SMATCH or SEMBLEU, e.g., due to
paraphrases being projected into the parses.

7 Related work

Developing similarity metrics for meaning rep-
resentations (MRs) is important, as it, i.a., af-
fects semantic parser evaluation and computation
of IAA statistics for sembanking. MRs are de-
signed to represent the meaning of text in a well-
defined, interpretable form that is able to identify
meaning differences and support inference. Bos
(2016, 2019) has shown how AMR can be trans-
lated to FOL, a well-established MR formalism.
Discourse Representation Theory (DRT, Kamp
(1981); Kamp and Reyle (1993)) is based on and
extends FOL to discourse representation. A recent
shared task on DRS parsing used the COUNTER

metric (Abzianidze et al., 2019; Evang, 2019), an
adaption of SMATCH, underlining SMATCH’s gen-
eral applicability. Its extension S2MATCH may
also prove beneficial for DRS.

Other research into AMR metrics aims at mak-
ing the comparison fairer by normalizing graphs
(Goodman, 2019). Anchiêta et al. (2019) argue
that one should not, e.g., insert an extra is-root
node when comparing AMR graphs (as done in
SEMBLEU and SMATCH). Damonte et al. (2017)
extend SMATCH to analyze individual AMR facets
(co-reference, WSD, etc.). Cai and Lam (2019)
adapt SMATCH to analyze their parser’s perfor-
mance in predicting triples that are in close prox-
imity to the root. Our metric S2MATCH allows for
straightforward integration of these approaches.

Computational AMR tasks Since the introduc-
tion of AMR, many AMR-related tasks have emer-
ged. Most prominent is AMR parsing (Wang et al.,
2015, 2016; Damonte et al., 2017; Konstas et al.,
2017; Lyu and Titov, 2018; Zhang et al., 2019).
The inverse task generates text from AMR graphs
(Song et al., 2017, 2018; Damonte and Cohen,
2019). Opitz and Frank (2019) rate the quality of
automatic AMR parses without costly gold data.

8 Conclusion

We motivated seven principles for metrics measur-
ing the similarity of graph-based (Abstract) Mean-
ing Representations, from mathematical, linguistic
and engineering perspectives. A metric that ful-
fills all principles is applicable to a wide spectrum
of cases, ranging from parser evaluation to sound
IAA calculation. Hence (i) our principles can
inform (A)MR researchers who desire to com-
pare and select among metrics, and (ii) they ease
and guide the development of new metrics.

We provided examples for both scenarios. We
showcased (i) by utilizing our principles as guide-
lines for an in-depth analysis of two AMR met-
rics: SMATCH and the recent SEMBLEU metrics,
two quite distinct approaches. Our analysis un-
covered that the latter does not satisfy some prin-
ciples, which might reduce its safety and applica-
bility. In line of (ii), we target the fulfilment of
all seven principles and propose S2MATCH, a met-
ric that accounts for graded similarity of concepts
as atomic graph components. In future work, we
aim for a metric that accounts for graded compo-
sitional similarity of subgraphs.
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