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Abstract
In contrast to classical lexical semantic relations between verbs, such as antonymy, synonymy

or hypernymy, presupposition is a lexically triggered semantic relation that is not well covered in
existing lexical resources. It is also understudied in the field of corpus-based methods of learning
semantic relations. Yet, presupposition is very importantfor semantic and discourse analysis tasks,
given the implicit information that it conveys. In this paper we present a corpus-based method for
acquiring presupposition-triggering verbs along with verbal relata that express their presupposed
meaning. We approach this difficult task using a discriminative classification method that jointly
determines and distinguishes a broader set of inferential semantic relations between verbs.

The present paper focuses on important methodological aspects of our work: (i) a discrimina-
tive analysis of the semantic properties of the chosen set ofrelations, (ii) the selection of features
for corpus-based classification and (iii) design decisionsfor the manual annotation of fine-grained
semantic relations between verbs. (iv) We present the results of a practical annotation effort leading
to a gold standard resource for our relation inventory, and (v) we report results for automatic clas-
sification of our target set of fine-grained semantic relations, including presupposition. We achieve
a classification performance of 55% F1-score, a 100% improvement over a best-feature baseline.
Keywords: Presupposition, entailment, question-based annotation,automatic classification.

1. Introduction

Computing lexical-semantic and discourse-level information is crucial in event-based semantic pro-
cessing tasks. This is not trivial, because significant portions of content conveyed in a discourse may
not be overtly realized. Consider the examples (1.a) and (1.b), where (1.a) bears a presupposition
that is overtly expressed in (1.b):

(1) a. Spain won the finals of the 2010 World Cup.

b. Spain played the finals of the 2010 World Cup.

The presupposition expressed in (1.b) is implicitly encoded in (1.a), through lexical knowledge
about the verbwin, and is thus automatically understood by humans who interpret (1.a), given their
linguistic knowledge about the verbswin andplay. Automatically acquiring this kind of lexical
semantic information is one of the objectives of the presentwork.
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DISCRIMINATIVE ANALYSIS OF FINE-GRAINED SEMANTIC RELATIONS

One reason for embedding the acquisition of presupposition-triggering verbs in a discriminative
classification task is thatpresuppositionneeds to be carefully distinguished from other lexical rela-
tions, in particularentailment. The two relations are closely related, but crucially differ in specific
aspects. Consider the sentence pair in (2).

(2) a. President John F. Kennedy was assassinated.

b. President John F. Kennedy died.

Sentence (2.a) logically entails (2.b). But how does this differ from the presuppositional relation
between (1.a) and (1.b)? Generally speaking,entailmentis a strictly logical implication relation
holding between propositionsp andq in such a way that wheneverp holds true,q also holds true.
Presupposition, by contrast, is a relation that may be perceived as holding between propositions,
but is often viewed as a pragmatic relation holding between aspeaker and a proposition. Crucially,
presuppositionsare what a speaker assumes to hold true as a precondition for asentence to be
true. Our focus is on presuppositions as conventional implicatures, as opposed to conversational
implicatures (Levinson, 1983).

There are a variety of linguistic sources for presuppositions, including possessive pronouns, def-
inite reference, or cleft-/wh-constructions that triggerspecific presuppositions, such as possessive
relations or existence. While these constitute a closed list, we are interested in lexically triggered
presuppositions, mainly by verbs, that are grounded in the lexical meaning of the triggering predi-
cates. Examples are widespread, including aspectual verbssuch asbegin/start doing X– not having
done X beforebut most importantly general action verbs such aswin – play, know – learn, find –
lose, etc. Thus, in this work, we concentrate on a notion of presupposition that is restricted to the
lexical meaning relation holding between the presupposition-triggering verb and the verbal pred-
icate of the evoked presupposition. But then again, how to distinguish between verb pairs that
characterize lexically triggered presuppositions as in (1) from pairs of verbs that license a classical
entailment relation as in (2)?

The differences betweenpresuppositionandentailmentcan be studied using special presupposi-
tion tests (Levinson, 1983). The most compelling one, whichwe will use throughout, is the negation
test. It shows that presupposition is preserved under negation, while entailment is not. Applied to
(1) and (2), we note that (3.a), the negation of (1.a), still implies (1.b), while (3.b), the negation of
(2.a), does not imply (2.b). This can be taken as evidence that win lexically presupposesplay, while
assassinateanddie are lexical licensors for logical entailment.

(3) a. Spain didn’t win the finals of the 2010 World Cup.

b. President John F. Kennedy wasn’t assassinated.

The negation test not only helps us to distinguish these closely related verb relations. It also
points to the distinct behavior of these relations in deriving implicit meaning from discourse, which
is the main motivation underlying our work. If we encounter the verbwin in the intended meaning
x wins the gamein some piece of discourse, we may inferx played the game– whether the phrase
is negated or not. For a verb that stands in an entailment relation, by contrast, we need to make sure
that the triggering verb is not in the scope of negation. So,x was killedimplies thatx died, but x
wasn’t killeddoes not license this inference.
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Similar to entailment, presuppositions are essentially grounded in world knowledge. At the
same time, they are crucial for the computation of discoursemeaning and inference. This is ex-
emplified in (4), a typical case of presupposition that introduces additional, implicit knowledge, by
so-calledaccommodationbehavior (van der Sandt, 1992; Geurts and Beaver, 2012). Thepredicate
lift licenses the presupposition that the ban on deep sea drilling that has been lifted had previously
been imposed. Because this presupposition is lexically triggered, it causes anyone unaware of this
piece of world knowledge to infer that a moratorium on deep-water drilling had beenimposedfor
the Gulf of Mexico some time before October 12, 2010, the publication date of the article.

(4) The Obama administration lifted its moratorium on deep-water drilling in the Gulf of Mexico
Tuesday, replacing it with what Interior Secretary Ken Salazar is calling a gold standard of
safety standards for operators looking to drill in water depths greater than 500 feet.1

It is their relevance for discourse understanding and inference that motivates capturing lexical
semantic relations in computational lexicons, to make themavailable for lexically driven inferences
in NLP applications (Frank and Pádo, 2012). Among these arethe major taxonomic lexical semantic
relations, such asantonymy, synonymyor hypernymythat are grounded in linguistic tradition (Lyons,
1977) and that form the core of lexical semantic resources such as WordNet (Fellbaum, 1998).
Recent efforts in computational linguistics further aim toautomatically acquire lexical relations
that determine linguistically licensed inferences, such as entailmentand other more fine-grained
relations, which are not yet covered in sufficient detail andcoverage in the WordNet data base.

Chklovski and Pantel (2004) were first to attempt the automatic classification of fine-grained
verb semantic relations, such assimilarity, strength, antonymy, enablementand happens-before
in VerbOcean. In the present paper we aim to extend the classification of semantic relations be-
tween verbs to lexical inferences licensed bypresupposition. To our knowledge, this has not been
attempted before. We will address this task in a corpus-based discriminative classification task –
by distinguishing presupposition from other semantic relations, in particularentailment, temporal
inclusionandantonymy.

Our overall aim is to capture implicit lexical meanings conveyed by verbs, and to make this
knowledge explicit for improved discourse interpretationby lexically induced inferences. This over-
all aim can be divided into two tasks:

Detecting and discriminating fine-grained semantic relations: We first detect and distinguish
fine-grained semantic relations holding between verbs at the type level, to encode this lexical
knowledge in lexical semantic resources.

Deriving implicit meaning from text: In a second step, we will apply this knowledge for the in-
terpretation of discourse, at the context level, in order toenrich the overtly expressed content
with implicit knowledge conveyed by presupposition, entailment, or other lexically supported
semantic inferences. That is, when detecting a verb in a given piece of discourse that stands
in a particular meaning relation with some other verb, we apply the learned lexical knowledge
to enrich the discourse representation with this hidden meaning relation, by lexically driven
inferences. Through the inferred semantic knowledge we obtain densely structured semantic
representations of discourse that can improve the quality of automatic semantic and discourse
processing tasks, such as information extraction, text summarization, question-answering and
full-fledged textual inferencing or natural language understanding tasks.

1. Source: The Christian Science Monitor, Oct. 12, 2010.
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The present paper concentrates on the first task. We present acorpus-based method for learning
semantic relations between verbs, with a special interest in detecting verbs related by or triggering
presuppositions. Learning focused lexical semantic relations from corpora is a hard task. Our main
strategy for approaching this task is to design features forclassification that are able to discriminate
presupposition from other lexical relations. A novel aspect of our work is that we employtype-based
features that are derived fromlogical-semantic propertiesof the targeted lexical relations.

As it turns out, the classification we aim to perform is even difficult for humans: the complex
inference patterns that characterize the differences between the semantic relations we consider are
difficult to discern using classical annotation schemes. Wedevise a question-based annotation de-
sign that yields reliable annotation results. On the basis of the resulting annotated data set we will
present first results for automatic discriminative classification of fine-grained semantic relations
between verbs using alternative classification architectures.

The structure of the paper is as follows: Section 2 reviews related work. Section 3 motivates the
choice of our target set of semantic relations and studies their discriminative properties. Section 4
discusses different annotation strategies and their difficulties and develops a question-based anno-
tation scenario that yields improved annotation quality. In Section 5 we present two classification
experiments and the results we obtain. We present an error analysis and compare our results to
related work. Finally we summarize and present conclusionsin Section 6.

2. Related Work

Semantic relation acquisition. Significant progress has been made during the last decade in au-
tomatic detection of semantic relations between pairs of words, using corpus-based methods. The
majority of approaches follow thedistributional hypothesis: semantically related words tend to
occur in similar contexts (Firth, 1957). Two types of methods can be distinguished in this field.2

Pattern-based methodsmake use of specific lexico-syntactic patterns that identify individual re-
lations, e.g., thesuch aspatterns used by Hearst (1992) to detect hyponymy (is-a) relations between
nouns. Similar techniques have been applied to detectmeronymyrelations (Girju et al., 2006). In
contrast,distributional methodsrecord co-occurring words in the surrounding context of a target
word, and compute semantic relatedness between two target words using measures of distributional
similarity such ascosineor Jaccard(Mohammad and Hirst, 2012).

The strength of pattern-based approaches is that particular relations can be identified with high
precision, if effective relation-identifying patterns can be determined. Often, however, pattern-based
approaches are critically lacking recall. Distributionalapproaches do not suffer from such coverage
problems. But distributional measures of ‘similarity’ and‘relatedness’ are in general not specific
enough to permit a clear-cut distinction of individual meaning relations (Baroni and Lenci, 2011).

Pantel and Pennacchiotti (2006) propose a weakly supervised pattern-based bootstrapping al-
gorithm, Espresso, that addresses the recall problem. It admits generic patterns – high-recall, yet
low-precision patterns – which may refer to more than one semantic class. In conjunction with
Espresso’s refined filtering methods, generic patterns yield high recall without loss of precision.

In our approach, we will perform semantic relation classification in a different way, using fea-
tures for classification that encode more abstractlinguistic propertiesof individual relation types.
This way we avoid the fuzziness of distributional measures and, at the same time, compensate for
the lack of discriminative surface patterns for the inferential relations we need to distinguish.

2. See Frank and Pádo (2012) for an overview.
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Acquisition of (verb) inference rules. A related strand of work aims at the automatic acquisition
of inference rules. Engendered by the Recognizing Textual Entailment (RTE) challenges, the main
goal is to identify inference relations holding between twopieces of text, such that one of them
can be inferred from the other (Dagan et al., 2009). The notion of inference that underlies the RTE
challenges is informally defined as themost probableinference that can be drawn from some text,
relying on common human understanding of language and background knowledge.

Pekar (2008), Aharon et al. (2010), Berant et al. (2012) and Weisman et al. (2012) extract broad
inferential relations between verbs, without sub-classifying them into more fine-grained relation
types, such aspresupposition, entailmentor cause. However, knowledge about the specific inferen-
tial properties of these relations is crucial for drawing correct inferences in a given context.

Distinguishing fine-grained semantic relations between verbs. Only few attempts tried to fur-
ther distinguish inferential relations between verbs.

Chklovski and Pantel (2004) performed fine-grained semantic relation classification with Verb-
Ocean. They built on work by Lin and Pantel (2001), who proposed a distributional measure that
extracts highly associated verbs. Chklovski and Pantel (2004) took Lin’s semantically associated
verb pairs as a starting point and applied a semi-automatic pattern-based approach for determining
fine-grained semantic relation types, includingsimilarity (synonyms or siblings),strength(syn-
onyms or siblings, where one of the verbs expresses a more intense action),antonymy, enablement
(a type of causal relation) andhappens-before. This inventory of semantic relations is different from
ours. In contrast to VerbOcean, we do not considersynonymyandstrength. Also, there is no direct
mapping from their entailment relationsenablementandhappens-beforeto our target relations.

Inui et al. (2005) concentrate on the acquisition of causal knowledge. They sub-classify causal
relations into the four types:cause, effect, preconditionandmeans, using the Japanese connective
marker tameas a contextual indicator. They distinguish two types of events: actions (Act) and
states of affairs (SOA). For cause(SOA1, SOA2) and effect(Act1 , SOA2), SOA2 happens as
a result ofSOA1 or Act1, respectively. Withprecond(SOA1 , Act2), Act2 cannot happen until
SOA1 has taken place. Finally,means(Act1, Act2) involves two actions sharing agents and that can
be paraphrased asAct1 in order toAct2. Unlike Inui et al. (2005) we do not distinguish subclasses
of causal relations, but consider them as special cases ofentailment.

Important work on clarifying the implicative properties ofverbs has been presented by Kart-
tunen (2012). Similar to our work, he tries to divide implicative constructions into different types,
but in contrast to our work, he studies the relation between the implicative verb (phrase) and its
complement clause. Karttunen (2012) identifies different types of implicative signatures and classi-
fies the verbs accordingly. For example,refuse tois a one-way implicative verb with the implicative
signature+−: the entailment applies in affirmative contexts only, and consists in negating the com-
plement clause. At present, this classification has not beenautomated.

Computing presuppositions. Only little work is devoted to the computational treatment of pre-
supposition. Bos (2003) adopted the algorithm of van der Sandt (1992) for presupposition resolu-
tion. His approach is embedded in the framework of DRT (Kamp and Reyle, 1993). It requires
heavy preprocessing and a lexical repository of presuppositional relations. Clausen and Manning
(2009) compute presuppositions in a shallow inference framework called ‘natural logic’. Their ac-
count is restricted to computing factivity presuppositions of sentence embedding verbs. In the field
of corpus-based learning of semantic relations, the automatic acquisition of presupposition relations
remains understudied.
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3. A Corpus-based Method for Learning Semantic Relations

We present a corpus-based method for learning semantic relations between verbs with a focus on
verbs involved in lexically triggered presupposition relations. In order to better capture the specific
properties of presuppositional relations, we embed this task in a discriminative classification setup.
As target classes we initially consider five relation types:presupposition, entailment, temporal
inclusion (which coverstroponymyandproper temporal inclusion), antonymyandsynonymythat
we aim to differentiate, as well as a negative class of verb pairs related by some other relation, or
that do not stand in any relation at all (other/unrelated).3

3.1 Selection of Target Semantic Relations

This target set of relations is motivated by three criteria.First of all, we aim at a broad space of
relation types, in order to acquire a wide spectrum of relations that bear inferential characteris-
tics. For this reason, our selection encompasses the taxonomic relationshypernymy/troponymy, syn-
onymyandantonymy, which have proven efficient in computational textual entailment and question-
answering tasks, as well as classical non-taxonomic inference relations. Second, as our focus is on
relations between verbs, the relations should be characteristic for verbs. Finally, we need to choose
relation types that are sufficiently discriminative to permit automatic subclassification using corpus-
based methods.

Inferential relations (between verbs). Lexical resources such as WordNet (Fellbaum, 1998) or
GermaNet (Kunze and Lemnitzer, 2002) cover the core taxonomic relationssynonymy(through
the notion of synsets),antonymyandhypernymy/hyponymy. In the verbal domain,hypernymycor-
responds to the special relationtroponymy(for instance,march – move, mutter – talk).4 These
relations are clearly inferential: for synonymous verbsV1 andV2 and a propositionpv1 based onV1,
we can inferpv2/v1 , i.e., the propositionpv2 that results from substitutingV1 with V2 and vice versa.
Antonymy allows us to infer¬pv2 from pv1 . For hypernymy or troponymy, we can inferpv2 from
pv1 , but we cannot inferpv1 from pv2.

Cutting across these taxonomic relations, which apply to all major open class categories, we find
inferential relations that are specific to verbs. These are based on temporal, causal, or inferential
relations that are grounded in world knowledge about events: temporal inclusion, causation, entail-
mentor presupposition. Temporal inclusion (sleep – snore) differs from troponymy in thatsnoring
is not a special way ofsleepingbut merely an action that may occurwhile sleeping.Causationcan
be considered a special form of entailment that involves a physical or other external force that brings
about a state of affairs:feed – eat, kill – die(Carter, 1976). Finally, we find a broad class of verbs
that lexicallyentailor presupposeone another, such asbreathe – liveor win – play.5 They typically
do not instantiate hierarchically related concepts as in troponymy, but can be characterized as ‘log-

3. In fact, we will excludesynonymylater on, for reasons relating to the specific corpus-based methods we apply.
Nevertheless we include it here, for the general discussionof the inferential properties of lexical-semantic relations.

4. While WordNet (Fellbaum, 1998) makes use of thetroponymyrelation for verbs, GermaNet uses thehypernymy
relation across the different word categories (Henrich andHinrichs, 2010).

5. In what follows we adopt the commonly used convention, as e.g. in Fellbaum (1998), that grounds inferential relations
holding between propositions to their licensing verbs. I.e., we refer to pairs of verbsV1 andV2 that are able to license
entailmentor presuppositionrelations between propositionspv1 and pv2 as standing in alexical entailmentand
presuppositionrelation, respectively.
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ical consequences’ or ‘preconditions’ of each other and aregrounded in real-world knowledge. All
of the latter relations are unidirectional, except for entailment, for which modus tollens holds.6

Selecting target relations for classification. Fellbaum (1998) establishes a hierarchy of infer-
ential relations between verbs that distinguishes four types of lexical entailment:troponymyand
proper temporal inclusion(which both involve a temporal inclusion relation between verbs) are
distinguished frombackward presuppositionandcause(which do not involve temporal inclusion).7

This relation inventory is very fine-grained. In practice itis difficult to discriminate relation
instances along the relevant criteria, such as ‘external force’ for causation, or proper temporal in-
clusion vs. coextensiveness, in order to discriminateproper temporal inclusionfrom troponymy. In
fact, although Fellbaum’s hierarchy distinguishes four relation types,backward presuppositionand
proper temporal inclusionhave been grouped together (Richens, 2008).8

In our approach we adopt a different relation hierarchy (seeFigure 1). We adopt WordNet’s
basic taxonomic relationssynonymy, antonymyand troponymy(as a special class ofhypernymy
in the verbal domain). Unlike WordNet, we rangecausationwith the more generalentailment
relation. Similar to WordNet we groupproper temporal inclusionwith troponymyas they share
inferential properties, but distinguishentailment(inclusive ofcausation) from presuppositionsince
these relations show distinct inferential behavior. The latter two classes differ from the former, as
the verbs are involved in temporal sequence (precedence, overlap or succession).9 This leaves us
with five relations that span a large range of inferential relations: taxonomic and non-taxonomic,
symmetric and asymmetric, that we set out to distinguish using corpus-based classification.

6. We follow the classical definitions forpresuppositionandentailment, as given below:

Presuppositionis defined by Strawson (1950) as follows:

A statementA presupposesanother statementB iff:
(a) if A is true, thenB is true; (b) ifA is false, thenB is true.

Condition (b) is known as the property ofpersistence under negationthat is characteristic for presupposition. The
backward presuppositionrelation in WordNet is based on this definition, and like Fellbaum (1998) we ground the pre-
supposition relation holding between propositions to a lexical relation holding between the presupposition-triggering
verb and the verbal predicate of the triggered presupposition.

Entailment, also referred to aslogical consequence, can be defined as follows:
A semantically entailsB iff every situation that makesA true, makesB true. (Levinson, 1983)

Similar to presupposition we consider only lexical entailment relations holding between verbs that determine entail-
ment between propositionsA andB.

7. Her terminology differs from the one adopted here, with ‘entailment’ being largely equivalent to our use of ‘inferen-
tial’. The structure of the WordNet entailment hierarchy isreproduced below.

entailment

+ temporal inclusion − temporal inclusion

+ troponymy (coextensiveness) − troponymy (proper inclusion) backward presupposition cause
(limp, walk) (snore, sleep) (succeed, try) (raise, rise)

8. By grouping(backward) presuppositionandcausetogether as special forms ofentailment, WordNet collapses two
relation types with clearly distinct inferential properties, especially with regard to negation and cancellation (cf.
Section 1 and below discussion of (5)–(7), p. 289 and Table 2,p. 290). Moreover,causationcan be considered a
special form ofentailment, while in this taxonomyentailmentis not represented as an individuated semantic relation
type.

9. Note that the distinction between proper temporal inclusion and cases of overlap in temporal sequence is difficult.
However, we adhere to this distinction, as introduced by Fellbaum (1998), as indeed we find clear differences in the
inferential properties of these two types of verb relations.
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verb semantic relations

symmetric asymmetric

synonymy antonymy “temporal inclusion” temporal sequence (<, o,>)
(fix, repair) (go, stay)

troponymy (is-a) proper(⊂) entailment presupposition
(mutter, talk) temporal inclusion (buy, own),(arrive, depart) (win, play)

(snore, sleep) (breathe, live)

taxonomic non-taxonomic

Figure 1: Hierarchy of inferential semantic relations, with selected classes printed in bold.

± Temporal Semantic Example Behavior under Negation

Sequence Relation (V1, V2) (V1, V2): Ix : p±v1
cond p±v2

(V2, V1): Ix : p±v2
cond p±v1

Temporal I1: +� + I1: +� +
Precedence Entailment (buy, own) I2: −� +e I2: +� −e

(V1 precV2) I3: −� − I3: −� −
V1 < V2 I4: ¬(+� −) I4: ¬(−� +)

I1: +� + I1: +� +
Entailment (arrive, depart) I2: −� +e I2: +� −e

Temporal I3: −� − I3: −� −
Succession I4: ¬(+� −) I4: ¬(−� +)

(V1 succV2) I1: +� + I1: +� +
V2 < V1 Presupposition (win, play) I2: −� +p I2: +� −

I3: −� −c I3: −� −
I4: ¬(+� −) I4: ¬(−� +)

Temporal I1: +� + I1: +� +
Overlap Entailment (breathe, live) I2: −� +e I2: +� −e

(V1 o V2) I3: −� − I3: −� −
I4: ¬(+� −) I4: ¬(−� +)

Temporal I1: +� + I1: +� +
Inclusion (snore, sleep) I2: −� +p I2: +� −

(Proper T.I. I3: −� −c I3: −� −
& Troponymy) (mutter, talk) I4: ¬(+� −) I4: ¬(−� +)

I1:¬(+� +) I1: ¬(+� +)
Antonymy (love, hate) I2: −� +t.n.d. I2: +� −

− Temporal I3:¬(−� −)t.n.d. I3: ¬(−� −)t.n.d.

Sequence I4: +� − I4: −� +t.n.d.

I1: +� + I1: +� +
Synonymy (fix, repair) I2: ¬(−� +) I2: ¬(+� −)

I3: −� − I3: −� −
I4: ¬(+� −) I4: ¬(−� +)

Table 1: Inferential properties of verb relation types.+/−: positive/negative polarity ofV1/V2.
p indicatesPersistence under Negation; c: Cancellation; e: Exception; t.n.d: Tertium non datur.
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Inferential properties. Table 1 details the inferential properties we find with instances of verb
pairs instantiating the chosen relation types. These properties will establish important criteria for
the automatic classification of verb relations into the target classes.

We discriminate verb pairs (V1,V2) along two dimensions: theirtemporal sequence properties,
in terms of the typical temporal relation holding between corresponding events (or no such relation),
and theirinferential behavior, especially with regard to theirbehavior under negation. Inferences
that are found valid for the different subclasses are evaluated for both directions (i.e., withV1 or V2

as trigger verb) and are specified using modal conditional statements relating propositions involving
the related verbs. We make use of epistemic conditionals forcharacterizing the inferential properties
for different combinations of verb polarities, as the decisions for classification made by human
annotators are best guided in terms of epistemic modal reasoning. In judging inferential patterns for
related verb pairs, subjects consider whether possible situations that support the truth of an event
referred to byV1 will also support the truth of an event referred to byV2.

For each relation type we consider four inferential patterns (I1 to I4) using positive (+) and
negative (−) polarity of the related verbs.10 An (epistemic) conditional thatnecessarily holds true
(pv1 � pv2) corresponds tothe valid inferencethat wheneverpv1 is true in an (epistemically)
accessible worldw, pv2 holds true inw. The weakerexistential reading(pv1 � pv2) is true if there
is at least one (epistemically) accessible worldw wherepv1 is true that also supports the truth of
pv2 . That is, we can conclude frompv1 thatpv2 may hold true or not:pv2 ∨ ¬pv2. ¬(pv1 � pv2)
represents anegative inference, i.e., we cannot concludepv2 from pv1 .

Table 1 shows a clear contrast between symmetric and asymmetric relations. Thesymmetric
relations synonymyandantonymyshow symmetric inference patterns when applying forwards and
backwards inferences (Ix : pv1cond pv2 vs. Ix : pv2cond pv1). For both relation types, the infer-
ences reflect the core logical properties of the respective relations, allowing us to inferpv2 from pv1
for synonymy and¬pv2 from pv1 for antonymy (with obvious variations for different polarities).11

The asymmetric relations(presupposition, entailment, temporal inclusion) all pattern alike in
terms of the forwards and backwards inferencesI1 andI4, which allow us to inferpv2 from pv1 in
forward direction (withI4 the corollary ofI1 in the same direction) and¬pv1 from¬pv2 in backward
direction. In forward direction, all asymmetric relation types permit us to concludepv2 ∨¬pv2 from
¬pv1, yet it is the inference typesI2 andI3 that mark the core of their differences.

The inferential patternsI2 andI3, while superficially similar in forward direction, strictly divide
entailment(E) (in all possible ways of temporal sequencing) frompresupposition(P) andtemporal
inclusion (T), in that for entailment, applying common sense reasoning, we can infer¬pv2 from
¬pv1 as the ‘normal course of things’, while forpresuppositionand temporal inclusionwe can in
general concludepv2 from¬pv1 , in line with the well-known inferential property of presuppositions
that ‘survive under negation’ (Levinson, 1983). That is, the corresponding inferencesI2 for entail-
mentandI3 for presuppositionandtemporal inclusionrepresent exceptional cases forentailment,
and cancellation of presuppositions in the case ofpresuppositionandtemporal inclusion.12

10. The conditional statements used in Table 1 to characterize valid inferences serve expository purposes only. We follow
the definition of conditionals using a standard definition ofepistemic accessibility (see e.g. Gamut (1991)).

11. Note that for antonymy we adopt an idealized situation of‘tertium non datur’, that is, we only consider antonyms
that realize the extreme ends of a scale, and ignore any intermediate values, such asbeing indifferent, for loveand
hate. This assumption affects the inference patterns with negative antecedents for antonymy.

12. I3, in forward direction, with¬V1 as a trigger verb for entailment, represents a typical form of abductive inference
that is subject to cancellation (similar toI3 for presupposition). Karttunen (2012), following Geis andZwicky (1971),
calls such non-monotonic inferences ‘invited inferences’.
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This can be shown by applying a number of paraphrase tests to verb pairs for the various rela-
tions, as illustrated in (5) to (7). The paraphrase pattern in (5) shows thatpv2 can be consistent with
pv1 , but it does not discriminate the underlying differences between the relation types, nor does (6),
which is designed to test for ‘persistence under negation’ as is typical for presuppositions.

(5) You don’t/didn’tV1 but you (have)V2.13

(6) You don’t/didn’tV1, and this is because you didn’tV2 in the first place.14

However, (7), which explicitly refers to exceptional situations that do not correspond to the
‘normal course of events’, clearly establishes thatentailmentrelations are subject to exceptional
conditions that can make the universal conditional fail (7.d–f), while for (7.a–c) the oddity of ‘ex-
ception catching paraphrases’ corroborates the behavior of presuppositionand temporal inclusion
as being persistent under negation in their default interpretation. It is only by explicit cancellation,
as in (6), that¬pv2 can be inferred from¬pv1.

(7)a.–c.# You didn’twin/snore/mutter, so you didn’tplay/sleep/talkor you might haveplayed/
slept/talkedbut something exceptional happened so that you didn’twin/snore/mutter.
(P,V2 < V1; T, V1 ⊂ V2; T, V1 ⊂ V2)

d. You didn’t arrive, so you didn’tdepartor you might havedepartedbut something excep-
tional happened so that you didn’tarrive. (E,V2 < V1)

e. You didn’t buy it, so you don’town it or you mightown it but something exceptional is
the case so that you didn’tbuy it. (E, V1 < V2)

f. He doesn’tbreathe, so he doesn’tlive / isn’t aliveor he mightlive / bealiveand something
exceptional is the case so that he doesn’tbreathe. (E,V1 o V2)

These differences are recorded in Table 1 by marking forwards inferences under negation (I2)
as subject to ‘exceptions’ (e) for all entailmentrelation types (withI2, in backward direction, as
its inverse). In contrast,I2 is marked as the default inference (p: ‘persistence under negation’)

13. Paraphrase instances forpresupposition(P),entailment(E) andtemporal inclusion(T):

(i) You didn’t win, but you haveplayed. (P)
(ii) You didn’t snore, but you haveslept. (T)

(iii) You didn’t mutter, but you havetalked. (T)
(iv) You didn’t arrive, but you havedeparted. (E)
(v) You didn’t buy it, but youown it. (E)
(vi) He doesn’tbreathe, but he (still)lives / is alive. (E)

14. Example (v) is slightly anomalous, but this is not specific to theentailmentrelation, but rather due to temporal
sequence properties, withV2 following V1, which does not conform to this specific pattern.

(i) You didn’t win, and this is because you didn’tplay in the first place. (P)
(ii) You didn’t snore, and this is because you didn’tsleepin the first place. (T)

(iii) You didn’t mutter, and this is because you didn’ttalk in the first place. (T)
(iv) You didn’t arrive, and this is because you didn’tdepartin the first place. (E)
(v) # You didn’t buy it, and this is because you didn’town it in the first place. (E)
(vi) He doesn’tbreathe, and this is because he doesn’tlive / isn’t alive in the first place. (E)
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Inference patterns (V1,V2)
Relation Temp.Rel (V1,V2) Ix : p±v1

opp±v2
Example

I1: +� + I buy – I own
Entailment V1 (<,o,>) V2 I2: −� +exception I don’t buy, but I (still) own
(buy, own) I3: −� − I don’t buy, so I (normally) don’t own

I4: ¬(+� −)

Presupposition V2 < V1 I1: +� + I win – I played
(win, play) I2: −� +persistence I didn’t win but/when I played

Temp. Inclusion I3: −� −
cancellation I didn’t win – because I didn’t play

(snore, sleep) V1 ⊂ / is-aV2 I4: ¬(+� −)

I1:¬(+� +)
Antonymy no temp. seq. I2: −� +tertium n.d. you don’t love – you hate
(love, hate) I3:¬(−� −)tertium n.d.

I4: +� you love – you don’t hate

I1: +� + I fix – I repair
Synonymy no temp. seq. I2: ¬(−� +)
(fix, repair) I3: −� − I don’t fix – I don’t repair

I4: ¬(+� −)

Table 2: Inference patterns and paraphrases for the different relation types.

for presupposition, and similarly for both relation subtypes oftemporal inclusion: proper temporal
inclusion (snore, sleep) andtroponymy(mutter, talk). Conversely,I3 represents the case of ‘cancel-
lation’ (c) for presuppositionand temporal inclusion, whereas it represents the ‘normal course of
events’ forentailment.

Table 2 summarizes these outcomes, by aligning the inference patterns for the main relation
types with the inference paraphrases they support as ‘normal’ or ‘invited’ inferences, or as infer-
ences that must be marked as exceptions.

3.2 Discriminating Properties of Semantic Relations between Verbs

As can be seen from this analysis, the inferential properties of the chosen set of relations are complex
and difficult to distinguish. However, their inferential properties go along with two dimensions:
temporal sequence properties on the one hand and behavior with regard to negation on the other.

Temporal sequence. We observe that the taxonomic lexical semantic relationsantonymy, syn-
onymyandtemporal inclusiontypically do not involve a temporal order. In contrast,presupposition
relations between verbs do involve a temporal sequence. Theevent that is presupposed, being con-
sidered as a precondition, typically precedes the event that triggers the presupposition. The verbs
which stand in anentailmentrelation may or may not involve a temporal succession: the overtly
realized verb can precede or succeed the entailed verb, but we also find events that are temporally
overlapping, such aslive / be aliveandbreath.

Negation. Another important aspect is the behavior of the different semantic relations under nega-
tion. Presuppositionandtemporal inclusionare preserved under negation. This distinguishes them
from entailmentandsynonymywhich do not persist under negation.
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Behavior under Negation

(V1, V2) (¬V1, V2) (¬V1,¬V2) (V1,¬V2)

V1 precedesV2 E (E)e E

Temporal V1 succeedsV2 E (E)e E
Sequence P P (P)c

V1 overlapsV2 E (E)e E

T T (T)c

No temporal A A
sequence S S

Table 3: Properties of the Semantic Relations: P(resupposition), E(ntailment), T(emporal
Inclusion), A(ntonymy), S(ynonymy);e: exceptions;c: cancellation.

In fact, these temporal sequence and negation properties cross-classify and fully distinguish the
selected semantic relation classes. This is schematicallyrepresented in Table 3.

The table reads as follows. We continue to useV1 as a placeholder for the trigger verb and
V2 for the related verb.15 For the two dimensionsbehavior under negationandtemporal sequence
we list the possible instantiations of these relation properties in terms of different combinations of
negated and non-negated verb predicates and the different sequencing possibilities:V1 (typically)
temporally precedes/succeeds/overlaps withV2, or no temporal sequence can be determined. Within
the table fields we record the relation types that support thecorresponding inference patterns.

For thepresuppositionverb pair(win, play), for instance, the event of winning (V1) typically
temporally succeeds the event of playing (V2). P(resupposition) therefore fills the second row. The
presuppositional relation holds in case both events are asserted to hold true. P(resupposition) there-
fore fills the first column, marked(V1, V2). The event of not winning could be interpreted in two
ways: its default interpretation: persistence under negation – you do not win although you’ve been
playing(¬V1, V2), or else cancellation – you did not win because you did not play at all(¬V1,¬V2).
But crucially, winning without playing(V1,¬V2) does not conform with the presuppositional rela-
tion between these verbs, so the respective field remains empty.

For entailmentpairs (E) such as(kill, die) or (buy, own), we note thaty being killed entailsy
being dead(V1, V2), but if y is not killed we do in general not conclude thaty is dead(¬V1, V2) –
unless by considering other possible causes that may not be considered relevant in the situation at
hand. Thus, ify is not killed, we assume as default interpretation that (under normal circumstances)
y is not dead (again – unless from some other cause)(¬V1,¬V2).16

Both cancellation forpresupposition(c) and exceptional cases for inference under negated an-
tecedents forentailment(e) are thus marked as exceptional inference patterns (indicated by brackets)
that we do not assume to find frequently realized in corpus instances.

15. For the symmetric relationsantonymyandsynonymythere is no distinguished trigger verb.
16. This assumption is debatable, as only the inverse relation (¬V2,¬V1) is strictly entailed: ify is not dead,y has

not been killed. However, as discussed above, we include this case as a typical form of abductive inference that is
subject to cancellation as is presupposition whenever we encounter¬V1 as a trigger verb for entailment. Note that
nothing hinges on this assumption regarding the discriminative power of negation properties, as entailment differs
from presupposition regarding persistence under negation.

293



TREMPER ANDFRANK

By examining these temporal and negation properties encoded in Table 3, we find that they can
be used to discriminate the considered semantic relation types:

(i) Presuppositionandentailment(whether or not temporally related) are distinguished on the
basis of persistence under negation, which holds forpresuppositiononly. The same holds for
temporal inclusionvs.entailment.

(ii) Temporal inclusionandpresuppositionbehave alike regarding negation properties, but can be
distinguished in terms of temporal sequencing properties.

(iii) Entailmentbetween overlapping events is difficult to distinguish from(proper) temporal in-
clusionsolely on the basis of temporal properties. But due to their inferential behavior under
negation, they can be clearly distinguished.

(iv) Antonymyclearly differs fromentailmentandpresuppositionwith respect to both properties,
and fromtemporal inclusion, regarding negation properties.

(v) Finally, antonymyandsynonymyare opposites to each other regarding negation properties.

According to this analysis, the observed temporal and negation properties could be used to
discriminate four of the five semantic relation types.Synonymyandentailmentare difficult to dis-
tinguish in cases whereentailmentdoes not involve a temporal sequence. However, as will become
clear below, in our corpus-based classification approach, we will not be able to detect verb pair can-
didates for thesynonymyrelation. Hence, we exclude this relation type for independent reasons and
range it under the classunrelated. The remaining four relation types that will be subject to classi-
fication: presupposition, entailment, temporal inclusionandantonymywill be distinguished from a
fifth class of unrelated verb pairs – which will include synonymous verbs, in case they (accidentally)
are found to co-occur in corpus instances.

3.3 Automatic Classification of Fine-grained Semantic Relations

We pursue acorpus-basedsupervised classification approach to automatically detect and distinguish
candidate verb pairs, given as types, as pertaining to one ofour target semantic relation types. To this
end, we exploit the insights gained from the above analysis that yielded discriminating properties
of these semantic relation types on the basis oftemporal sequenceand negation properties. In
addition, we will employ a third dimension of contextualrelatedness, which records surface-level
contextual relatedness properties of these semantic relations, using indicators such as embedding or
coordinating conjunctions. These relatedness features will be utilized to distinguish semantically
related fromunrelatedverb pairs, as we expect their contextual relatedness properties to be more
diverse compared to semantically related verb pairs. Moreover, contextual relatedness properties
can be useful in cases where temporal or negation propertiesare difficult.

Selecting informative ‘contiguous’ corpus samples. For this approach we collect corpus sam-
ples of verb pairs co-occurring insinglesentences. Even though co-occurrence in a single sentence
bears high potential for the verbs being realized in a close syntagmatic relationship, this is not
necessarily so. We therefore design a set of features that can be indicative of a close syntagmatic
relationship between co-occurring verbs. We will refer to these features ascontiguity features.17

17. Typical configurations of ‘contiguously related’ verbsare illustrated in (i).

(i.a) Replyingto the toast [..], Dr Julia Kingsaidhow privileged the Faculty was to have two active alumni associations.
(i.b) You cansendus your comments by simplyclickingon this email.
(i.c) This allows you toconnectanddisconnecteasily.
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On the basis of a corpus study, we identified properties that can be indicative for contiguously
related verbs in context: the distance between verbs, theiroccurrence in specific grammatical con-
figurations as indicated by dependency relations or conjunctions, and co-referential binding of the
arguments of both verbs. These features will be employed fordetecting contextual contiguity of verb
pairs in specific contexts, and used to select context samples for classification that are informative
for sub-classifying the semantic relations – including theunrelatedclass (see Section 5.3.2).

Detecting type-based features for classification. Our classification aims at assigning relation
classes toverb pair types, and thus the feature vectors employed for classification must be defined
accordingly at the type level. The temporal and negation properties we established as being dis-
criminative for the chosen set of relations are equallytype-based. That is, they express properties
we can identify in individual context samples, but not necessarily in all of them. In a corpus-based
approach, we need to capture suchtype-basedproperties on the basis of individual classifications
at the level of corpus samples, by observing and generalizing the information found with individual
corpus samples. For our main classification features, this will be obtained in the following ways.18

In order to predicttemporal sequenceproperties as a type-level feature, we detect the temporal
relation holding between individual verb pair occurrencesand compute the most prevalent temporal
relation type for a given verb pair on the basis of these classifications, by applying an association
measure such as point-wise mutual information (PMI).

For determining thebehavior of inference under negationwe need to detect instances of all
possible verb polarity combinations〈±V1,±V2〉 for different verb pairs in context. That is, we
extract the information whether both verbs have positive/negative polarity, or whether the first verb
has positive/negative polarity and the second verb has negative/positive polarity.

From this token-level information we compute the probability for eachpolarity combination
for any given verb pair. The obtained probabilities can be mapped to the negation properties of
relations as displayed in Table 3, where low probability of apolarity combination corresponds to
unavailable or exceptional cases, and high probability manifests attested inference possibilities,
under the respective relation.

In order to obtain type-basedrelatednessfeatures, we raise twocontiguity features to the type
level: verb distance and relating conjunctions. Information about the average distance between
verbs is crucial for distinguishing related and unrelated verb pair types. The distribution of con-
junctions relating certain verb pairs can contribute indicative information for distinguishing specific
semantic relations (e.g.,antonymyor temporal inclusion), or may indicate that the verbs are (prob-
ably) unrelated. Finally, we measure the association between specific verb pairs on the basis of
co-occurrence information manifested in a corpus, using PMI as association measure and use its
strength as a type-based relatedness feature.

Supervised classification using manually labeled verb pairs (at the type level). We are going
to perform supervised type-based classification using type-based feature vectors. That is, we need
a training set of verb pairs annotated with the appropriate semantic relation (or the classunrelated)

18. Detailed description of the features employed for classification is given in Section 5.2.
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on the type level, i.e., for verb pairs out of context, and accordingly, we need a gold standard data
set of unseen annotated verb pairs19 that can be used for testing.

Features for the type-based classification will be acquiredfor each verb pair in the training set,
and similarly for the test set, using evidence gained from corpus sentences involving verb pairs that
have been determined as beingcontiguouslyrelated. The features indicating the respective relation
properties are acquired from the corpus samples and raised to the type level, as described above.
In our experiments, the corpus samples will be drawn from a large web-based corpus, the ukWaC
corpus (Baroni et al., 2009). At this step we excluded the synonymy relation, as even in such a large
corpus, synonymous verbs usually do not occur contiguouslyin a single sentence.

Establishing annotated training and testing data sets. In order to build appropriate training and
testing data sets, we cannot make use of existing resources such as WordNet or VerbOcean, as they
assume different inventories of semantic relations (see Section 3.1). We thus designed an annotation
task for our target relation set, to construct training and testing data for the classification.

4. Challenges of Annotation

Annotating semantic relations, especially the relationspresuppositionandentailment, is a difficult
task because of the subtlety of the tests and the involved decisions. In order to obtain reliable anno-
tations it is important to define the task in an easy and accessible way and to give clear instructions
to the annotators.

For an initial annotation study we randomly selected a smallsample of 100 verb pairs for anno-
tation. A further set of 250 verb pairs were annotated in a revised, question-based annotation setup.
The resulting annotated data sets were used as development and gold standard test sets, respectively,
for evaluating automatic semantic relation classificationin Section 5. The verb pair candidates for
annotation were chosen from the DIRT collection (Lin and Pantel, 2001), a collection of automati-
cally acquired semantically related verbs (see Section 2, p. 284).

4.1 Initial Annotation Strategies

As a first take, we formulated two complementary annotation tasks: one was applied to verb pairs
given as types out of context (type-based annotation) and another was applied to verb pairs pre-
sented in context (token-based annotation). We analyzed the difficulty of annotation in the respec-
tive annotation setups and examined to what degree these results correlate. In order to analyze
the difficulty of annotation we gave each task to two annotators and computed the inter-annotator
agreement between them.20

4.1.1 TYPE-BASED ANNOTATION

In this setup the verb pairs were presented to the annotatorswithout context. Since some verbs can
have more than one meaning and consequently verbs in a given verb pair can stand in more than one
semantic relation, the annotators were allowed to assign more than one relation to each verb pair.

19. We restrict the notion of ‘gold standard’ data set to the subset of manually annotated verb pairs that we use for testing.
20. The annotators are trained computational linguistics students. They are native speakers of German with a high level

of proficiency in English. The pairs of annotators which tookpart in the different annotation tasks are not always
the same. Only one student has taken part in both tasks and herannotations were taken to analyze the correlation
between the different annotations.
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Semantic Relation Pattern Example Substitution in pattern

Presupposition V1 presupposesV2, win – play winningpresupposesplaying
notV1 presupposesV2 not winningpresupposesplaying

Entailment V1 impliesV2, kill – die killing impliesdying
notV1 doesn’t implyV2 not killing doesn’t implydying

Temporal V1 happens duringV2 or snore– sleep snoringhappens duringsleeping
Inclusion V1 is a special form ofV2 mutter– talk mutteringis a special form oftalking

Antonymy eitherV1 or V2, go– stay eithergoingor staying
V1 is the opposite ofV2 goingis the opposite ofstaying

Other/unrelated none of the above jump– sing

Table 4: Semantic Relations and Inference Patterns for Annotation.

To support the annotators in their decisions, we provided them with a couple of inference pat-
terns and examples for each semantic relation. This is shownin Table 4.

The inter-annotator agreement (IAA) for this task was 63% corresponding to a Kappa21 value
of K = 0.47. This can be taken as an indication of high difficulty when annotation of these semantic
relations is performed out of context.

4.1.2 TOKEN-BASED ANNOTATION

In a complementary setup, we tried to simplify the task by providing the annotators with verb pairs
in their original contexts, consisting of single sentences. For this token-based annotation we chose
the same 100 verb pairs and randomly selected 5 to 10 contextsfor each of them (there were 877
contexts overall). In contrast to type-based annotation, we only accepted a single relation label for
a given verb pair.

The inter-annotator agreement for this task was IAA = 77.4%,corresponding to a Kappa value of
K = 0.44. Error analysis showed that the most important problems are not due to semantic relations
which are difficult to distinguish (e.g.,presuppositionandentailment), but rather in determining
whether or not there is a specific semantic relation between two verbs in a given context, i.e., the
distinction between the ‘unrelated/other’ in contrast to the remaining semantic relation classes.

4.1.3 TYPE-BASED VS. TOKEN-BASED ANNOTATION

We examined the correlation between type- and token-based annotations by comparing the anno-
tations of a single annotator for both annotation tasks.22 We chose only one annotator for this
comparison, because we wanted to analyze how the decisions of one and the same annotator were
affected by the different annotation setups.23 For 62% of the verb pair types we observe an over-
lap of labels, 28% of the verb pair types were assigned labelson the basis of the annotations in
context which were not present on the type level, or else the type level label was not assigned in
context, because of the small amount of contexts for a verb pair. For 10% of verb pair types we

21. Cohen’s Kappa; see Cohen (1960).
22. Only one annotator has taken part in both annotation tasks.
23. Since in the initial task settings no translation of verbpairs was involved (cf. Section 4.3), it was not possible to trace

such differences across annotators.
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found conflicting annotations (e.g.,presuppositionandentailment). Thus, for the most part (62%)
the type-based annotation conforms with the ground truth obtained from token-based annotation.
An additional 28% of verb pairs can be considered to be potentially correct. The divergences for
these verb pairs could be explained by the random procedure of context extraction which does not
always return appropriate contexts. They can also be explained by the difficulty for the annotator to
consider all possible verb meanings for highly ambiguous verbs in type-based annotation.

4.2 A Question-based Annotation Strategy using Prototypical Arguments

Our analysis of the two annotation setups clearly shows thatboth are difficult, yet in different ways.
Annotation on the type level is difficult because no indication is given about the intended meaning
of the verbs. Hence the annotators need to consider all possible combinations of meanings for any
pairing of verbs. On the other hand, presenting the pairs in their original context does not make the
decision much easier. This is because some sentences involve complex structure and interpretation
difficulties, which require a lot of attention and time to annotate the individual examples. In general,
the inference patterns offered to the annotators as decision criteria are rather involved, so they
are sometimes difficult to check – with or without context. A general drawback of token-based
annotation is that it is difficult to sample appropriate contexts for a balanced annotation set across
the different relation types, and that annotation is necessarily time-consuming and expensive.

In order to render the annotation task more reliable and lesstime-consuming, we need an anno-
tation strategy that includes the positive elements of bothannotation strategies described above and
that better supports the annotators in deciding on the applicability of the inference patterns.

Prototypical arguments in type-based annotation. One solution that captures positive aspects of
type- and token-based annotation could be to have annotators considerverb pairs with prototypical
argumentsinstead of offering them concrete sentences as disambiguating contexts. The argument
abstractions could be represented by selectional preference classes. This offers the annotators hints
on relevant readings to consider without them having to readand understand involved discourse
snippets. At the same time, with a single reading of the verb in focus, the annotators do not need
to consider and check pairs of verbs with multiple readings.Evidently, annotation will proceed
much quicker if it can be performed at the type level, even if different interpretation variants must
be considered, based on selectional preference classes.

Question-based annotation. In order to support annotators in the verification of complexinfer-
ence patterns, we develop aquestion scenarioto collect annotations. The idea is to guide the anno-
tator step by step through the discriminative categorizingproperties, in particular temporal sequence
and behavior under negation, using a cascade of case-adapted questions tailored to the verb pairs
under investigation. The questions elicit the critical pieces of information needed to sub-classify the
verb pair in question, according to the properties of relations displayed in Table 3.

A set of cascaded questions guide the annotator through all relevant decision criteria, where
each question elicits only three possible answers:Yes / No / Maybe. In general, each annotation
instance will be decided by three such consecutive questions. The collected answers can be used to
distinguish between the target semantic relations and thusto annotate the data.

We pursued both strategies: the use of prototypical arguments and question-based annotation,
and applied them jointly in a third annotation task. Examining the annotation quality obtained, we
achieve considerable improvements, with an acceptable degree of inter-annotator agreement.
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verb pairs with prototypical arguments semantic relation

miss(PERSON, PERSON) – catch(PERSON, PERSON) UNRELATED(miss, catch)
miss(PERSON, TRAIN) – catch(PERSON, TRAIN) ANTONYMY (miss, catch)

Table 5: Enriching verb pairs with prototypical arguments.

Expert vs. non-expert annotation. Our annotators are trained computational linguistics students.
Since annotation is time-consuming and expensive, an obvious question is whether this simplified
annotation setup – with annotation decisions broken down into more basic units – can make this
difficult annotation task accessible for non-expert annotation. If so, we could collect larger sets of
annotations using crowd-sourcing (Munro et al., 2010). We will therefore compare the annotation
quality obtained from linguistic experts to non-expert annotations.

4.2.1 INTEGRATING PROTOTYPICAL ARGUMENTS IN TYPE-BASED ANNOTATION

Our analysis of problems in type-based and token-based annotation clearly showed that a general
problem is the difficulty to capture verb interpretation dueto the ambiguity of verbs. The clas-
sification decisions crucially depend on verb interpretation and thus need to be controlled in the
annotation task. Further, we need to make sure annotators consider all relevant readings. Both
aspects are difficult to control in type-based annotation. In token-based annotation, annotators are
often confronted with shades of meaning influenced by the specific context, which make decisions
too case-specific and erroneous.

We thus opt for a type-based annotation scheme that allows usto abstract away from concrete
contexts and that at the same time allows us to control for verb ambiguity. This is achieved by
offering prototypical arguments of the verbs, in terms of selectional preferences computed from
corpora. The presentation of the verb pairs along with prototypical arguments helps the annotators
focus on specific readings of the verbs, and thus avoid inconsistent annotations.

An example is given in Table 5 for the verb pairmissandcatch. When annotating this verb pair
without context, two readings ofmissmay be considered:miss (1): feel or suffer from the lack of
andmiss (2): fail to reach or get to. For the first reading, the annotator should determine the label
unrelated, while for the second reading,antonymywould be the appropriate label.

Without control of context, the annotators could miss one orthe other reading, and we cannot
trace which reading motivated the provided labels. Presenting the verbs with prototypical arguments
as generalizations directs the annotators to the appropriate interpretation and they can determine the
corresponding label. Since we record the arguments provided with the verbs, this kind of sense dis-
crimination is available for both the learning and the classification process. It will also be crucial for
inference in context, as it allows us to restrict inference of implied verb meanings to the appropriate
interpretation of the trigger verb in a given context.

For the computation of prototypical arguments of verb pairs, we apply Resnik (1996)’s approach
for computing selectional preference scores for verb arguments. With this we determine preference
semantic classes as prototypical arguments insubject, objectandprepositional objectfunction.

Computing selectional association scores for verb pairs.Resnik (1996) proposes an information-
theoretic measure to compute aselectional association scorebetween a predicatepi and a semantic
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classc that fills an argument ofpi as given in (8).24 He definesselectional preference strength
S(pi) as the amount of information provided by the predicatepi for the posterior probability of
co-occurring with some argument classc, compared to its prior probability. Given this measure, he
computes theselectional association scorebetween a predicate and a given particular classc by its
relative contribution to the predicate’s overall selectional preference strength.

(8) A(pi, c) =
P (c|pi) log

P (c|pi)

P (c)

S(pi)

with S(pi) =
∑

c P (c|pi) log
P (c|pi)
P (c)

Since we are dealing with pairs of verbs, we slightly modify this measure to reflect the associa-
tion of a classc with both verb predicatespi andpj, as stated in (9).

(9) A(pi, pj, c) =
P (c|pi,pj) log

P (c|pi,pj )

P (c)

S(pi,pj)

with S(pi, pj) =
∑

c P (c|pi, pj) log
P (c|pi,pj)

P (c)

We computed selectional preference scores for all verb paircandidates offered to the annota-
tors, using the adapted measure in (9).25 Prototypical arguments were selected manually from the
arguments with the highest scores.26

Controlling interpretation choices in the annotation task. Having computed prototypical (pref-
erential) argument classes for given verb pair candidates,these can be presented to the annotators
as illustrated in Table 5.

However, in a number of cases prototypical arguments are notsufficient to clearly discriminate
predicate interpretations. In order to detect such cases, we asked the annotators to translate the
predicates into their mother language (if possible).27 Examples of diverging interpretations are given
in Table 6, together with the labels the annotators assignedfor the interpretations they perceived.

Differences in translations were inspected manually. In case of divergences of interpretation,
we not only record the actual interpretations chosen by the annotators, but also let the annotators
re-annotate such verb pairs using the interpretation of their companion annotator as a constraint.
This way we collect annotations for a maximum number of readings.

4.2.2 QUESTION-BASED ANNOTATION FOR CLASSIFYING SEMANTIC RELATIONS

The complex inference patterns that need to be considered inorder to distinguishentailment, pre-
supposition, temporal inclusionandantonymymake the annotation difficult and error-prone. We
therefore devise a question-based annotation setup that breaks down these complex annotation de-
cisions into more basic units that are easier to decide. In a step-wise manner we elicit answers that

24. Semantic classc is taken from a conceptional taxonomy. In our work we chose WordNet (Version 3.0) as used in the
NLTK implementationhttp://nltk.org.

25. Probabilities were estimated from Sections 1 to 3 of the parsed ukWAC corpus (Baroni et al., 2009). Parsing was per-
formed using the Stanford Parser V1.6.4,http://nlp.stanford.edu/software/lex-parser.shtml.

26. We opted for manual selection for the time being, in ordernot to introduce noise into the annotation process.
27. In our experiment the annotation was done for English by native speakers of German, hence translation was to

German. Translation could also be into some other language (distinct from the language of the annotation task) as
long as it is the same for both annotators.
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Verb pair review(PERSON, MATERIAL ) – teach(PERSON, PERSON)

Annotator TranslationV1 TranslationV2 Relation Assigned

A1 bewerten (critique) unterrichten (teach)UNRELATED(review, teach)
A2 wiederholen (reexamine) unterrichten (teach)TEMP. INCLUSION(review, teach)

Verb pair cry(PERSON) – be scared(PERSON)

Annotator TranslationV1 TranslationV2 Relation Assigned

A1 schreien (yell) erschrecken (be scared)TEMP. INCLUSION(cry, be scared)
A2 weinen (weep) sich fürchten (be afraid) UNRELATED(cry, be scared)

Table 6: Capturing sense distinctions through translationto German.

guide the annotators towards a classification using the discriminative properties we established in
Section 3: properties oftemporal sequenceandbehavior under negation.

This question-based annotation scheme naturally extends the enhanced representation of verb
pairs using prototypical arguments. In fact, it is dependent on this novel representation. Using
appropriate placeholders, we generate skeleton sentencesfor the target predicates and their proto-
typical arguments. These are presented to the annotators, and help them check and decide on the
different relation properties that hold for the generated phrases. This novel presentation scheme can
thus be considered a compromise between the context-less type-based annotation and the context-
rich token-based annotation setups examined in Section 4.1.

Our method is best illustrated using an example. Figure 2 displays questions and answer possi-
bilities for annotating the verb pairlearn– speak. Using Resnik’s selectional association scores, we
determinePERSONandLANGUAGE as prototypical argument classes for this verb pair. From these
abstract representations including predicate, prototypical arguments and prepositions, we generate
sample phrases, as seen in questionQ0.28 Here we elicit translations to German for the given verbs
in their typical argument context, to record the interpretations perceived by the annotators.

QuestionQ1 is designed to determine the temporal order in which the events typically occur.
This question is offered in two ways: by generating the two verb phrases in the respective orders with
appropriate temporal conjunctions (and then; at the same time). These options are supplemented
with the corresponding fine-grained temporal relation types of Allen (1983)’s classification.29 We
target a coarse three-way distinctionbefore, afterand during that each encompasses several of
Allen’s relations. This was determined sufficient for classification and necessary for annotation,
given that the annotators also consider borderline cases. Using the graphical representations of these
relations, we defined a mapping from Allen’s relations to three coarse temporal relation classes that
we offered to the annotators (cf. Appendix II).30

28. In order to generate natural phrases, we substitute someabstract classes likePERSONwith proper names such as
John, or LANGUAGE with Spanish.

29. The annotation interface allows easy access to an overview of the relation inventory (cf. Appendix I). We employed
in particular the graphical representation of Allen’s relations, which proved to be very helpful for the annotators in
order to decide on the appropriate relation.

30. Note that the coarse temporal relations ‘before(X,Y)’ and ‘after(X,Y)’ include the respective overlap conditions
where Y overlaps with the preceding/following X, whereas weassign ‘during(X,Y)’ for all cases where X is fully
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Q0: // Characterizing the interpretation of the events: //
Please give a translation for the verbslearnandspeakin these readings:
X: John learns Spanish. translation:
Y: John speaks Spanish. translation:

Q1: // Determining the temporal order of events: //
What is the typical order of the following events?
a) John learns Spanish and then he speaks Spanish. X before Y: {m, o,<}
b) John speaks Spanish and then he learns Spanish. X after Y: {mi, oi,>}
c) John learns Spanish and he speaks Spanish at the same time.X during Y: {s, si, f, fi, d, di, =}
d) More than one order of events is possible.
e) Not sure (difficult to define)

Q2: // Determining negation properties: X and Y? //
John learns Spanish. Will he speak Spanish?
a) Yes (X and Y)
b) No (X and¬Y)
c) Maybe (X and Y or¬Y) – Persistence under Negation→ presupposition

Q6: // Determining negation properties:¬X and Y? //
John does not learn Spanish. Will he speak Spanish?
a) Yes (¬X and Y)→ none
b) No (¬X and¬Y) – Cancellation→ presupposition
c) Maybe (¬X and¬Y or Y) → none

Result:PRE(SPEAK,LEARN)

Figure 2: Annotation questions for the verb pairlearn – speak.

The next set of questions is designed to elicit inference properties with respect to negation. The
verb pairs are presented in sentence pairs consisting of a declarative statement involving the first
verb and a subsequent question involving the second verb. This pair inquires whether the second
sentence can be assumed to hold true given the first one is considered true.31 In case the annotator
has selecteda) X before Y, Q2 will be chosen as a follow-up question, querying the dependence of
Y (= speak)’s truth on X (= learn) holding true:X and Y?. Here the annotator may chosea) Yes:
X and Y If you learn a language, you will (be able to) speak it. But more realistically, he or she
should choosec) Maybe: X and Y/¬Y You may or may not be able to speak the language after
having studied it.If the latter option is taken, the relation will be a candidate for presupposition
(PRE(Y=SPEAK, X=LEARN)) as answer c) establishes persistence under negation. At the same time,
answer c) excludesentailment(ENT(X=LEARN, Y=SPEAK)).32 Given answer c) is selected forQ2,
we further check inference regarding the negation of X. Thisis done in questionQ6: ¬X and Y?.

included in Y’s interval. These three coarse temporal relations are intended to correspond to the relations ‘precedes’,
‘succeeds’ and ‘overlap’ for temporally related events as used in Table 1, p. 287.

31. The order in which X and Y are presented as well as their temporal inflection is dependent on the answer to question
Q1. Note further that depending on the relation being considered, X and Y may change roles in being considered as
trigger verbs, which fill the first argument of the relation.

32. This judgement is dependent on an interpretation oflearn as a non-accomplished process, in the meaning ofstudy.
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Figure 3: Decision Tree for Question-based Annotation
Pre(supposition), Ent(ailment), T(e)mp(oral Inclusion), Ant(onymy), UnR(elated).

Here, answerb) No: ¬X and ¬Y (i.e., if you don’t learn a language, you will not speak it) indicates
that cancellation of the presuppositionX=learn is valid if Y=speakis false.

Overall, the three consecutive questions displayed in Figure 2 establish the pairspeak – learn
as an instance of presupposition, under an interpretation of learning as a process.

An annotation decision tree. By extending this method to the full inventory of the targeted rela-
tion types, we establish a question-based annotation scenario that takes the form of a decision tree,
as displayed in Figure 3. We are able to differentiate the fiverelations using – in the default case –
three questions per verb pair, by exploring their semantic properties, as summarized in Table 3.

The first questionQ1 clarifies the temporal sequence properties of the examined verb pair. The
answer to questionQ1 also determines the order in which the consecutive tests forinference under
negation are presented, e.g.,Q3 presents X and Y in a different order. This way we capture all
relevant orders of verb pairs for the temporally sensitive relation typespresuppositionandentail-
ment, in response to the temporal sequence properties detected in Q1.33 QuestionsQ2 to Q5 (all
at the same level of depth) follow the very same pattern. Yet,they are dependent on the temporal
properties established by the answer to questionQ1, so the answers to these questions differ in view
of the relation types they may indicate. Similarly, questionsQ6 to Q8 are structurally equivalent,
but given their dependence on the previous questions and answers they will trigger case-specific
conclusions as to the predicted relation type.

It should now be clear from the structure of the tree that for averb pair such asbuy – ownwe
will obtain the classificationENT(BUY,OWN) by the following chain of questions and answers:

(10) Q1: which order? a)X before Y
→ Q2: X and Y? a) Yes:X and Y
→ Q6: ¬X and Y? b) No: ¬X and ¬Y34

33. For instance, the verb pairwin andplay cannot be classified aspresuppositionwith the verbs presented asX=win,
Y=play. This case is captured by response b) to questionQ1, so that the inverted verb pair relation can be tested by
Q3 (the mirror ofQ2), using inverted roles of X and Y.
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QuestionsQ2 andQ3 and their follow-ups are triggered by verb pairs that involve a temporal
sequence. They must be checked in both order variants to determineentailmentandpresupposition
relations irrespective from the order in which the verb pairs are presented (see footnote 33). Ques-
tionQ4 discriminatesentailmentandtemporal inclusionby testing persistence under negation, sim-
ilar to what is done forpresupposition. Thus, we can establishsleep – snoreasTMP(SNORE,SLEEP)
vs. live – breathasENT(LIVE ,BREATH). Antonymyis established for verbs that are not assumed to
occur in sequence or concurrently, through answer d) toQ1, which yields the value ‘undefined’ for
temporal sequence. Here it seems sufficient to test for complementarity, brought out by answer b)
No toQ5: X and Y? for verb pairs such aslove – hate.

Additional questions for antonymy. For some verb pairs questionQ1 yielded annotation differ-
ences depending on whether the annotators considered a syntagmatic or paradigmatic relation be-
tween the verbs. This was encountered in particular for verbpairs that qualify for bothantonymyand
presuppositionrelations, such asopen – close, connect – disconnector accelerate – slow (down).
Therefore, we designed an additional question for the annotators, in case we encountered that one
of them had annotated a pair withantonymy, while the other did not. The additional questions pre-
sented to the annotator that did not annotate antonymy in thefirst place (here, Annotator 1) now
focus explicitly on the antonymy relation. In case Annotator 1 answers both questions withNo, the
verb pair will be annotated asantonymy.

(11) Additional questions targetingantonymy:

Annotator 1 PRE(SLOW,ACCELERATE)
Annotator 2 ANT(SLOW,ACCELERATE)
→ QAnt1: The car slows down. Does this car accelerate?
→ QAnt2: The car accelerates. Does this car slow down?

Additional questions for backward entailment. In some cases the entailment relation between
verbs can be symmetric, as for the pairdepart – arrive. Such pairs should be annotated as en-
tailments in both directions. Given the way we set up our hierarchical annotation scheme, each
verb pair will only be assigned a single label. Therefore, wedesigned additional questions for the
annotators, to identify cases of symmetric entailment. These questions take the same form as the
original questions (12), but the temporal order is reversed. The answersYes to the first question
and No to the second question in (13) assign the backward entailment relation to the verb pair
ENT(DEPART,ARRIVE).

(12) Standard questions targetingentailmentgenerated by the annotation system:

ENT(ARRIVE,DEPART)
Q1: which order? John departs and then John arrives

(X after Y )
→ Q3: John departs. Will he arrive? a)Yes
→ Q7: John doesn’t depart. Will he arrive? b) No

(13) Additional questions targetingbackward entailment:

→ QEnt1 (= Q2): John arrives. Did he depart? Yes
→ QEnt2 (= Q6): John doesn’t arrive. Did he depart?No

34. Following our argumentation in Section 3, we ask the annotators to consider the case of ‘what normally holds’ in a
situation if¬X holds true and to disregard exceptional cases that are not relevant for the situation considered.
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Annotation interface. In order to hide the complexity of the decision process from the annotators,
this decision tree was implemented in a web-based annotation interface that presents the annotator
with novel questions depending on the answers given to the previous question. The annotators
were given the possibility to go back and inspect or revise the answers given to previous questions.
Displays of the annotators’ views for the basic question types are given in the Appendix.

Annotation quality. We evaluated the quality of annotation using this question-based annotation
scheme, using 250 verb pairs selected from the DIRT collection.35 As the novel annotation scheme
is considerably simplified, we also tested it with non-expert annotators.

For the two expert annotators we obtained an inter-annotator agreement (IAA) of 72% with
a Kappa value ofK = 0.64. This is considerably higher compared to the annotation quality we
obtained using standard type- or token-based annotation.36

This result clearly indicates that the annotation task could be dramatically simplified, with a
large improvement of inter-annotator agreement. However,the decisions to be made still seem too
complex for non-expert annotators: we observe poor agreement between the non-expert annotator
and either of the expert annotators: IAA = 60%,K = 0.46 and IAA = 64%,K = 0.49. Thus,
addressing this annotation task by crowd sourcing to non-experts does not seem to be an option in
its current design.

The distribution of the semantic relations in the final annotated data set is more or less equal.
Temporal inclusionis slightly under-represented (15%);entailmentandother/unrelatedare slightly
over-represented (23% and 25%).37

5. Classification of Fine-grained Semantic Relations between Verbs

This section describes the classification architecture, employed feature sets and classification ex-
periments for sub-classifying fine-grained semantic relations including presupposition. The perfor-
mance of the classifiers is evaluated against the gold standard annotation set obtained using question-
based annotation, as described in Section 4. As a reference for the subsequent description, Figure 4
summarizes the classification architectures and feature sets for the experiments described below.

5.1 Classification Method

Our aim is to acquire verb pairtypesthat stand in a particular semantic relation from our selected
relation inventory:presupposition, entailment, temporal inclusionandantonymy(Section 3). The
lexical knowledge acquired in this way will be used to enrichtextual occurrences of individually
occurring trigger verbs with inferences on the basis of the learned verb relations.

For this purpose we build a classifierCdiscr that automatically sub-classifies the relations hold-
ing between verb pair candidates into five classes: the four selected semantic relation types and a
fifth class that captures verb pairs that stand in no or some other semantic relation not considered
here. To classify the verb pairs according to our relation inventory we calculate type-based distri-
butional features and use a supervised classification algorithm to build the model. The type-level

35. This set is distinct from the annotation set used in Section 4.1. The annotation set produced in these initial experiments
was used as development set in the classification experiments reported in Section 5.

36. We did not perform separate evaluations of the impact of prototypical verb arguments and the break-down of annota-
tion decisions in the question-based setting, due to the considerable annotation overhead this would have caused.

37. This does not reflect the natural distribution of these relations, due to some amount of pre-selection for the under-
represented classes.
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Sample selection:Ccntg: labels contiguous ([+contiguous]) corpus samples for feature extraction.

fpath−len, fpath: length and form of path of grammatical functions betweenV1 andV2

fcoref : coreference relation holding between subjects/objects of V1 andV2

fdist−tok, fdist−verb: distance betweenV1 andV2 (in tokens and verbs)
fconnectives: conjunction or direct grammatical function connectingV1 andV2

Type-based classification:Cdiscr : X → Y assigns classification instancesX consisting of pairs
of verb types (V1,V2) one labelR ∈ Y.

Flat: Classify instancesx ∈ X into 4 core relation types plus ‘U(nrelated)’:Y = { E, P, T, A, U}.
Instance setX : verb pair typesx ∈ X (selected from DIRT (Lin and Pantel, 2001)).

Hierarchical: 1st-stageCrel: Crel classifies all input verb pairsx ∈ X as [± related]:
[−related] if cnt([+contiguous])< cnt([−contiguous])

& temprel =undefined
[+related] otherwise.

2nd-stageCdiscr: Cdiscr classifies verb pairsx ∈ X classified as [+ related] byCrel

Target classesY ∈ { E, P, T, A}.

Feature vectors for classifierCdiscr in flat (5-way) and hierarchical (4-way) classification:

Compute feature vectors~fx = 〈f0, f1, . . . , fn〉 for all verb pair typesx ∈ X :

feature type feature flat hier.

typical temp. rel. f0: V ∈ { before, during, after, undef} X X

polarity pairs f1 – f4: P (〈±V1,±V2〉 | V1, V2) X X

f5: average distance betweenV1 andV2 in tokens X –
relatedness f6: PMI for V1 andV2 in verb pairs (V1, V2): PMI(V1, V2) X –

f7 – fn: cond. prob. for conjunctionsci: P (ci | V1, V2) X X

Baselines:
Cdiscr classifier:fconj: f7 – fn: conditional probability of conjunctionsc given (V1, V2)
Crel classifier:fconnectives: conjunction or grammatical function relatingV1 andV2.

Figure 4: Summary of Classification Architectures and Feature Sets.

feature vectors are calculated on the basis of a training setof corpus instances, i.e. sets of sentences
involving pairs of verbs that are annotated on the type levelfor the relation that constitutes the clas-
sification target. The classifier learns weights for the features on the basis of the annotated training
data and makes predictions for unseen verb pairs using the learned model. The performance of the
classifier is tested against the set of verb relation labels defined in the gold standard data set.
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Classifier definition. We definea type-based classifierCdiscr: X → Y that receives as input a set
of instancesx ∈ X of verb pair types(V1, V2) and a set of the feature vectors~fx = 〈f1, f2, . . . , fn〉
calculated for any verb pairx under consideration.C returns one of the target class labelsR ∈ Y.

We experiment with two classification architectures:flat andhierarchical classification.
In the flat classificationarchitecture, the classifierCdiscr distinguishes all five relation types

including theunrelatedclass. Inhierarchical classificationwe first partition the instance set of
candidate verb pairs into two classes:relatedvs.unrelated, with the first class covering the four se-
lected semantic relationsP(resupposition), E(ntailment), T(emporal Inclusion)andA(ntonymy). In
a second classification step,Cdiscr performs 4-way flat classification for these four relation classes,
taking as input the verb pair candidates that were classifiedas [+ related] by the first stage classifier.

Detailed information on the setup of these architectures isgiven in Sections 5.3.4 and 5.3.5.

5.2 Features for Classification

The discriminative semantic relation classifierCdiscr relies on the three groups of features motivated
in Section 3.2:temporal sequence, behavior under negationandcontextual relatedness.

5.2.1 TEMPORAL SEQUENCE

Our analysis of relation properties (cf. Table 3) reveals that some of our target semantic relations
involve a typical temporal order, while others do not. We make this property available for dis-
criminative classification by defining a type-based featuretypical temporal orderwhich records the
temporal relation that can be considered typical for a givenverb pair. We distinguish three basic
temporal relationsbefore, after andduring, plus undefined, in case no typical temporal sequence
can be determined. We obtain this information from a (token-based) temporal relation classifier.

Detecting and classifying temporal relations holding between verbs in context is a difficult
task.38 In contrast to theTempEvalchallenges (Verhagen et al., 2010), we use a coarse relation
inventory that is sufficient for our purposes. Moreover, as our aim is to predict type-level temporal
relation properties, we will rely on a subset of confident, i.e., reliable, token-level classifications.

A token-based temporal relation classifier. For token-based temporal relation classification we
define a variety of morpho-syntactic and semantic features,including tense, aspect, modality, aux-
iliaries, conjunctions, grammatical function paths, adverbial adjuncts, order of appearanceand
VerbNet classes (same/subsumed or different).39 40 This extends the feature set used by Chambers
et al. (2007) for temporal relation classification in context.

We built a token-level temporal relation classifier that we trained on a set of manually annotated
contexts, 200 contexts for each relation, using the three target temporal relations. Using the above
feature set we trained a 3-way BayesNet classifier41 for classification on the token level, with the
target classesbefore, afterandduring. We evaluated this classifier using a set of manually annotated
contexts, 20 contexts for each relation and achieved an F1-score of 84.3% on this set.42

38. See e.g. Chambers et al. (2007), Bethard and Martin (2007), Lee (2010).
39. The VerbNet class feature is used as an indicator of temporal inclusion, in particular for the troponymy relation.
40. We use all VerbNet classes except forOTHERCOS-45.4, which includes many opposite verbs, e.g.accelerate, slow.
41. We use the BayesNet algorithm implemented in Weka (Witten and Frank, 2005).
42. It is difficult to compare the performance of this specially designed temporal relation classifier to results reported

on the TimeBank corpus, because of the different temporal relation inventories used: while we are using a coarse
set of relations, the relation set used in the TempEval challenges is more fine-grained (it distinguishes 6 relations).
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Predicting a type-based ‘typical’ temporal relation. We predict a type-based ‘typical’ temporal
relation for any pair of verbs, relying only on confident token-level classifications (threshold 0.75).
The score for each relation is computed as the association between a verb pair (V1, V2) and the
assigned temporal relation instances in context, by applying PMI (point-wise mutual information):

PMI((V1, V2), T emp Rel) = log P ((V1,V2),T emp Rel)
P ((V1,V2))P (Temp Rel)

For any given verb pair we choose the relation that obtains the highest PMI score. If PMI does
not indicate a typical temporal relation (we set a thresholdof 0.4, optimized on a held-out data
set43), we assign the labelundefined.

The quality of this type-level temporal relation classifierwas evaluated using the answers to the
first question (Q0) of our question-based annotation scenario as a gold standard.44 On this set it
achieves an F1-score of 73%, with balanced precision and recall at 71% and 74%, respectively.

5.2.2 NEGATION

A token-based polarity labeler. To determine the behavior under negation for given verb pairs,
we first need to correctly recognize the polarity of verbs in agiven context. We use a number of
triggers to detect negative polarity contexts: negative particles (e.g.not/n’t); negative adverbs (e.g.
never); negative adjectives (e.g.impossible) and negative verbs (e.g.refuse).45

In case we detect a single negation trigger for a verb in a sentence, the verb polarity isnegative.
If we find a combination of triggers (e.g.never refuse) and the number of triggers is even, we assign
the valuepositive, if the number is odd, the verb polarity isnegative. We also use a small set of
adverbs that are able to switch a verb’s polarity in case it isnegative (e.g.badly, etc.).

An example is given in (14). Here, the negation trigger refers to the verbplay, but due to the
combination with two negative triggers, we assign the polarity positive.

(14) We wanted to win the third Test as a matter of pride anddidn’t play badly but every time
New Zealand came into our 22 they scored.

To evaluate the quality of the polarity labeler, we manuallyannotated the polarity of 200 verbs
in context.46 On this set we achieve an F1-score of 85%, with 84% precision and 86% recall.

Computing type-based polarity co-occurrence features. For type-based classification of verb
pair polarity co-occurrences, we compute a negation vector~fneg with four polarity co-occurrence
features for the different combinations:〈±V1,±V2〉. We compute the values of these features
using the conditional probability of a given polarity co-occurrence combination for any verb pair
(V1, V2).47

Another factor which influences our results positively is that we apply the classifier on contexts labeledcontiguous
in our corpus preprocessing phase. That is, we compute temporal relations only for closely co-occurring verb pairs
in contiguous syntactic contexts.

43. The held-out data consists of 100 manually annotated verb pairs.
44.Q0: Which is the typical order of the following events?
45. We employ a manually compiled list of trigger predicatescollected from various lexical resources.
46. A subset of 100 contexts of verb pairs that were previously annotated with a semantic relation on the context level.
47. The probability is computed using the set of verb pairs incontext that are labeled [+contiguous], see Section 5.3.2.
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~fneg = 〈f0, f1, f2, f3〉, with: f0 = P (〈+V1,+V2〉|V1, V2)
f1 = P (〈−V1,+V2〉|V1, V2)
f2 = P (〈+V1,−V2〉|V1, V2)
f3 = P (〈−V1,−V2〉|V1, V2)

5.2.3 RELATEDNESS

Although temporal relation and negation properties can be considered discriminative for identifying
our core semantic relation types, they are not sufficient forcorpus-basedclassification. For example,
in (15) win and losestand in an antonymy relation, but both verbs have positive polarity. So, the
evidence found in the corpus does not always correspond to the properties captured in Table 3.

(15) Winor lose, you pay nothing.

Detecting relatedness features for corpus-based classification. Thus, we include a third dimen-
sion of features that record surface-level properties of underlying linguistic properties, as in this
case, where semantic opposition is not expressed by opposite polarity, but via the conjunctionor.

Contextual relatedness features will prove particularly useful for distinguishingantonymyfrom
other relation types, especially theunrelatedclass. Recall also that the discriminative relation prop-
erties that we established do not include the necessary distinction betweensemantically relatedvs.
unrelatedverb pairs. For theunrelatedclass, we find a broad variety of syntagmatic properties,
while for the core semantic relations we find more characteristic contextual relatedness features.

Type-based relatedness features.As type-based syntagmaticrelatednessfeatures we employ
surface-level information aboutdistanceand connectingconjunctionsbetween verbs,48 as well as
distributional association measures, such as point-wise mutual information (PMI). These are raised
to the type level in the following way (see also Figure 4):49

fdist: average distance between two verbs in tokens within a sentence
fPMI : PMI calculated for the two verbs in a given verb pair:PMI(V1, V2)
fconj: conditional probabilities for conjunctionsci given specific verb pairs (P (ci|V1, V2))

5.3 Experiments and Results

5.3.1 DATA SETS

All candidate verb pairs that are presented to the classifierare selected from a set ofsemantically
related verbsfrom the DIRT collection (Lin and Pantel, 2001).

Training Set. As training set we employ a small number of seed verb pairs (3 to 6 for each semantic
relation) that was used in previous experiments (Tremper, 2010). We extended this data set
with 30 additional verb pairs which were manually annotatedby two annotators using our
novel question-based annotation method (see Section 4). The overall set of 48 verb pairs
yields a nearly uniform distribution of classes.

48. We manually grouped the most informative conjunctions to a set of 21 conjunction variants, collapsing, e.g.
while/whilst, cause/because, to/in order to. Strongest conjunctions areor, when, if, but, by.

49. All values are calculated on the set of verb pairs in context that are labeled [+contiguous] (see Section 5.3.2), except
for fPMI , which was calculated on the basis of the full ukWaC corpus.
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Test Set. As our gold standard test set we employ the annotation set consisting of 250 verb pairs that
was produced using the question-based annotation setup. The distribution of relations over
the 250 verb pairs is as follows:presupposition: 18%,entailment: 23%, temporal inclusion:
15%,antonymy: 19%,other/unrelated: 25%.

Corpus Instances. For the computation of type-based relation features we obtained corpus samples
from the ukWaC corpus (Baroni et al., 2009). We extracted allsentences in which both verbs
of a verb pair co-occur, considering sentences of up to 60 tokens in length. The number of
contexts available for each verb pair ranges from 30 to about500 instances.

5.3.2 PREPROCESSING: SELECTING INFORMATIVE SAMPLES FORFEATURE EXTRACTION

To avoid noise in the computation of type-based feature vectors we need to select informative corpus
instances of co-occurring verbs that stand in a close syntagmatic relation. To this end, we perform a
preprocessing step that selects context samples of co-occurring verbs that are contiguously related.
We designed the following set ofcontiguity features that record different types of indicators for
syntagmatic relatedness of co-occurring verbs.

fpath−len, fpath: length and form of the path of grammatical functions relatingV1 andV2

fcoref : coreference relation holding between subjects and objects of V1 and V2

(coreferent subjects or objects; subj coreferent w/ object; no coreference)
fdist−tok, fdist−verb: distance betweenV1 andV2 (in tokens and verbs)
fconnectives: subordinating or coordinating conjunction, or else direct grammatical func-

tion connectingV1 andV2

Using this feature set, we constructed a classifierCcntg that labels verb pairs appearing in corpus
sentences as [± contiguous]. The classifier was trained and tested on a manually annotated set of
contexts involving our seed verb pairs (2343 contexts from which 90% were used for training and
10% for testing).50 Best results were achieved using the J48 decision tree algorithm51 (F1-score:
79.3%).

We applyCcntg on the set of unlabeled verb pairs in context and select all contexts that were
confidently labeled as [+contiguous] (above threshold 0.75) as corpus samples for computing the
feature vectors for the relation classifierCdiscr. Classifications obtained from the contiguity classi-
fier are further used as a feature for the relatedness/non-relatedness classification in the hierarchical
classification scenario (see Section 5.3.5 for more detail).

5.3.3 LEARNING ALGORITHMS

For our main classification task we experimented with different classification algorithms and achieved
best results using BayesNet. Thus, unless noted otherwise,all results reported below were obtained
using the BayesNet classifier implementation of Weka (Witten and Frank, 2005).

5.3.4 EXPERIMENT I: FLAT CLASSIFICATION

Setup. Experiment I performs classification using theflat classification architecture, which as-
signs class labels for all five relation classes including the unrelated class:Y ∈ { P(resupposition),

50. Inter-annotator agreement was 81%, with a Kappa value of0.72.
51. Weka implementation of the C4.5 decision tree algorithm(Witten and Frank, 2005)
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Semantic Relation Precision Recall F1-score Baseline F1-score

Presupposition 41% 45% 43% 25%
Entailment 47% 43% 44% 25%

Temporal Inclusion 38% 47% 42% 26%
Antonymy 68% 71% 70% 47%

Other/Unrelated 54% 53% 54% 12%

All 50% 51% 51% 27%

Table 7: Results for Experiment I: Flat Classification (Baseline: best feature:fconj: conjunctions).

E(ntailment), T(emporal Inclusion), A(ntonymy), U(nrelated)} (cf. Figure 4). For each verb pair in
our training and test sets we compute feature vectors as described in Section 5.2.

Evaluation results. Table 7 displays the results, evaluated against the test data set. The classifier
performance is compared against a baseline that uses the best single featurefconj: conjunctions.

The classifier outperforms the baseline for all relation types, with balanced precision and recall.
Precision is higher than recall forentailment. For presupposition, entailmentandantonymyrecall
exceeds precision. With an overall F1-score of 51% the classification performance is still modest,
however the difference between the chosen baseline and our model is significant (ρ < 0.05). Note
further that the average F1-score for the more complex inferential relations (P, E, T) is lower at
around 43%, while forantonymyit is at 70%.

5.3.5 EXPERIMENT II: H IERARCHICAL CLASSIFICATION

Setup. As an alternative to flat classification, we investigate a hierarchical architecture that first
separates related from non-related verb pairs, and subsequently sub-classifies related verb pairs into
the four relation classes:P(resupposition), E(ntailment), T(emporal inclusion)andA(ntonymy).

A binary classifier Crel separatesrelated from non-related verb pairsusing as criterion (i) the
ratio of contexts for a given verb pair classified as [±contiguous] by the contiguity classifier
in sample selection (see Section 5.3.2) and (ii) the typicaltemporal relation calculated by the
type-based temporal relation classifier. We assign the label [−related] to a verb pair if the
majority of contexts are annotated as [−contiguous] and there is no typical temporal relation
for this verb pair (temprel =undefined).

Crel: classify all input verb pairsx ∈ X as [± related]:
[−related] if count([+contiguous])< count([−contiguous]) & temprel =undefined
[+related] otherwise.

Thesecond-stage discriminative relation classifierCdiscr takes as input all verb pairs classified
as [+related] by the first-stage classifier and performs 4-way classification into the set of
relation classesY = { P(resupposition), E(ntailment), T(emporal Inclusion), A(ntonymy)}.

Since the unrelated class has already been separated in the first classification step, the clas-
sifier does not make use of the relatedness featuresf5: average distance between two verbs
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1st-stage ClassifierCrel: Related vs. Unrelated classification

Precision Recall F1-score Baseline F1-score
Unrelated 82% 67% 74% 57%
Related 72% 84% 77% 54%

2nd-stage ClassifierCdiscr: 4-way semantic relation classification (oracle input)

Precision Recall F1-score Baseline F1-score
Presupposition 62% 50% 56% 30%

Entailment 53% 49% 51% 33%
Temp. Inclusion 44% 62% 52% 25%

Antonymy 76% 80% 78% 63%

All 59% 60% 59% 38%

Table 8: Exp. IIa: Individual Classifier Performance for Hierarchical Classification (with oracle).
Baselines: Best features: Step 1:fconnectives: connectives; Step 2:fconj: conjunctions.

andf6: PMI(V1, V2), as these are designed to distinguish unrelated from related verb pairs.
However, the conjunction features are considered useful for discriminating the core semantic
relations, and are thus included as a feature in this classification step (cf. Figure 4).

Evaluation Setup. For Experiment II we perform evaluations for both classification steps, using
adapted gold standard data sets:

(i) Classifications for thefirst-stage binary classifierare evaluated against a test data set com-
piled from the gold standard test set used in Experiment I. Itconsists of the set of all unrelated verb
pairs (58) and the same amount of (randomly selected) related verb pairs.

(ii) For the classifications for thesecond-stage classifiercovering 4 relation classes, the test set
forms the subset of the standard test data set that consists of the related verb pairs only.52

We report two evaluations for hierarchical classification.For both, we use best-feature baselines
for the individual classifiers: the best featurefconj for the discriminative relation classifierCdiscr as
in Experiment I, and the best featurefconnectives for the relatedness classifierCrel.

Experiment IIa: Individual Classifier Performance. Table 8 analyzes the performance of the
individual classifiers, where the second-stage classifier is based on perfect input, i.e. oracle classifi-
cations from the first-stage classifier.

The binary classifier Crel obtains an F1-score of 74% for the unrelated class, which clearly
outperforms the best feature baseline by a margin of 14 points F1-score. While the related class
is recognized with higher F1-score of 77%, we favour the results for the unrelated class,which
is higher in precision (82% vs. 72%). Generally, misclassifications of the first-stage classifier im-
pede the overall performance of the cascaded classificationarchitecture, so while high precision is
beneficial, the weaker recall (67%) could still impact the overall results.

52. The distribution in this reduced data set is:presupposition: 25%, entailment: 31%, temporal inclusion: 20%,
antonymy: 24%.
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Semantic Baseline Flat Classification Hierarchical Classification

Relation F1-score Precision Recall F1-score Precision Recall F1-score

Presupposition 25% 41% 45% 43% 50% 46% 48%
Entailment 25% 47% 43% 44% 44% 46% 45%
Temp. Incl. 26% 38% 47% 42% 41% 47% 44%
Antonymy 47% 68% 71% 70% 72% 74% 73%
Unrelated 12% 54% 53% 54% 68% 63% 66%

All 27% 50% 51% 51% 55% 55% 55%

Table 9: Exp. IIb: Hierarchical Classification (pipeline) –Results contrasted with Flat
Classification (Baseline: Best feature:fconj: conjunctions).

Evaluating theflat 4-way relation classifierCdiscr on oracle classificationswe obtain an over-
all performance of 59% F1-score.53

Experiment IIb: Full Hierarchical Classification. Table 9 presents the results for full hierarchi-
cal classification, with system input for the second-stage classifier.54 For convenience, the results
are aligned with the results obtained for flat classificationin Experiment I. With an overall F1-score
of 55%, hierarchical classification significantly outperforms the baseline (ρ < 0.05). It also outper-
forms flat classification, but not significantly at a significance level of 5%. We observe performance
gains for all relations, which are highest forpresupposition(+5 points F1-score) andunrelated/other
(+12 points F1-score). Again,antonymyperforms best. Among the inferential relations,presuppo-
sition scores highest with 48% F1-score and the highest precision at 50%.

5.4 Analysis of Results

5.4.1 IMPACT OF INDIVIDUAL FEATURES

We measured the impact of individual feature classes on the results, using ablation testing for differ-
ent feature groups (cf. Figure 4):55 negationfeatures,temporal sequencefeatures andrelatedness
features. As only theconjunctionsfeature was used in both settings, this was the only relatedness
feature we omitted. The outcome, displayed in Table 10, nicely underlines the observations made
in our analysis of the relation properties.

The results56 show that temporal sequence properties are the most important feature forentail-
ment, presuppositionand temporal inclusion, whereas forantonymyand theunrelated/otherclass
theconjunctionsfeature has the strongest effect. Eliminating conjunctions causes an overall drop to
30% (35%) F1-score, forantonymyeven to 15% (14%). Eliminating the temporal relation features
incurs a drop to 32% (34%) with the biggest loss fortemporal inclusion: −12 (−11) points F1-score.
Eliminating the negation features shows only a small impactof about 3–5 points in F1-score.

53. These figures cannot be directly compared to the flat classification results of Experiment I, which were computed
over 5 classes (Table 7). However, the overall tendencies are similar.

54. To enhance precision, we relied on the classifications for the unrelated class as input for the second-stage classifier
Cdiscr.

55. For hierarchical classification we performed the ablation testing only for the second-stage classifier.
56. In ablation testing, lower results indicate higher importance of the feature (group) that has been omitted.
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Semantic Exp I: Flat Classification Exp IIb: Hierarchical Classification

Relation All w/o Neg w/o Tmp w/o Conj All w/o Neg w/o Tmp w/o Conj

Presupposition 43% 37% 24% 35% 48% 41% 22% 34%
Entailment 44% 41% 14% 28% 45% 43% 14% 25%
Temp. Incl. 42% 42% 12% 38% 44% 43% 11% 36%
Antonymy 70% 64% 64% 15% 73% 68% 59% 14%

Other/Unrelated 54% 47% 45% 35%
All Relations 51% 46% 32% 30% 55% 52% 34% 35%

Table 10: Ablation Testing: F1-score results using different feature sets (Exp I & IIb).

Verb pair Gold Flat Hierarchical
(w/ prototypical arguments) Standard Classification Classification

abandon(person, do sth) – try(person, to do sth) Pre Pre Pre
fly(plane) – land(plane) Ent Ent Ent

multiply(person, numbers) – calculate(person, solution)Tmp Ent Ent
cry(person) – laugh(person) Ant Ant Ant

enter(person, house) – open(person, door) Pre Ent UnR
boil(water) – evaporate(water) Ent UnR UnR
steal(product) – take(product) Tmp Ant Ant

Table 11: Examples of correct and wrong classifications.

Although the weakest feature type, with overall 5 points loss in F1-score, the negation features
clearly contribute to overall performance. Interestingly, they have the strongest effect forpresuppo-
sition, with a drop of 6–7 points in F1-score. This clearly reflects the specific negation properties
found with presupposition. This analysis corroborates that while the negation properties are very
important for language understanding and logical inference, and proved effective as a guide for hu-
man annotation, a corpus-based classification approach needs to complement its effects, as human
language often resorts to other means for expressing negative polarity, such as the use of conjunc-
tions (or, whereas, etc.), or does not make it explicit at all.

5.4.2 CLASSIFICATION EXAMPLES AND DIVERGENCES

Table 11 displays examples of correct and wrong classifications for both architectures. The verb
pairs are given with the prototypical arguments that were used for the gold standard annotation.

5.4.3 ERROR ANALYSIS

The most frequent errors we observe (especially for the flat architecture) are misclassifications be-
tween related and unrelated verb pairs and betweenpresuppositionand entailment. This points
to weaknesses of contiguity features used in the contiguoussample selection step and of nega-
tion features used for the main classification. We also notice thatentailmentis often misclassified
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as temporal inclusion. Misclassifications betweenpresuppositionand temporal inclusionare rare
compared to other relations. This indicates that the temporal sequence features are effective.

As further major error sources we identified problems with verb ambiguity and coreference
resolution. Both of them affect the detection of semantic relations as being related vs. unrelated.57

Finally, we identified errors in selecting contexts from theukWaC corpus, which are used for
computing the distributional features for the main classification. Inspection of a small section of
corpus samples shows that erroneous annotations of nouns oradjectives as verbs cause errors in the
computation of the type-based feature vectors. We have solved the problem of erroneous annotations
of adjectives as verbs by double checking the dependencies between verbs and nouns,58 but we still
need to address the problem of erroneous annotations of nouns as verbs.

Regarding classification architectures, hierarchical classification outperforms flat classification
for all relation types, and especially for theunrelatedclass. Thus, the first-stage classifier that
separates related from unrelated verbs implements a strongfilter. The pipeline architecture still
suffers from a performance loss due to misclassifications ofthe first-stage classifier. This problem
can be addressed in future work by using a joint classification approach.

5.5 Comparison to Related Work

Related work on semantic relation classification differs from our approach in a variety of respects
(see Section 2). Nevertheless we compare our results to whatcould be achieved there, to give an
idea about the state of the art on comparable and related tasks.

Closest to our work is VerbOcean. Chklovski and Pantel (2004) apply a semi-automatic pattern-
based approach for extracting fine-grained semantic relations between verbs (similarity, strength,
antonymy, enablementandhappens-before). This inventory is different from ours, especially it does
not include relations such as entailment and presupposition with complex inferential behavior. For
a sample of 100 automatically labeled verb pairs they determined a precision of 65.5%.59 Results
for recall and F1-score were not reported.

The only common class of semantic relations used by both approaches isantonymyor opposi-
tion. We investigated the verb pairs which are labeled with this class for both systems, comparing
to our gold standard test set. Most antonyms are annotated byboth systems correctly. Evaluating
both systems against our test set yields 71% precision and 35% recall for VerbOcean. With 72%
precision and 74% recall our system achieves better recall and overall more balanced results. Ex-
amples of verb pairs which could not be found in VerbOcean are(hide, show)or (multiply, divide).
Some of the antonyms were annotated in VerbOcean with the classsimilar, e.g.(marry, divorce)or
(play, work). We also find some verb pairs for which VerbOcean performs better than our system,
e.g. (catch, miss). With an overall F1-score of 55% with balanced precision and recall obtained on
a more difficult and more balanced data set, our results can beconsidered competitive.

Inui et al. (2005) perform classification of causal relations for Japanese. They report high preci-
sion and recall results (95% precision forcause, precondandmeansrelations with 80% recall and
90% precision foreffectwith 30% recall). They emphasize that the framework can be applied to
other languages, such as English, but no experiments are presented in the paper.

57. For coreference resolution we employed the Stanford CoreNLP resolver (Lee et al., 2011) – the system that performed
best in the 2011 CoNLL Shared Task on coreference resolution.

58. We check for the presence of the Stanford parser dependency AMOD (adjectival modifier) between a verb and a noun
(de Marneffe et al., 2006) as an indicator of erroneous annotation.

59. Only 2 and 8 pairs were evaluated forenablementandantonymy, respectively.
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Pekar (2008) performs acquisition of verb entailment rules. His main focus is on detecting
asymmetric relations between verbs and relating their argument positions, without trying to sub-
classify the obtained verb pairs into different relation types. His method is based on co-occurring
verbs within locally coherent text and measures their asymmetric dependence using an information
theoretic approach. A precision of 71% is reported, but no recall and F1-score.

Acquisition of verb entailment rules is also the aim of Aharon et al. (2010). They acquire
inference rules from the FrameNet resource using frame-to-frame relations and induce argument
mappings for the related predicates. The obtained rules aretested against ACE events. Performance
results are mixed, with modest precision and very low recall: precision: 55.1%, recall: 17.6%,
F1-score: 24.6%.

Berant et al. (2010) explore graph optimization using integer linear programming (ILP) in order
to find the best set of entailment rules under a transitivity constraint. The approach is restricted
to entailment relations. They obtain balanced precision and recall at 69.6% and 67.3%, respec-
tively. Their work establishes that global methods outperform local methods for learning entailment
relations. Berant et al. (2012) offer extensive evaluationand further refinements of this method.

Weisman et al. (2012) use a large set of linguistically motivated features to acquire verb entail-
ment rules. This feature set is designed to extract a wide spectrum of rules, therefore the system
achieves a good recall of 71% with a moderate precision of 40%for the recognition of entailment
rules. No attempt is made to distinguish the different relation types acquired by the system.

6. Summary and Conclusions

In this contribution we presented a corpus-based approach for discriminative analysis and classifi-
cation of fine-grained semantic relations between verbs. The set of relations we consider comprise
the non-taxonomic inferential relationsentailment, presuppositionandtemporal inclusion, and the
taxonomic relationsantonymyandtroponymy. We grouptemporal inclusionandtroponymygiven
they have similar inferential properties, and excludedsynonymyas a result of the nature and techni-
calities of our corpus-based approach. To the best of our knowledge, we are the first to investigate
presuppositionin a corpus-based lexical semantic relation acquisition task.

The focus of this paper was to analyze the underlying properties of the selected relations, the
design of features for a corpus-based learning approach, and to discuss possibilities for the annota-
tion of such fine-grained semantic relations. We present experiments for automatic classification of
the target relations with evaluation against the gold standard data set we constructed.

In contrast to prior work, we present an in-depth analysis ofthe relations we aim to sub-classify,
including a characterization of their inferential behavior. We determine a small set of differentiating
properties relating to negation and temporal sequence properties. These do not only provide dif-
ferentiating features for classification. They are also essential for appropriate inference in context,
which is the ultimate goal of our work.

Inclusion of the presupposition relation is what clearly distinguishes our work from the state of
the art in this area, which primarily focuses on the discovery of entailment relations proper. The
acquired pairs of presupposition-triggering verbs and their presuppositional relata encode valuable
commonsense knowledge about typical verb sequences and preconditions holding between events,
such asplay – win, read – cite, learn – masteror hire – fire. These are not broadly covered in
verb lexicons such as WordNet and only found with selected scenario frames in FrameNet (Fill-
more et al., 2003). Related work by Chambers and Jurafsky (2008, 2009), which aims at acquiring
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typical event sequences from large corpora, detects frequently occurring verb pairs, yet does not
differentiate between fine-grained relation types. Regneri et al. (2010) learn script-like knowledge
using sequences of events they gathered from crowd-sourcing. However, script-like knowledge is
only applicable to a small set of typical event chains. Theirwork relies on gathering event sequences
for pre-specified situation types. Our approach is more general, as it is able to learn presupposition
and other clearly distinguished inferential relations holding between any verb pairs, using a small
set of manual annotations. Finally, our work targets the temporal and inferential differences be-
tween the various relation types that are crucial for applying the learned relations in context and for
drawing valid inferences.

Our analysis shows that the selected relations can be fully discriminated by their inferential and
temporal properties. However, this does not mean that automatic or manual labeling of such verb re-
lations is a trivial task. The classification of fine-grainedsemantic relations between verbs presents
a major challenge, due to complicating factors such as verb ambiguity, coreference of arguments
and the complexity and subtlety of the inference propertiesassociated with such relations. This was
clearly brought out by our initial annotation experiments that followed traditional annotation strate-
gies: type-based annotation forces annotators to considercomplex inferential patterns for (pairings
of) different verb meanings out of context; token-based annotation is difficult because the contexts
are often involved, with shades of meaning that make decisions difficult. Moreover, acquiring suffi-
cient numbers of context-based annotations is expensive, and it is difficult to ensure that all relevant
readings are appropriately represented.

We therefore designed a novel annotation setup that addresses the specific problems we identi-
fied: (i) controlling for verb readings and ambiguity, (ii) the need for abstraction from specific con-
texts and (iii) the need to reduce the complexity of the inferential patterns that need to be checked.

The first two problems are addressed by providing verb pairs with prototypical arguments de-
rived from selectional preference classes. From these representations we automatically generate
skeleton sentences offered to the annotators. This restricts the interpretation of the verbs and at
the same time provides sufficient generalization from particular contexts. The third problem is ad-
dressed by designing a question-based annotation scheme. The complex annotation decisions are
broken down to basic decision units and are presented in the form of automatically generated skele-
ton phrases, with placeholders for prototypical arguments. With this novel setup, we obtain reliable
inter-annotator agreement and are able to create a gold standard for evaluating fine-grained seman-
tic relation classification. Our novel question-based annotation scheme relieves the annotator from
considering several non-trivial decisions in a single annotation step, and thus holds potential for
crowd-sourcing the annotation task to non-experts, in order to acquire larger annotated data sets.
However, presenting our task to a non-expert annotator did not confirm these expectations. More
adaptations are needed to open up this task for crowd-sourcing.

Having successfully addressed the difficulties of manual annotation, we presented a method
for corpus-based acquisition of fine-grained semantic relations between verbs, embedded in a dis-
criminative classification task. The classification model is inspired by the temporal and inferential
properties we established for the targeted relations, and are enhanced with corpus-based features
designed to detect surface contiguity and semantic relatedness of verb co-occurrences.

The classification makes use of type-based distributional features that are generalized from cor-
pus samples. For this reason, the annotation of training andtest data sets can rely on type-based
annotations that can be quickly acquired – now that the annotation process has been clarified. Our
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classification model achieves good results with a small training set comprising about 10 verb pairs
per relation.

We proposed two classification architectures: flat and hierarchical classification. Hierarchical
classification outperforms flat classification by a margin of4 points in F1-score, though not signifi-
cantly. Both classification architectures achieve significant performance (up to 100% improvement)
over a best-feature baseline. These results are still open for improvement, but with an overall per-
formance of 55% F1-score we are able to show that – despite the considerable complexity of the
task – both manual and automatic classification are feasible.

The individual results indicate thatpresupposition, entailmentandtemporal inclusionare more
difficult to classify thanantonymy; we also foundpresuppositionto outperformentailment, yielding
higher precision. This effect might be due to the more prominent specific negation properties associ-
ated withpresupposition. Closer investigation of the feature impact shows that temporal properties
are most effective for the recognition of the inferential relationspresupposition, entailmentandtem-
poral inclusion, while relatedness features are strongest forantonymyand theunrelated class. The
negation features are most effective for identifyingpresupposition.

The analysis of the experiment results offers avenues for further enhancements. Coming up with
better solutions for sense disambiguation and coreferenceresolution could help to eliminate major
sources of observed errors. Elimination of noise in preprocessing could further improve the results.
The hierarchical classification architecture still suffers from error propagation effects that could
be reduced through a collective classification approach. Finally, with only 10 seed verb pairs per
relation our current model is weakly supervised. Given thatwe do not require extensive annotations
on the token level, adding more verb pairs for training couldfurther improve the results.

In future work we will apply the learned relations to triggerverbs appearing in context to infer
implicit information. For the proper usage of the acquired inference rules we need to disambiguate
the candidates for trigger verbs. While prior and current work on textual inference focusses on
entailment, we consider in particular the presupposition relation, which is ubiquitous in texts and
subject to special conditions regarding temporal sequenceand negation properties.
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Appendix 1. Web-based Annotator Interface

Figure 5: Question-based Annotation for verb pairlose – find.
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Appendix 2. Mapping of Allen’s Relations to Coarse TemporalRelation Classes

Temporal Relation Class Allen’s Relation Graphical Representation

before(X,Y) X< Y (strict precedence)

X m Y (X meetsY)

X o Y (X overlapsY)

after(X,Y) X > Y (strict succession)

X mi Y (inverse of meets)

X oi Y (inverse of overlaps)

during(X,Y) X s Y (X startsY)

X f Y (X finishesY)

X d Y (X during Y)

X = Y (X equalsY)

Table 12: Mapping of Allen’s Relations
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