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Abstract

In contrast to classical lexical semantic relations betweerbs, such as antonymy, synonymy
or hypernymy, presupposition is a lexically triggered setitarelation that is not well covered in
existing lexical resources. It is also understudied in takl fof corpus-based methods of learning
semantic relations. Yet, presupposition is very imporfansemantic and discourse analysis tasks,
given the implicit information that it conveys. In this papee present a corpus-based method for
acquiring presupposition-triggering verbs along withbadrelata that express their presupposed
meaning. We approach this difficult task using a discrintugatlassification method that jointly
determines and distinguishes a broader set of inferemtmaastic relations between verbs.

The present paper focuses on important methodologicatespeour work: (i) a discrimina-
tive analysis of the semantic properties of the chosen setlaftions, (ii) the selection of features
for corpus-based classification and (iii) design decisfonshe manual annotation of fine-grained
semantic relations between verbs. (iv) We present thetsssia practical annotation effort leading
to a gold standard resource for our relation inventory, afgave report results for automatic clas-
sification of our target set of fine-grained semantic refatjoncluding presupposition. We achieve
a classification performance of 55%-Bcore, a 100% improvement over a best-feature baseline.
Keywords: Presupposition, entailment, question-based annotatigomatic classification.

1. Introduction

Computing lexical-semantic and discourse-level infoiorais crucial in event-based semantic pro-
cessing tasks. This is not trivial, because significantiqastof content conveyed in a discourse may
not be overtly realized. Consider the examples (1.a) ar),(vhere (1.a) bears a presupposition
that is overtly expressed in (1.b):

(1) a. Spain won the finals of the 2010 World Cup.
b. Spain played the finals of the 2010 World Cup.

The presupposition expressed in (1.b) is implicitly encbuhe(1.a), through lexical knowledge
about the verbvin, and is thus automatically understood by humans who irgeffira), given their
linguistic knowledge about the verlgin and play. Automatically acquiring this kind of lexical
semantic information is one of the objectives of the presank.
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DISCRIMINATIVE ANALYSIS OF FINE-GRAINED SEMANTIC RELATIONS

One reason for embedding the acquisition of presuppositiggering verbs in a discriminative
classification task is thadresuppositiomeeds to be carefully distinguished from other lexical-rela
tions, in particularentailment The two relations are closely related, but crucially diffespecific
aspects. Consider the sentence pair in (2).

(2) a. President John F. Kennedy was assassinated.

b. President John F. Kennedy died.

Sentence (2.a) logically entails (2.b). But how does tHfedfrom the presuppositional relation
between (1.a) and (1.b)? Generally speakimgtailmentis a strictly logical implication relation
holding between propositionsandq in such a way that whenevegrholds true,g also holds true.
Presuppositionby contrast, is a relation that may be perceived as holdetgiden propositions,
but is often viewed as a pragmatic relation holding betwespeaker and a proposition. Crucially,
presuppositionsare what a speaker assumes to hold true as a preconditionsientance to be
true. Our focus is on presuppositions as conventional Taplres, as opposed to conversational
implicatures (Levinson, 1983).

There are a variety of linguistic sources for presuppas#jdncluding possessive pronouns, def-
inite reference, or cleft-/wh-constructions that triggeecific presuppositions, such as possessive
relations or existence. While these constitute a closédwis are interested in lexically triggered
presuppositions, mainly by verbs, that are grounded ingkiedl meaning of the triggering predi-
cates. Examples are widespread, including aspectual sadbsasegin/start doing % not having
done X befordout most importantly general action verbs suchwés — play, know — learn find —
lose etc. Thus, in this work, we concentrate on a notion of prpesgjpion that is restricted to the
lexical meaning relation holding between the presuppmsitiiggering verb and the verbal pred-
icate of the evoked presupposition. But then again, how stindjuish between verb pairs that
characterize lexically triggered presuppositions as )rfrdm pairs of verbs that license a classical
entailment relation as in (2)7?

The differences betwegresuppositiorandentailmentcan be studied using special presupposi-
tion tests (Levinson, 1983). The most compelling one, whielwill use throughout, is the negation
test. It shows that presupposition is preserved under ioegathile entailment is not. Applied to
(1) and (2), we note that (3.a), the negation of (1.a), stifplies (1.b), while (3.b), the negation of
(2.a), does not imply (2.b). This can be taken as evidendentindexically presupposeglay, while
assassinatanddie are lexical licensors for logical entailment.

(3) a. Spain didn’t win the finals of the 2010 World Cup.

b. President John F. Kennedy wasn't assassinated.

The negation test not only helps us to distinguish thesesliaglated verb relations. It also
points to the distinct behavior of these relations in degvimplicit meaning from discourse, which
is the main motivation underlying our work. If we encountee terbwin in the intended meaning
X wins the gamén some piece of discourse, we may infeplayed the game whether the phrase
is negated or not. For a verb that stands in an entailmeritare)doy contrast, we need to make sure
that the triggering verb is not in the scope of negation. XSwas killedimplies thatx died but x
wasn't killeddoes not license this inference.
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Similar to entailment, presuppositions are essentialjugded in world knowledge. At the
same time, they are crucial for the computation of discoumnsaning and inference. This is ex-
emplified in (4), a typical case of presupposition that idtrces additional, implicit knowledge, by
so-calledaccommodatiofoehavior (van der Sandt, 1992; Geurts and Beaver, 2012) piduicate
lift licenses the presupposition that the ban on deep seadgltitiat has been lifted had previously
been imposed. Because this presupposition is lexicatigéried, it causes anyone unaware of this
piece of world knowledge to infer that a moratorium on deeien drilling had beeimposedfor
the Gulf of Mexico some time before October 12, 2010, the ipabbn date of the article.

(4) The Obama administration lifted its moratorium on deeyter drilling in the Gulf of Mexico
Tuesday, replacing it with what Interior Secretary Ken 3aids calling a gold standard of
safety standards for operators looking to drill in waterttiegreater than 500 feét.

It is their relevance for discourse understanding and émfee that motivates capturing lexical
semantic relations in computational lexicons, to make theanable for lexically driven inferences
in NLP applications (Frank and Pado, 2012). Among theséhareajor taxonomic lexical semantic
relations, such asntonymysynonymyr hypernymythat are grounded in linguistic tradition (Lyons,
1977) and that form the core of lexical semantic resourced s WordNet (Fellbaum, 1998).
Recent efforts in computational linguistics further aimatatomatically acquire lexical relations
that determine linguistically licensed inferences, sustemtailmentand other more fine-grained
relations, which are not yet covered in sufficient detail aoderage in the WordNet data base.

Chklovski and Pantel (2004) were first to attempt the autan@dssification of fine-grained
verb semantic relations, such signilarity, strength antonymy enablementand happens-before
in VerbOcean. In the present paper we aim to extend the fitadgin of semantic relations be-
tween verbs to lexical inferences licenseddmgsupposition To our knowledge, this has not been
attempted before. We will address this task in a corpusebdgriminative classification task —
by distinguishing presupposition from other semantictiete, in particularentailment temporal
inclusionandantonymy

Our overall aim is to capture implicit lexical meanings ceywd by verbs, and to make this
knowledge explicit for improved discourse interpretatiyriexically induced inferences. This over-
all aim can be divided into two tasks:

Detecting and discriminating fine-grained semantic relatbns: We first detect and distinguish
fine-grained semantic relations holding between verbseatyite level, to encode this lexical
knowledge in lexical semantic resources.

Deriving implicit meaning from text: In a second step, we will apply this knowledge for the in-
terpretation of discourse, at the context level, in ordegrtoch the overtly expressed content
with implicit knowledge conveyed by presupposition, entailment, orrdéxécally supported
semantic inferences. That is, when detecting a verb in angiece of discourse that stands
in a particular meaning relation with some other verb, we\ahe learned lexical knowledge
to enrich the discourse representation with this hiddenningarelation, by lexically driven
inferences. Through the inferred semantic knowledge wainltensely structured semantic
representations of discourse that can improve the qudlaytomatic semantic and discourse
processing tasks, such as information extraction, textsamzation, question-answering and
full-fledged textual inferencing or natural language ustierding tasks.

1. Source: The Christian Science Monitor, Oct. 12, 2010.
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The present paper concentrates on the first task. We presents-based method for learning
semantic relations between verbs, with a special intenedétecting verbs related by or triggering
presuppositions. Learning focused lexical semanticicglatfrom corpora is a hard task. Our main
strategy for approaching this task is to design featureslé&ssification that are able to discriminate
presupposition from other lexical relations. A novel aspéour work is that we emplotype-based
features that are derived frolmgical-semantic propertiesf the targeted lexical relations.

As it turns out, the classification we aim to perform is evefidlilt for humans: the complex
inference patterns that characterize the differencesdmeiihe semantic relations we consider are
difficult to discern using classical annotation schemes.déldse a question-based annotation de-
sign that yields reliable annotation results. On the basieeresulting annotated data set we will
present first results for automatic discriminative clasatfon of fine-grained semantic relations
between verbs using alternative classification architestu

The structure of the paper is as follows: Section 2 revieleted work. Section 3 motivates the
choice of our target set of semantic relations and studigis diiscriminative properties. Section 4
discusses different annotation strategies and their dlifits and develops a question-based anno-
tation scenario that yields improved annotation quality.Skction 5 we present two classification
experiments and the results we obtain. We present an erabysis and compare our results to
related work. Finally we summarize and present conclusioi@ection 6.

2. Related Work

Semantic relation acquisition. Significant progress has been made during the last decade in a
tomatic detection of semantic relations between pairs afigjousing corpus-based methods. The
majority of approaches follow thdistributional hypothesis semantically related words tend to
occur in similar contexts (Firth, 1957). Two types of methadn be distinguished in this fiefd.

Pattern-based methodsake use of specific lexico-syntactic patterns that idgmidividual re-
lations, e.g., thesuch agatterns used by Hearst (1992) to detect hyponyisyg)(relations between
nouns. Similar techniques have been applied to deteconymyrelations (Girju et al., 2006). In
contrast,distributional methodsecord co-occurring words in the surrounding context ofrgea
word, and compute semantic relatedness between two taogdswsing measures of distributional
similarity such agosineor Jaccard(Mohammad and Hirst, 2012).

The strength of pattern-based approaches is that partii&ions can be identified with high
precision, if effective relation-identifying patternaxdae determined. Often, however, pattern-based
approaches are critically lacking recall. Distributioagproaches do not suffer from such coverage
problems. But distributional measures of ‘similarity’ amelatedness’ are in general not specific
enough to permit a clear-cut distinction of individual miegrrelations (Baroni and Lenci, 2011).

Pantel and Pennacchiotti (2006) propose a weakly supdryiatern-based bootstrapping al-
gorithm, Espresspthat addresses the recall problem. It admits genericrpatte high-recall, yet
low-precision patterns — which may refer to more than oneasgin class. In conjunction with
Espressts refined filtering methods, generic patterns yield higrabewithout loss of precision.

In our approach, we will perform semantic relation clasatian in a different way, using fea-
tures for classification that encode more abstliagiuistic propertiesof individual relation types.
This way we avoid the fuzziness of distributional measures at the same time, compensate for
the lack of discriminative surface patterns for the inféiedrelations we need to distinguish.

2. See Frank and Pado (2012) for an overview.
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Acquisition of (verb) inference rules. A related strand of work aims at the automatic acquisition
of inference rules. Engendered by the Recognizing TextowiEnent (RTE) challenges, the main
goal is to identify inference relations holding between fpieces of text, such that one of them
can be inferred from the other (Dagan et al., 2009). The nadfdnference that underlies the RTE
challenges is informally defined as thest probablénference that can be drawn from some text,
relying on common human understanding of language and bawwkd knowledge.

Pekar (2008), Aharon et al. (2010), Berant et al. (2012) artivan et al. (2012) extract broad
inferential relations between verbs, without sub-clgasif them into more fine-grained relation
types, such apresuppositionentailmentor cause However, knowledge about the specific inferen-
tial properties of these relations is crucial for drawingreot inferences in a given context.

Distinguishing fine-grained semantic relations between vbs. Only few attempts tried to fur-
ther distinguish inferential relations between verbs.

Chklovski and Pantel (2004) performed fine-grained seroaaltation classification with Verb-
Ocean. They built on work by Lin and Pantel (2001), who pregoa distributional measure that
extracts highly associated verbs. Chklovski and Pant€d4p@ok Lin’s semantically associated
verb pairs as a starting point and applied a semi-automatienm-based approach for determining
fine-grained semantic relation types, includisignilarity (synonyms or siblings)strength(syn-
onyms or siblings, where one of the verbs expresses a memsmaction)antonymy enablement
(atype of causal relation) arppens-beforeThis inventory of semantic relations is different from
ours. In contrast to VerbOcean, we do not consglgronymyandstrength Also, there is no direct
mapping from their entailment relatioesiablemenandhappens-beforé our target relations.

Inui et al. (2005) concentrate on the acquisition of causaltedge. They sub-classify causal
relations into the four typescause effect preconditionandmeans using the Japanese connective
markertameas a contextual indicator. They distinguish two types ofnése actions Act) and
states of affairs {OA). For causefOA;, SOA,) andeffectdct,, SOAs), SOA, happens as
a result of SOA; or Acty, respectively. WithprecondGOA,, Acts), Acty cannot happen until
SO A has taken place. Finalljpeansfct,, Acts) involves two actions sharing agents and that can
be paraphrased a&ct; in order to Act,. Unlike Inui et al. (2005) we do not distinguish subclasses
of causal relations, but consider them as special casestailment

Important work on clarifying the implicative properties wérbs has been presented by Kart-
tunen (2012). Similar to our work, he tries to divide imptiga constructions into different types,
but in contrast to our work, he studies the relation betwéenitplicative verb (phrase) and its
complement clause. Karttunen (2012) identifies differgpes of implicative signatures and classi-
fies the verbs accordingly. For exampiefuse tas a one-way implicative verb with the implicative
signature+—: the entailment applies in affirmative contexts only, andsists in negating the com-
plement clause. At present, this classification has not begmated.

Computing presuppositions. Only little work is devoted to the computational treatmehpre-
supposition. Bos (2003) adopted the algorithm of van dedBS@r®92) for presupposition resolu-
tion. His approach is embedded in the framework of DRT (Kamg Reyle, 1993). It requires
heavy preprocessing and a lexical repository of presuppoal relations. Clausen and Manning
(2009) compute presuppositions in a shallow inference déwmaonk called ‘natural logic’. Their ac-
count is restricted to computing factivity presupposisiar sentence embedding verbs. In the field
of corpus-based learning of semantic relations, the autormequisition of presupposition relations
remains understudied.
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3. A Corpus-based Method for Learning Semantic Relations

We present a corpus-based method for learning semanttiorslebetween verbs with a focus on
verbs involved in lexically triggered presupposition telas. In order to better capture the specific
properties of presuppositional relations, we embed tlsis irma discriminative classification setup.
As target classes we initially consider five relation typgsesupposition, entailment, temporal
inclusion (which coverstroponymyand proper temporal inclusioy; antonymyand synonymythat
we aim to differentiate, as well as a negative class of veils palated by some other relation, or
that do not stand in any relation at aditiier/unrelatedi®

3.1 Selection of Target Semantic Relations

This target set of relations is motivated by three critefdrst of all, we aim at a broad space of
relation types, in order to acquire a wide spectrum of refetithat bear inferential characteris-
tics. For this reason, our selection encompasses the taxomelationshypernymy/troponymy, syn-
onymyandantonymywhich have proven efficient in computational textual dntant and question-
answering tasks, as well as classical non-taxonomic inéereelations. Second, as our focus is on
relations between verbs, the relations should be chaistiteior verbs. Finally, we need to choose
relation types that are sufficiently discriminative to parmutomatic subclassification using corpus-
based methods.

Inferential relations (between verbs). Lexical resources such as WordNet (Fellbaum, 1998) or
GermaNet (Kunze and Lemnitzer, 2002) cover the core taxanoatationssynonymy(through

the notion of synsetsgntonymyandhypernymy/hyponymyn the verbal domainjypernymycor-
responds to the special relati?lmponymy(for instance,march — movemutter — talk).* These
relations are clearly inferential: for synonymous vevbsindV; and a propositiop,, based o/,

we can inferp,, /., , i.€., the propositiop,, that results from substituting; with V> and vice versa.
Antonymy allows us to inferp,, from p,,. For hypernymy or troponymy, we can infgg, from

Dy, ,» DUt we cannot infep,,, from p,,, .

Cutting across these taxonomic relations, which applyltmajor open class categories, we find
inferential relations that are specific to verbs. These aset on temporal, causal, or inferential
relations that are grounded in world knowledge about evéaisporal inclusioncausation entail-
mentor presupposition Temporal inclusiongleep — snorediffers from troponymy in thasnoring
is not a special way afleepingbut merely an action that may ocowhile sleeping.Causationcan
be considered a special form of entailment that involvesyaiphl or other external force that brings
about a state of affairdeed — eat, kill — di€Carter, 1976). Finally, we find a broad class of verbs
that lexicallyentail or presuppos®ne another, such &seathe — liveor win — play® They typically
do not instantiate hierarchically related concepts asojpdnymy, but can be characterized as ‘log-

3. In fact, we will excludesynonymylater on, for reasons relating to the specific corpus-basethads we apply.
Nevertheless we include it here, for the general discussitime inferential properties of lexical-semantic relato

4. While WordNet (Fellbaum, 1998) makes use of traponymyrelation for verbs, GermaNet uses thgpernymy
relation across the different word categories (Henrichdimdichs, 2010).

5. In what follows we adopt the commonly used convention, s Fellbaum (1998), that grounds inferential relations
holding between propositions to their licensing verbs, e refer to pairs of verbg; andVx that are able to license
entailmentor presuppositiorrelations between propositions, andp,, as standing in dexical entailmentand
presuppositiorrelation, respectively.
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ical consequences’ or ‘preconditions’ of each other andyezanded in real-world knowledge. All
of the latter relations are unidirectional, except for émtant, for which modus tollens holds.

Selecting target relations for classification. Fellbaum (1998) establishes a hierarchy of infer-
ential relations between verbs that distinguishes fouesypf lexical entailmenttroponymyand
proper temporal inclusior{which both involve a temporal inclusion relation betweerbs) are
distinguished fronbackward presuppositioandcause(which do not involve temporal inclusion).

This relation inventory is very fine-grained. In practicasitdifficult to discriminate relation
instances along the relevant criteria, such as ‘extermakfdor causation or proper temporal in-
clusion vs. coextensiveness, in order to discrimimqatger temporal inclusiofrom troponymy In
fact, although Fellbaum’s hierarchy distinguishes folatien typesbackward presuppositioand
proper temporal inclusiomave been grouped together (Richens, 2608).

In our approach we adopt a different relation hierarchy (Sigerre 1). We adopt WordNet’s
basic taxonomic relationsynonymy, antonymgnd troponymy(as a special class dfypernymy
in the verbal domain). Unlike WordNet, we rangausationwith the more generagntailment
relation. Similar to WordNet we grouproper temporal inclusiorwith troponymyas they share
inferential properties, but distinguigntailment(inclusive ofcausation from presuppositiorsince
these relations show distinct inferential behavior. Thtetawo classes differ from the former, as
the verbs are involved in temporal sequence (precedeneglapvor successiofl).This leaves us
with five relations that span a large range of inferentiagtiehs: taxonomic and non-taxonomic,
symmetric and asymmetric, that we set out to distinguishgusbrpus-based classification.

6. We follow the classical definitions f@resuppositiorandentailment as given below:
Presuppositionis defined by Strawson (1950) as follows:

A statementA presupposeanother statemer iff:

(a) if Aistrue, thenB is true; (b) if A is false, thenB is true.
Condition (b) is known as the property pérsistence under negatidhat is characteristic for presupposition. The
backward presuppositiorelation in WordNet is based on this definition, and like Ballm (1998) we ground the pre-
supposition relation holding between propositions to &kxelation holding between the presupposition-trigager
verb and the verbal predicate of the triggered presuppositi

Entailment, also referred to al®gical consequencean be defined as follows:
A semantically entail$3 iff every situation that maked true, makes3 true. (Levinson, 1983)

Similar to presupposition we consider only lexical ent@irhrelations holding between verbs that determine entail-
ment between proposition$ and B.

7. Her terminology differs from the one adopted here, wititadment’ being largely equivalent to our use of ‘inferen-
tial’. The structure of the WordNet entailment hierarchyaproduced below.

entailment
+ temporal inclusion — temporal inclusion
/\
+ troponymy (coextensiveness) — troponymy (proper inclusion) backward presupposition seau
(limp, walk (snore, sleep (succeed, try (raise, rise)

8. By grouping(backward) presuppositioand causetogether as special forms ehtailment WordNet collapses two
relation types with clearly distinct inferential propesi especially with regard to negation and cancellation (cf
Section 1 and below discussion of (5)—(7), p. 289 and Tabfe 290). Moreovercausationcan be considered a
special form ofentailment while in this taxonomyentailmenis not represented as an individuated semantic relation
type.

9. Note that the distinction between proper temporal inolugnd cases of overlap in temporal sequence is difficult.
However, we adhere to this distinction, as introduced bybaem (1998), as indeed we find clear differences in the
inferential properties of these two types of verb relations
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verb semantic relations
symmetric asymmetric

synonymy  antonymy “temporal inclusion” temporal sequence( o, >)

(fix, repair)  (go, stay)

troponymy (is-a) propefc) entailment presupposition
(mutter, talk) temporal inclusion  (buy, ow(grrive, depart) (win, play)

(snore, sleep) (breathe, live)

taxonomic non-taxonomic

Figure 1: Hierarchy of inferential semantic relations,hnselected classes printed in bold.

+ Temporal Semantic Example Behavior under Negation
Sequence Relation (V1, V) Vi, Va): Iy : pryycond pay,  (Va,Vi)i It pryycond iy,
Temporal li: 4+ 0> + li:+ O +
Precedence Entailment (buy, own) lo: — O +°© lo: 4+ &> —¢

(V1 precVs) 30 — &= — l3: — 0> —

Vi< Va ly: =(+ 0= —) l4: =(= o= +)
li: + 0> + li: 4+ 0> +
Entailment  (arrive, depart) ls: — &> +° lo: + &> —¢
Temporal l3: — O — l3: — O —

Succession gk =(+ 0> —) Iy = (= 0> +)

(V1 succls) li: + 0> + li: 4+ 0> +
Vo<W Presupposition  (win, play) ly: — &= 4P lo: + O —

I3 — O =€ lg: — O —
la: =(+ &> —) lyr =(= 0> +)
Temporal li: 4+ 0> + li: 4+ 0> +
Overlap Entailment  (breathe, live) ls: — &> +° lo: + O ¢
(V10V2) l3: — O — lg: — O —
ly: =(+ 0= —) ly: =(= o= +)
Temporal i+ o0+ 10+ O +
Inclusion (snore, sleep) Iy: — &> 4P lo: + O —
(Proper T.I. b — o> =€ I3 — O~ —
& Troponymy)  (mutter, talk) 14: —=(+ o> —) l4: =(— &> +)
I (+ O +) l1: (4 0= +)
Antonymy (love, hate)  1y: — O +t2d: lo: + 0> —
_ Temporal !3:_‘(_ O _)t.n.d. |3: _‘(_ O _)t.n.d.
Sequence ly: + 0> — ly: — O 4t0d:
li: +0- + li: + 0> +
Synonymy (fix, repair) lo: =(— &= +) lo: =(+ &> —)
lg: — O — lg: — O —
l4: =(4+ &> —) l4: =(— &> +)

Table 1: Inferential properties of verb relation typed—: positive/negative polarity of; /V5.
p indicatesPersistence under Negatipa: Cancellation e: Exception t.n.d: Tertium non datur
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Inferential properties. Table 1 details the inferential properties we find with inses of verb
pairs instantiating the chosen relation types. These piiepewill establish important criteria for
the automatic classification of verb relations into thee¢agjasses.

We discriminate verb paird/{,13) along two dimensions: thetemporal sequence properties
in terms of the typical temporal relation holding betweerresponding events (or no such relation),
and theirinferential behavioyr especially with regard to thebvehavior under negationinferences
that are found valid for the different subclasses are etatutor both directions (i.e., with or V5
as trigger verb) and are specified using modal conditiométstents relating propositions involving
the related verbs. We make use of epistemic conditionalshi@racterizing the inferential properties
for different combinations of verb polarities, as the decis for classification made by human
annotators are best guided in terms of epistemic modal mgagaln judging inferential patterns for
related verb pairs, subjects consider whether possihlatsins that support the truth of an event
referred to byl; will also support the truth of an event referred toy

For each relation type we consider four inferential patdih to 7,) using positive 4) and
negative ) polarity of the related verb¥. An (epistemic) conditional thatecessarily holds true
(py, O py,) corresponds tahe valid inferencehat whenevep,, is true in an (epistemically)
accessible world, p,, holds true inw. The weakeexistential readindp,, ¢— p.,) is true if there
is at least one (epistemically) accessible warldvherep,, is true that also supports the truth of
Dvy- Thatis, we can conclude from,, thatp,, may hold true or notp,, V —py,. =(py, S Pu,)
represents aegative inferencd.e., we cannot conclude,, from p,, .

Table 1 shows a clear contrast between symmetric and asymomadations. Thesymmetric
relations synonymgndantonymyshow symmetric inference patterns when applying forwardbk a
backwards inferenced( : p,, cond p,, VS. I, : p,,cond p,,). For both relation types, the infer-
ences reflect the core logical properties of the respeatiagions, allowing us to infep,, from p,,
for synonymy and-p,, from p,, for antonymy (with obvious variations for different polaes) !

The asymmetric relationgpresupposition, entailment, temporal inclusiall pattern alike in
terms of the forwards and backwards inferen€eand,, which allow us to infep,, from p,, in
forward direction (with, the corollary ofl; in the same direction) anép,,, from —p,,, in backward
direction. In forward direction, all asymmetric relatiorpes permit us to conclude, V —p,, from
—pu,, et itis the inference typek and/; that mark the core of their differences.

The inferential patterns, and/s, while superficially similar in forward direction, strigttivide
entailment(E) (in all possible ways of temporal sequencing) frprasuppositior(P) andtemporal
inclusion (T), in that for entailment applying common sense reasoning, we can infgy, from
—py, as the ‘normal course of things’, while fpresuppositiorandtemporal inclusiorwe can in
general concludg,,, from —p,,, in line with the well-known inferential property of prequgsitions
that ‘survive under negation’ (Levinson, 1983). That i€ torresponding inferencds for entail-
mentand /3 for presuppositiorandtemporal inclusiorrepresent exceptional cases é&mtailment
and cancellation of presuppositions in the caspresuppositiorandtemporal inclusiont?

10. The conditional statements used in Table 1 to charaeteailid inferences serve expository purposes only. Wevoll
the definition of conditionals using a standard definitiorpistemic accessibility (see e.g. Gamut (1991)).

11. Note that for antonymy we adopt an idealized situatiofiesfium non datur’, that is, we only consider antonyms
that realize the extreme ends of a scale, and ignore anyriatBate values, such aging indifferent for love and
hate This assumption affects the inference patterns with megantecedents for antonymy.

12. I, in forward direction, with-V; as a trigger verb for entailment, represents a typical fofimbaductive inference
that is subject to cancellation (similar ig for presupposition). Karttunen (2012), following Geis aiwdcky (1971),
calls such non-monotonic inferences ‘invited inferences’
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This can be shown by applying a number of paraphrase teserlopairs for the various rela-
tions, as illustrated in (5) to (7). The paraphrase patted) shows thap,, can be consistent with
Du,» but it does not discriminate the underlying differencesvieen the relation types, nor does (6),
which is designed to test for ‘persistence under negatisms &ypical for presuppositions.

(5) You don't/didn’tV; but you (have)ls.13
(6) You don't/didn’tV;, and this is because you didi} in the first place-?

However, (7), which explicitly refers to exceptional stioas that do not correspond to the
‘normal course of events’, clearly establishes thatailmentrelations are subject to exceptional
conditions that can make the universal conditional faidl€f), while for (7.a—c) the oddity of ‘ex-
ception catching paraphrases’ corroborates the behakipresuppositiorandtemporal inclusion

as being persistent under negation in their default ingtation. It is only by explicit cancellation,
as in (6), that-p,, can be inferred fromp,, .

(7)a.—c.# You didn’twin/snore/mutter so you didn'tplay/sleep/talkor you might haveplayed/

slept/talkedbut something exceptional happened so that you didimtsnore/mutter
PVa< Vi T,V C Vo, T, V1 C V)

d. You didn'tarrive, so you didn’'tdepartor you might havedepartedbout something excep-
tional happened so that you did@itrive. (E, Vo < V1)

e. You didn'tbuyit, so you don’townit or you mightownit but something exceptional is
the case so that you didrBuyit. (E, V4 < V%)

f. He doesn'tbreathe so he doesntive/isn't alive or he mightive / bealive and something
exceptional is the case so that he doebréathe (E, V7 0 15)

These differences are recorded in Table 1 by marking forsvarfdérences under negatioh)
as subject to ‘exceptionsg) for all entailmentrelation types (with/,, in backward direction, as
its inverse). In contrast], is marked as the default inference: (‘persistence under negation’)

13. Paraphrase instances foesuppositior{P), entailmentE) andtemporal inclusion(T):

(i) You didn't win, but you haveplayed (P)
(ii) You didn’t snore but you haveslept (T)
(i) You didn’t mutter, but you havealked (T)
(iv) You didn't arrive, but you havedeparted (E)
(v) You didn't buyit, but youownit. (E)
(vi) He doesn'tbreathe but he (still)lives/ is alive. (E)

14. Example (v) is slightly anomalous, but this is not spedifi the entailmentrelation, but rather due to temporal
sequence properties, with following Vi, which does not conform to this specific pattern.

(i) You didn't win, and this is because you didplay in the first place. (P)
(ii) You didn’t snore and this is because you didsteepin the first place. (T)
(i) You didn’t mutter, and this is because you didtlk in the first place. (T)
(iv) You didn't arrive, and this is because you didifepartin the first place. (E)
(v) # You didn’tbuyit, and this is because you didmtwnit in the first place. (E)
(vi) He doesn'tbreathe and this is because he doedive / isn't alive in the first place. (E)
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Inference patterngf,%3)

Relation Temp.Rell(1,V2) |, @ piy, OPPto, Example
i+ 0> + | buy — I own
Entailment Vi (<0,>) Vs lo: — O OxcOPtion | don't buy, but | (still) own
(buy, own l3: — &> — | don’t buy, so | (normally) don’t own
la: =(4 0= —)
Presupposition Vo <Wy li:+ 0o + I win — | played
(win, play) lo: — ¢ - Persistence | didn’t win but/when | played
Temp. Inclusion l3: — ¢ —cancellation | didn’t win — because | didn’t play
(snore, sleep Vi clis-aV, ly: =(4 o> —)
l1:2(+ &> +) )
Antonymy notemp. seq. ol — O 4tertiumn.d. you don't love — you hate
(love, hate) I3:=(— ¢ —)tertium n.d.
ly: 4+ 0= you love — you don't hate
li: + 0> + | fix — | repair
Synonymy notemp. seq. ol—(— <> +)
(fix, repair) l3: — 0> — | don’t fix — | don't repair
l4: =(+ &> —)

Table 2: Inference patterns and paraphrases for the diffestation types.

for presuppositionand similarly for both relation subtypes @mporal inclusion proper temporal
inclusion énore, sleepandtroponymy(multter, talk. Conversely/s represents the case of ‘cancel-
lation’ (c) for presuppositiorandtemporal inclusionwhereas it represents the ‘normal course of
events’ forentailment

Table 2 summarizes these outcomes, by aligning the inferpatterns for the main relation
types with the inference paraphrases they support as ‘foomanvited’ inferences, or as infer-
ences that must be marked as exceptions.

3.2 Discriminating Properties of Semantic Relations betwen Verbs

As can be seen from this analysis, the inferential propedi¢he chosen set of relations are complex
and difficult to distinguish. However, their inferentialgperties go along with two dimensions:
temporal sequence properties on the one hand and behatforegard to negation on the other.

Temporal sequence. We observe that the taxonomic lexical semantic relat@m®nymy syn-
onymyandtemporal inclusiortypically do not involve a temporal order. In contrgstesupposition
relations between verbs do involve a temporal sequenceeViédmd that is presupposed, being con-
sidered as a precondition, typically precedes the eventriggers the presupposition. The verbs
which stand in arentailmentrelation may or may not involve a temporal succession: therthyv
realized verb can precede or succeed the entailed verb,éatso find events that are temporally
overlapping, such dsve / be aliveandbreath

Negation. Another important aspect is the behavior of the differenaetic relations under nega-
tion. Presuppositiorandtemporal inclusiorare preserved under negation. This distinguishes them
from entailmentandsynonymywhich do not persist under negation.
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Behavior under Negation

Vi, Va) (=W, Ve) (=W, —Va) (VA —VR)

V, preceded’ E (EF E
Temporal V; succeed$’ E (Ey E
Sequence P P (P)
V1 overlapsls E (S E
T T (M)e
No temporal A A
sequence S S

Table 3: Properties of the Semantic Relations: P(resuppo)i E(ntailment), T(emporal
Inclusion), A(ntonymy), S(ynonymy};: exceptionsg: cancellation.

In fact, these temporal sequence and negation propertiss-ctassify and fully distinguish the
selected semantic relation classes. This is schematieadhgsented in Table 3.

The table reads as follows. We continue to Ui§eas a placeholder for the trigger verb and
V5 for the related ver® For the two dimensionbehavior under negatioandtemporal sequence
we list the possible instantiations of these relation prige in terms of different combinations of
negated and non-negated verb predicates and the differgunescing possibilitiesV; (typically)
temporally precedes/succeeds/overlaps Withor no temporal sequence can be determined. Within
the table fields we record the relation types that supportdheesponding inference patterns.

For thepresuppositiorverb pair(win, play) for instance, the event of winning/) typically
temporally succeeds the event of playing); P(resupposition) therefore fills the second row. The
presuppositional relation holds in case both events agrtasisto hold true. P(resupposition) there-
fore fills the first column, markedV;,V5). The event of not winning could be interpreted in two
ways: its default interpretation: persistence under negat you do not win although you've been
playing (—V1, V»), or else cancellation — you did not win because you did ret pt all(=V;, =V43).

But crucially, winning without playindV;, —V5) does not conform with the presuppositional rela-
tion between these verbs, so the respective field remaing/emp

For entailmentpairs (E) such agKill, die) or (buy, own) we note thaty being killed entailsy
being dead V1, V»), but if y is not killed we do in general not conclude thais dead(—V1, V5) —
unless by considering other possible causes that may nairisdered relevant in the situation at
hand. Thus, ify is not killed, we assume as default interpretation that éamdrmal circumstances)

y is not dead (again — unless from some other ca(isg), —15).16

Both cancellation fopresupposition(c) and exceptional cases for inference under negated an-
tecedents foentailmente) are thus marked as exceptional inference patterns (itedidzy brackets)
that we do not assume to find frequently realized in corpusinees.

15. For the symmetric relatiommtonymyandsynonymyhere is no distinguished trigger verb.

16. This assumption is debatable, as only the inverse oelétiV>, V1) is strictly entailed: ify is not deady has
not been killed. However, as discussed above, we includectse as a typical form of abductive inference that is
subject to cancellation as is presupposition whenever welgtier—V; as a trigger verb for entailment. Note that
nothing hinges on this assumption regarding the discritivi@gower of negation properties, as entailment differs
from presupposition regarding persistence under negation
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By examining these temporal and negation properties enlcodéable 3, we find that they can
be used to discriminate the considered semantic relatjpesty

()  Presuppositiorand entailment(whether or not temporally related) are distinguished an th
basis of persistence under negation, which holdgfesuppositioronly. The same holds for
temporal inclusiorvs. entailment

(i)  Temporal inclusiorandpresuppositiorbehave alike regarding negation properties, but can be
distinguished in terms of temporal sequencing properties.

(i) Entailmentbetween overlapping events is difficult to distinguish fréproper) temporal in-
clusionsolely on the basis of temporal properties. But due to timéarential behavior under
negation, they can be clearly distinguished.

(iv) Antonymyclearly differs fromentailmentandpresuppositiorwith respect to both properties,
and fromtemporal inclusionregarding negation properties.

(v) Finally, antonymyandsynonymyare opposites to each other regarding negation properties.

According to this analysis, the observed temporal and imyqroperties could be used to
discriminate four of the five semantic relation typ&ynonymyandentailmentare difficult to dis-
tinguish in cases whemntailmentdoes not involve a temporal sequence. However, as will becom
clear below, in our corpus-based classification approaehwyill not be able to detect verb pair can-
didates for thesynonymyelation. Hence, we exclude this relation type for indegendeasons and
range it under the clagsrelated The remaining four relation types that will be subject tassi-
fication: presupposition, entailment, temporal inclusiamdantonymywill be distinguished from a
fifth class of unrelated verb pairs —which will include sygiotous verbs, in case they (accidentally)
are found to co-occur in corpus instances.

3.3 Automatic Classification of Fine-grained Semantic Relions

We pursue @orpus-basedupervised classification approach to automatically deisat distinguish
candidate verb pairs, given as types, as pertaining to omeraarget semantic relation types. To this
end, we exploit the insights gained from the above analysis fielded discriminating properties
of these semantic relation types on the basiseafiporal sequencand negation properties In
addition, we will employ a third dimension of contextualatednesswhich records surface-level
contextual relatedness properties of these semantitorsausing indicators such as embedding or
coordinating conjunctions. These relatedness featurbbbeviutilized to distinguish semantically
related fromunrelatedverb pairs, as we expect their contextual relatedness grepéo be more
diverse compared to semantically related verb pairs. M@eaontextual relatedness properties
can be useful in cases where temporal or negation propargedifficult.

Selecting informative ‘contiguous’ corpus samples. For this approach we collect corpus sam-
ples of verb pairs co-occurring singlesentences. Even though co-occurrence in a single sentence
bears high potential for the verbs being realized in a clggsgagmatic relationship, this is not
necessarily so. We therefore design a set of features thadteadicative of a close syntagmatic
relationship between co-occurring verbs. We will referttese features amntiguity features’

17. Typical configurations of ‘contiguously related’ verdo® illustrated in (i).

(i.a) Replyingto the toast[..], Dr Julia Kingaid how privileged the Faculty was to have two active alumni esdimns.
(i.b) You cansendus your comments by simpbficking on this email.
(i.c) This allows you taconnectanddisconneceasily.
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On the basis of a corpus study, we identified properties @mate indicative for contiguously
related verbs in context: the distance between verbs, dloeurrrence in specific grammatical con-
figurations as indicated by dependency relations or cotijums; and co-referential binding of the
arguments of both verbs. These features will be employedifiacting contextual contiguity of verb
pairs in specific contexts, and used to select context sanleclassification that are informative
for sub-classifying the semantic relations — including uheelatedclass (see Section 5.3.2).

Detecting type-based features for classification. Our classification aims at assigning relation
classes taerb pair typesand thus the feature vectors employed for classificatiostinel defined
accordingly at the type level. The temporal and negatiompgnties we established as being dis-
criminative for the chosen set of relations are equblpe-based That is, they express properties
we can identify in individual context samples, but not neeeidy in all of them. In a corpus-based
approach, we need to capture sugpe-basegroperties on the basis of individual classifications
at the level of corpus samples, by observing and generglthi@ information found with individual
corpus samples. For our main classification features, thi$&obtained in the following ways®

In order to predictemporal sequenceproperties as a type-level feature, we detect the temporal
relation holding between individual verb pair occurrenaad compute the most prevalent temporal
relation type for a given verb pair on the basis of these ifleg8ons, by applying an association
measure such as point-wise mutual information (PMI).

For determining thdehavior of inference under negationwe need to detect instances of all
possible verb polarity combinationg:V;, +V5) for different verb pairs in context. That is, we
extract the information whether both verbs have positegétive polarity, or whether the first verb
has positive/negative polarity and the second verb hadimefpsitive polarity.

From this token-level information we compute the probapifor eachpolarity combination
for any given verb pair. The obtained probabilities can b@mpea to the negation properties of
relations as displayed in Table 3, where low probability gfodarity combination corresponds to
unavailable or exceptional cases, and high probability ifesis attested inference possibilities,
under the respective relation.

In order to obtain type-basa@latednessfeatures, we raise twoontiguity features to the type
level: verb distance and relating conjunctions. Inforimatabout the average distance between
verbs is crucial for distinguishing related and unrelatedowpair types. The distribution of con-
junctions relating certain verb pairs can contribute iatliee information for distinguishing specific
semantic relations (e.cantonymyor temporal inclusiol, or may indicate that the verbs are (prob-
ably) unrelated. Finally, we measure the association b@tvepecific verb pairs on the basis of
co-occurrence information manifested in a corpus, usind &dMassociation measure and use its
strength as a type-based relatedness feature.

Supervised classification using manually labeled verb pag (at the type level). We are going
to perform supervised type-based classification using-bgsed feature vectors. That is, we need
a training set of verb pairs annotated with the appropriateasitic relation (or the classirelated

18. Detailed description of the features employed for diassion is given in Section 5.2.
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on the type level, i.e., for verb pairs out of context, andoagingly, we need a gold standard data
set of unseen annotated verb p&ithat can be used for testing.

Features for the type-based classification will be acqume@ach verb pair in the training set,
and similarly for the test set, using evidence gained frompu® sentences involving verb pairs that
have been determined as becmntiguouslyrelated. The features indicating the respective relation
properties are acquired from the corpus samples and raisti ttype level, as described above.
In our experiments, the corpus samples will be drawn fronrgelsveb-based corpus, the ukWwaC
corpus (Baroni et al., 2009). At this step we excluded th@symy relation, as even in such a large
corpus, synonymous verbs usually do not occur contigudnsdysingle sentence.

Establishing annotated training and testing data sets. In order to build appropriate training and
testing data sets, we cannot make use of existing resourchsas WordNet or VerbOcean, as they
assume different inventories of semantic relations (seé@®e3.1). We thus designed an annotation
task for our target relation set, to construct training auding data for the classification.

4. Challenges of Annotation

Annotating semantic relations, especially the relatipresuppositiorandentailment is a difficult
task because of the subtlety of the tests and the involveididaes. In order to obtain reliable anno-
tations it is important to define the task in an easy and aititesgay and to give clear instructions
to the annotators.

For an initial annotation study we randomly selected a seaatiple of 100 verb pairs for anno-
tation. A further set of 250 verb pairs were annotated in &segl question-based annotation setup.
The resulting annotated data sets were used as developniegolal standard test sets, respectively,
for evaluating automatic semantic relation classificatio®ection 5. The verb pair candidates for
annotation were chosen from the DIRT collection (Lin andtBlai2001), a collection of automati-
cally acquired semantically related verbs (see Section 284).

4.1 Initial Annotation Strategies

As a first take, we formulated two complementary annotatéskd: one was applied to verb pairs
given as types out of contextype-based annotatigrand another was applied to verb pairs pre-
sented in contexttgken-based annotatipnWe analyzed the difficulty of annotation in the respec-
tive annotation setups and examined to what degree thegksresrrelate. In order to analyze
the difficulty of annotation we gave each task to two annosaémd computed the inter-annotator
agreement between theih.

4.1.1 TYPE-BASED ANNOTATION

In this setup the verb pairs were presented to the annotaitirsut context. Since some verbs can
have more than one meaning and consequently verbs in a gavbip&ir can stand in more than one
semantic relation, the annotators were allowed to assige than one relation to each verb pair.

19. We restrict the notion of ‘gold standard’ data set to thteset of manually annotated verb pairs that we use for tgstin

20. The annotators are trained computational linguistiedents. They are native speakers of German with a high level
of proficiency in English. The pairs of annotators which tqakt in the different annotation tasks are not always
the same. Only one student has taken part in both tasks arahhetations were taken to analyze the correlation
between the different annotations.
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Semantic Relation  Pattern Example  Substitution in pattern
Presupposition V; presupposess, win —play winningpresupposeglaying

not V; presupposeg; not winningpresupposeglaying
Entailment V1 implies Vs, kill —die killing impliesdying

not V;, doesn’timplyVs not killing doesn’t implydying
Temporal V1 happens durind/s or ~ snore—sleep  snorindghappens duringleeping
Inclusion V; is a special form of, mutter—talk  mutteringis a special form ofalking
Antonymy eitherV; or V3, go-stay eithergoingor staying

V, is the opposite of; goingis the opposite oftaying
Other/unrelated  none of the above jump—sing

Table 4: Semantic Relations and Inference Patterns for fatioo.

To support the annotators in their decisions, we providethtiwith a couple of inference pat-
terns and examples for each semantic relation. This is siowable 4.

The inter-annotator agreement (IAA) for this task was 63%esponding to a Kappavalue
of K =0.47. This can be taken as an indication of high difficultyewlannotation of these semantic
relations is performed out of context.

4.1.2 TOKEN-BASED ANNOTATION

In a complementary setup, we tried to simplify the task bygliog the annotators with verb pairs
in their original contexts, consisting of single sentendes this token-based annotation we chose
the same 100 verb pairs and randomly selected 5 to 10 corfitex@sach of them (there were 877
contexts overall). In contrast to type-based annotatiapnly accepted a single relation label for
a given verb pair.

The inter-annotator agreement for this task was IAA = 77 .défresponding to a Kappa value of
K =0.44. Error analysis showed that the most important problare not due to semantic relations
which are difficult to distinguish (e.gpresuppositiorand entailmen}, but rather in determining
whether or not there is a specific semantic relation betwaerverbs in a given context, i.e., the
distinction between the ‘unrelated/other’ in contrasthi® temaining semantic relation classes.

4.1.3 TYPE-BASED VS. TOKEN-BASED ANNOTATION

We examined the correlation between type- and token-basedtations by comparing the anno-
tations of a single annotator for both annotation t#8k3d\e chose only one annotator for this
comparison, because we wanted to analyze how the decisiame@nd the same annotator were
affected by the different annotation setdpsFor 62% of the verb pair types we observe an over-
lap of labels, 28% of the verb pair types were assigned laielhe basis of the annotations in
context which were not present on the type level, or elseythe kevel label was not assigned in
context, because of the small amount of contexts for a veirb par 10% of verb pair types we

21. Cohen’s Kappa; see Cohen (1960).

22. Only one annotator has taken part in both annotatiorstask

23. Since in the initial task settings no translation of vealirs was involved (cf. Section 4.3), it was not possible&aé
such differences across annotators.
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found conflicting annotations (e.gresuppositiorandentailmeny. Thus, for the most part (62%)
the type-based annotation conforms with the ground truthioéd from token-based annotation.
An additional 28% of verb pairs can be considered to be pialgntorrect. The divergences for
these verb pairs could be explained by the random procedu@entext extraction which does not
always return appropriate contexts. They can also be exqadiy the difficulty for the annotator to
consider all possible verb meanings for highly ambiguoubw@ type-based annotation.

4.2 A Question-based Annotation Strategy using Prototypal Arguments

Our analysis of the two annotation setups clearly showshbidt are difficult, yet in different ways.
Annotation on the type level is difficult because no indicatis given about the intended meaning
of the verbs. Hence the annotators need to consider allljessimbinations of meanings for any
pairing of verbs. On the other hand, presenting the pairsdin briginal context does not make the
decision much easier. This is because some sentencesdroaiwplex structure and interpretation
difficulties, which require a lot of attention and time to atate the individual examples. In general,
the inference patterns offered to the annotators as dac@iteria are rather involved, so they
are sometimes difficult to check — with or without context. @ngral drawback of token-based
annotation is that it is difficult to sample appropriate exts$ for a balanced annotation set across
the different relation types, and that annotation is nerdggime-consuming and expensive.

In order to render the annotation task more reliable andilessconsuming, we need an anno-
tation strategy that includes the positive elements of bottotation strategies described above and
that better supports the annotators in deciding on thegiplity of the inference patterns.

Prototypical arguments in type-based annotation. One solution that captures positive aspects of
type- and token-based annotation could be to have annetedosidenverb pairs with prototypical
argumentdnstead of offering them concrete sentences as disambiguadntexts. The argument
abstractions could be represented by selectional prefereasses. This offers the annotators hints
on relevant readings to consider without them having to @zl understand involved discourse
snippets. At the same time, with a single reading of the verto¢us, the annotators do not need
to consider and check pairs of verbs with multiple readingsidently, annotation will proceed
much quicker if it can be performed at the type level, everiffetent interpretation variants must
be considered, based on selectional preference classes.

Question-based annotation. In order to support annotators in the verification of compiégr-
ence patterns, we develomaestion scenarito collect annotations. The idea is to guide the anno-
tator step by step through the discriminative categoripiraperties, in particular temporal sequence
and behavior under negation, using a cascade of case-ddgmstions tailored to the verb pairs
under investigation. The questions elicit the criticalgeie of information needed to sub-classify the
verb pair in question, according to the properties of refegidisplayed in Table 3.

A set of cascaded questions guide the annotator througlelallant decision criteria, where
each question elicits only three possible answéiess / No / MayhbeIn general, each annotation
instance will be decided by three such consecutive questibime collected answers can be used to
distinguish between the target semantic relations andtthasnotate the data.

We pursued both strategies: the use of prototypical argtsram question-based annotation,
and applied them jointly in a third annotation task. Examgnihe annotation quality obtained, we
achieve considerable improvements, with an acceptableder inter-annotator agreement.
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verb pairs with prototypical arguments semantic relation

MiSSPERSON PERSON — catChPERSON PERSON  UNRELATED(MISS, catch)
MIiSSPERSON TRAIN) — catChPERSON TRAIN) ANTONYMY (miss, catch)

Table 5: Enriching verb pairs with prototypical arguments.

Expert vs. non-expert annotation. Our annotators are trained computational linguisticsesttgd
Since annotation is time-consuming and expensive, an abwoestion is whether this simplified
annotation setup — with annotation decisions broken dowsnrmore basic units — can make this
difficult annotation task accessible for non-expert antma If so, we could collect larger sets of
annotations using crowd-sourcing (Munro et al., 2010). Wlktherefore compare the annotation
quality obtained from linguistic experts to non-expert atiations.

4.2.1 INTEGRATING PROTOTYPICAL ARGUMENTS IN TYPE-BASED ANNOTATION

Our analysis of problems in type-based and token-basedtatioro clearly showed that a general
problem is the difficulty to capture verb interpretation doethe ambiguity of verbs. The clas-
sification decisions crucially depend on verb interpretatand thus need to be controlled in the
annotation task. Further, we need to make sure annotatosden all relevant readings. Both
aspects are difficult to control in type-based annotationtoken-based annotation, annotators are
often confronted with shades of meaning influenced by theipeontext, which make decisions
too case-specific and erroneous.

We thus opt for a type-based annotation scheme that allows afsstract away from concrete
contexts and that at the same time allows us to control fdp eenbiguity. This is achieved by
offering prototypical arguments of the verbs, in terms déstonal preferences computed from
corpora. The presentation of the verb pairs along with pypioal arguments helps the annotators
focus on specific readings of the verbs, and thus avoid instemé annotations.

An example is given in Table 5 for the verb paiissandcatch When annotating this verb pair
without context, two readings ahissmay be consideredniss (1): feel or suffer from the lack of
andmiss (2): fail to reach or get toFor the first reading, the annotator should determine thel la
unrelated while for the second readingntonymywould be the appropriate label.

Without control of context, the annotators could miss onéherother reading, and we cannot
trace which reading motivated the provided labels. Prasgtiie verbs with prototypical arguments
as generalizations directs the annotators to the apptepnigrpretation and they can determine the
corresponding label. Since we record the arguments providid the verbs, this kind of sense dis-
crimination is available for both the learning and the dfasstion process. It will also be crucial for
inference in context, as it allows us to restrict inferentienplied verb meanings to the appropriate
interpretation of the trigger verb in a given context.

For the computation of prototypical arguments of verb pawsapply Resnik (1996)’s approach
for computing selectional preference scores for verb asqpim With this we determine preference
semantic classes as prototypical argumenguilsject, objecandprepositional objecfunction.

Computing selectional association scores for verb pairs. Resnik (1996) proposes an information-
theoretic measure to computselectional association scoletween a predicaig and a semantic
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classc that fills an argument of; as given in (8f* He definesselectional preference strength
S(p;) as the amount of information provided by the predicatdor the posterior probability of
co-occurring with some argument classompared to its prior probability. Given this measure, he
computes thaelectional association scoletween a predicate and a given particular ctdsg its
relative contribution to the predicate’s overall seleacéibpreference strength.

P(CIPi)logL‘f”
®) Alpi,c) = —<p7

with S(p;) = >, P(c|p;) log —PI(J”(‘S”

Since we are dealing with pairs of verbs, we slightly modifis tmeasure to reflect the associa-
tion of a class: with both verb predicateg; andp;, as stated in (9).

P(clpi,pj)
P(clpi,p;) log — -
(9) A(plyp]7c) = ;(pi7pj) —

We computed selectional preference scores for all verbgaaididates offered to the annota-
tors, using the adapted measure in¥9Prototypical arguments were selected manually from the
arguments with the highest scorés.

Controlling interpretation choices in the annotation task.  Having computed prototypical (pref-
erential) argument classes for given verb pair candidétese can be presented to the annotators
as illustrated in Table 5.

However, in a number of cases prototypical arguments arsuffitient to clearly discriminate
predicate interpretations. In order to detect such casesasked the annotators to translate the
predicates into their mother language (if possiBlefExamples of diverging interpretations are given
in Table 6, together with the labels the annotators assifpratie interpretations they perceived.

Differences in translations were inspected manually. keaaf divergences of interpretation,
we not only record the actual interpretations chosen by ti®tators, but also let the annotators
re-annotate such verb pairs using the interpretation af tmenpanion annotator as a constraint.
This way we collect annotations for a maximum number of negsli

4.2.2 QUESTION-BASED ANNOTATION FOR CLASSIFYING SEMANTIC RELATIONS

The complex inference patterns that need to be considerediér to distinguistentailment, pre-

supposition, temporal inclusioand antonymymake the annotation difficult and error-prone. We
therefore devise a question-based annotation setup thaitddown these complex annotation de-
cisions into more basic units that are easier to decide. tawise manner we elicit answers that

24. Semantic classis taken from a conceptional taxonomy. In our work we chosedNet (Version 3.0) as used in the
NLTK implementatiorht t p: / / nl t k. or g.

25. Probabilities were estimated from Sections 1 to 3 of #reqd ukWAC corpus (Baroni et al., 2009). Parsing was per-
formed using the Stanford Parser V1.6t p: // nl p. st anf or d. edu/ sof t war e/ | ex- parser.shtn .

26. We opted for manual selection for the time being, in ordérto introduce noise into the annotation process.

27. In our experiment the annotation was done for English d&jve speakers of German, hence translation was to
German. Translation could also be into some other langudigénct from the language of the annotation task) as
long as it is the same for both annotators.

300



DISCRIMINATIVE ANALYSIS OF FINE-GRAINED SEMANTIC RELATIONS

Verb pair reviewWPERSON MATERIAL ) — teaC{PERSON PERSON

Annotator TranslatiorV; TranslationVs Relation Assigned

Al bewerten (critique) unterrichten (teachpyNRELATED(review, teach)

A2 wiederholen (reexamine) unterrichten (teach)emp. INCcLUSION(review, teach)
Verb pair cry(PERSON — be scare(PERsON

Annotator  TranslatioV; Translationl; Relation Assigned

Al schreien (yell) erschrecken (be scared) TEMP. INCLUSION(CrY, be scared)
A2 weinen (weep)  sich furchten (be afraid) uNRELATED(CryY, be scared)

Table 6: Capturing sense distinctions through translatic@erman.

guide the annotators towards a classification using theidlis@tive properties we established in
Section 3: properties démporal sequencandbehavior under negation

This question-based annotation scheme naturally extdmderthanced representation of verb
pairs using prototypical arguments. In fact, it is depemdenthis novel representation. Using
appropriate placeholders, we generate skeleton sentérci® target predicates and their proto-
typical arguments. These are presented to the annotata)edp them check and decide on the
different relation properties that hold for the generatedhpes. This novel presentation scheme can
thus be considered a compromise between the context-lpssed annotation and the context-
rich token-based annotation setups examined in Section 4.1

Our method is best illustrated using an example. Figure @aifs questions and answer possi-
bilities for annotating the verb pdiearn—speak Using Resnik’s selectional association scores, we
determinerERSONaNd LANGUAGE as prototypical argument classes for this verb pair. Froeseh
abstract representations including predicate, protoff@rguments and prepositions, we generate
sample phrases, as seen in questit® Here we elicit translations to German for the given verbs
in their typical argument context, to record the interpietes perceived by the annotators.

QuestionQ) is designed to determine the temporal order in which thetsvigpically occur.
This question is offered in two ways: by generating the twibyahrases in the respective orders with
appropriate temporal conjunctionand then; at the same tiqeThese options are supplemented
with the corresponding fine-grained temporal relation sypeAllen (1983)’s classificatio®® We
target a coarse three-way distinctibefore, afterand during that each encompasses several of
Allen’s relations. This was determined sufficient for clisation and necessary for annotation,
given that the annotators also consider borderline casgaglthe graphical representations of these
relations, we defined a mapping from Allen’s relations t@écoarse temporal relation classes that
we offered to the annotators (cf. Appendix 3f).

28. In order to generate natural phrases, we substitute abisteact classes likeersoNwith proper names such as
John or LANGUAGE with Spanish

29. The annotation interface allows easy access to an evenfi the relation inventory (cf. Appendix I). We employed
in particular the graphical representation of Allen’s tiglas, which proved to be very helpful for the annotators in
order to decide on the appropriate relation.

30. Note that the coarse temporal relations ‘before(X,¥) &after(X,Y)’ include the respective overlap conditions
where Y overlaps with the preceding/following X, whereasagsign ‘during(X,Y)’ for all cases where X is fully

301



TREMPER ANDFRANK

Qo: /I Characterizing the interpretation of the events: //
Please give a translation for the vetearn andspeakin these readings:
X: John learns Spanish. translation;
Y: John speaks Spanish. translation:

Q@1: /I Determining the temporal order of events: //
What is the typical order of the following events?
a) John learns Spanish and then he speaks Spanish. X before Y: {m, 0,<}
b) John speaks Spanish and then he learns Spanish. X after Y: {mi, oi, >}
c¢) John learns Spanish and he speaks Spanish at the same tiXeluring Y: {s, si, f, fi, d, di, 3
d) More than one order of events is possible.
e) Not sure (difficult to define)

Q2: /I Determining negation properties: X and Y? //
John learns Spanish. Will he speak Spanish?
a) Yes (X and Y)
b) No (X and—Y)
¢) Maybe (X and Y or—Y) — Persistence under Negaties presupposition

Qg¢: /I Determining negation properties: =X and Y? //
John does not learn Spanish. Will he speak Spanish?
a) Yes (-X and Y) — none
b) No (=X and—Y) — Cancellation— presupposition
¢) Maybe X and—Y or Y) — none

Result:PRE(SPEAK,LEARN)

Figure 2: Annotation questions for the verb paiarn — speak

The next set of questions is designed to elicit inferencegmties with respect to negation. The
verb pairs are presented in sentence pairs consisting oflardive statement involving the first
verb and a subsequent question involving the second veris. pHir inquires whether the second
sentence can be assumed to hold true given the first one iglecets true’! In case the annotator
has selected) X before Y, @» will be chosen as a follow-up question, querying the depeoe®f
Y (= spealls truth on X (=learn) holding true: X and Y?. Here the annotator may choagYes:

X and Y If you learn a language, you will (be able to) speak But more realistically, he or she
should choose) Maybe: X and Y/=Y You may or may not be able to speak the language after
having studied it.If the latter option is taken, the relation will be a candal&br presupposition
(PRE(Y=SPEAK, X=LEARN)) as answer c) establishes persistence under negatione Aathe time,
answer c) excludesntailment(ENT(X=LEARN, Y=sPEAK)).3?> Given answer c) is selected fGl,,

we further check inference regarding the negation of X. Thidone in questiod)s: —X and Y?.

included in Y’s interval. These three coarse temporal i@hatare intended to correspond to the relations ‘precedes’
‘succeeds’ and ‘overlap’ for temporally related events sexin Table 1, p. 287.

31. The order in which X and Y are presented as well as theipteah inflection is dependent on the answer to question
Q1. Note further that depending on the relation being consigieX and Y may change roles in being considered as
trigger verbs, which fill the first argument of the relation.

32. This judgement is dependent on an interpretatidearh as a non-accomplished process, in the meanirgguafy

302



DISCRIMINATIVE ANALYSIS OF FINE-GRAINED SEMANTIC RELATIONS

Q.: Which is the typical order of the following events?

1 S
a) X before Y (Y after X) b) Y before X (X after Y) c) No temporal sequence (YCX) d) Undefined
Q.:Xand Y? Q;: Y and X? Qq: Xand Y? Q:: Xand Y?

ajXand¥ b)Xand =Y c)XandY/-Y ajYandX b)Yand =X c)YandX/—=X a}Xand¥ b)Xand—Y c}Xand¥/-Y a)Xand¥ b) Xand =Y c)XandY/~Y

Lol

UnR Ant{X,Y) UnR

Qg = Xand ¥? i Qs: =X and¥? Qi =Y and X? iQﬂ —Yand X? Qs —XandY? ng: =X and ¥?

UnR UnR UnR

a}l ~XandY al~Xand ¥ a} =Y and a} =¥ and X al—=Xand¥ a) —Xandy

b} =X and —Y b) =X and Y b) ~Y and b) =X and ~Y

b} =Y and — b) =X and ¥
lc! =X and ¥/-¥ \:] —X and Y/—Y k—ﬂ’and XX €)Y and X/—X ¢}~ Xand ¥Y/-Y c} ~Xand Y/=Y
\ \1 O \ \ \

UnR Ent(X,Y) UnR UnR Pre(Y,X) UnR UnR Ent(Y,X) UnR UnR Pre(X,Y) UnR UnR Ent{XY) UnR UnR Tmp(Y,X} UnR

Figure 3: Decision Tree for Question-based Annotation
Pre(supposition), Ent(ailment), T(e)mp(oral Inclusiohpt(onymy), UnR(elated).

Here, answeb) No: =X and —Y (i.e.,if you don't learn a language, you will not speakiitdicates
that cancellation of the presuppositid=learn is valid if Y=speakis false.

Overall, the three consecutive questions displayed inrEiguestablish the paspeak — learn
as an instance of presupposition, under an interpretafit@aming as a process.

An annotation decision tree. By extending this method to the full inventory of the targktela-
tion types, we establish a question-based annotation soghat takes the form of a decision tree,
as displayed in Figure 3. We are able to differentiate therlegtions using — in the default case —
three questions per verb pair, by exploring their semambpegrties, as summarized in Table 3.

The first questiorf); clarifies the temporal sequence properties of the examiadzpair. The
answer to questio)); also determines the order in which the consecutive testaflarence under
negation are presented, e.Q);3 presents X and Y in a different order. This way we capture all
relevant orders of verb pairs for the temporally sensitelation typegresuppositiorand entail-
ment in response to the temporal sequence properties detec@d3 Questions)s to Qs (all
at the same level of depth) follow the very same pattern. tiiely are dependent on the temporal
properties established by the answer to quesfjonso the answers to these questions differ in view
of the relation types they may indicate. Similarly, quas$i@)s to Qs are structurally equivalent,
but given their dependence on the previous questions amnvdeasmishey will trigger case-specific
conclusions as to the predicted relation type.

It should now be clear from the structure of the tree that feerd pair such abuy — ownwe
will obtain the classificatioEnT(BUY,0WN) by the following chain of questions and answers:

(20) Q1: which order? a)X before Y
— @2 XandY? a) Yes:Xand Y
— Qg —~XandY?  b)No:-Xand Y3

33. For instance, the verb pairin andplay cannot be classified ggesuppositiorwith the verbs presented a&win,
Y=play. This case is captured by response b) to quesfipnso that the inverted verb pair relation can be tested by
Q3 (the mirror ofQ-2), using inverted roles of X and Y.
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Questions)), and Qs and their follow-ups are triggered by verb pairs that ineod/temporal
sequence. They must be checked in both order variants tondeteentailmentandpresupposition
relations irrespective from the order in which the verb paire presented (see footnote 33). Ques-
tion Q4 discriminateentailmentandtemporal inclusiorby testing persistence under negation, sim-
ilar to what is done fopresupposition Thus, we can establigtieep — snor@sTMP(SNORESLEER)
vs. live — breathasenT(LIVE ,BREATH). Antonymyis established for verbs that are not assumed to
occur in sequence or concurrently, through answer d);towhich yields the value ‘undefined’ for
temporal sequence. Here it seems sufficient to test for cammghtarity, brought out by answer b)
Noto Q5: X and Y? for verb pairs such dsve — hate

Additional questions for antonymy. For some verb pairs questidpy yielded annotation differ-
ences depending on whether the annotators consideredaggyatic or paradigmatic relation be-
tween the verbs. This was encountered in particular for paits that qualify for botntonymyand
presuppositiorrelations, such aspen — closeconnect — disconnedr accelerate — slow (down)
Therefore, we designed an additional question for the atoist, in case we encountered that one
of them had annotated a pair widimtonymy while the other did not. The additional questions pre-
sented to the annotator that did not annotate antonymy ifirgteplace (here, Annotator 1) now
focus explicitly on the antonymy relation. In case Annotdt@nswers both questions willo, the
verb pair will be annotated astonymy

(11) Additional questions targetirantonymy

Annotator 1 PRE(SLOW,ACCELERATE)
Annotator 2 ANT(SLOW,ACCELERATE)
— QAnt1: The car slows down. Does this car accelerate?
— QAnt2: The car accelerates. Does this car slow down?

Additional questions for backward entailment. In some cases the entailment relation between
verbs can be symmetric, as for the pdepart — arrive Such pairs should be annotated as en-
tailments in both directions. Given the way we set up ourdnirical annotation scheme, each
verb pair will only be assigned a single label. Therefore,d@signed additional questions for the
annotators, to identify cases of symmetric entailment. sEhguestions take the same form as the
original questions (12), but the temporal order is reversBde answer¥esto the first question
and No to the second question in (13) assign the backward entatlnedation to the verb pair
ENT(DEPART,ARRIVE).

(12) Standard questions targetiagtailmentgenerated by the annotation system:
ENT(ARRIVE,DEPART)

(1: which order? John departs and then John arrives
(X after Y)
—  Q3: John departs. Will he arrive? a) Yes

—  @7: John doesn’t depart. Will he arrive?b) No

(13) Additional questions targetingackward entailment

— Qpn1 (5 Q2): John arrives. Did he depart? Yes
— Qpene (FQg):  John doesn'’t arrive. Did he depart?No

34. Following our argumentation in Section 3, we ask the tatnes to consider the case of ‘what normally holds’ in a
situation if—X holds true and to disregard exceptional cases that aretestant for the situation considered.
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Annotation interface. In order to hide the complexity of the decision process froengdnnotators,
this decision tree was implemented in a web-based annotetierface that presents the annotator
with novel questions depending on the answers given to theiqus question. The annotators
were given the possibility to go back and inspect or revigeaifiswers given to previous questions.
Displays of the annotators’ views for the basic questiors$yare given in the Appendix.

Annotation quality. We evaluated the quality of annotation using this quedtiased annotation
scheme, using 250 verb pairs selected from the DIRT cafleéfi As the novel annotation scheme
is considerably simplified, we also tested it with non-ekp@notators.

For the two expert annotators we obtained an inter-anmotgeeement (IAA) of 72% with
a Kappa value ofC = 0.64. This is considerably higher compared to the anmutaquality we
obtained using standard type- or token-based annot3fion.

This result clearly indicates that the annotation task ¢dad dramatically simplified, with a
large improvement of inter-annotator agreement. Howekerdecisions to be made still seem too
complex for non-expert annotators: we observe poor agreebstween the non-expert annotator
and either of the expert annotators: I1AA = 60%,= 0.46 and IAA = 64%,C = 0.49. Thus,
addressing this annotation task by crowd sourcing to nqes does not seem to be an option in
its current design.

The distribution of the semantic relations in the final aated data set is more or less equal.
Temporal inclusions slightly under-represented (15%)ntailmentandother/unrelatedare slightly
over-represented (23% and 25%).

5. Classification of Fine-grained Semantic Relations betves Verbs

This section describes the classification architecturgl@yed feature sets and classification ex-
periments for sub-classifying fine-grained semantic i@hstincluding presupposition. The perfor-
mance of the classifiers is evaluated against the gold sidadaotation set obtained using question-
based annotation, as described in Section 4. As a referenteefsubsequent description, Figure 4
summarizes the classification architectures and feattsd@methe experiments described below.

5.1 Classification Method

Our aim is to acquire verb pafypesthat stand in a particular semantic relation from our sekkct
relation inventory:presupposition, entailment, temporal inclusiandantonymy(Section 3). The
lexical knowledge acquired in this way will be used to enriektual occurrences of individually
occurring trigger verbs with inferences on the basis of gaerled verb relations.

For this purpose we build a classifi€y; ., that automatically sub-classifies the relations hold-
ing between verb pair candidates into five classes: the ®lected semantic relation types and a
fifth class that captures verb pairs that stand in no or soime&r semantic relation not considered
here. To classify the verb pairs according to our relaticm@miory we calculate type-based distri-
butional features and use a supervised classificationitigoto build the model. The type-level

35. This setis distinct from the annotation set used in 8eeil. The annotation set produced in these initial expErtm
was used as development set in the classification expesmepbrted in Section 5.

36. We did not perform separate evaluations of the impactaibpypical verb arguments and the break-down of annota-
tion decisions in the question-based setting, due to thsiderable annotation overhead this would have caused.
37. This does not reflect the natural distribution of thedatiens, due to some amount of pre-selection for the under-

represented classes.
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Sample selection:C.,,: labels contiguous {fcontiguous]) corpus samples for feature extraction.

fpath—iens fpath: length and form of path of grammatical functions betwégmand V5
feoref: coreference relation holding between subjects/objefcig and V5
Sdist—toks Jdist—verp:  distance betweel; andV; (in tokens and verbs)

conjunction or direct grammatical function connectiigand V3

fconnectives-

Type-based classification:Cy;,. : X — Y assigns classification instanc&sconsisting of pairs
of verb types {1,V5) one labelR € ).

Flat: Classify instances € X into 4 core relation types plus ‘U(nrelated). = { E, P, T, A, U}.
Instance sek’: verb pair types: € X' (selected from DIRT (Lin and Pantel, 2001)).

Hierarchical: 1st-stage’,..;: C.1 Classifies all input verb paits € X" as [ related]:
[—related] if cnt(F-contiguous])< cnt([—contiguous])
& temprel =undefined
[+related] otherwise.

2nd-stage j;ser:  Cuaiser Classifies verb pairs € X classified as| related] byC,.;
Target classey € { E, P, T, A}.

Feature vectors for classifierC ;. in flat (5-way) and hierarchical (4-way) classification:

Compute feature vectorg, = (fo, f1,- .-, fn) for all verb pair types: € X

feature type feature flat hier.
typical temp. rel. fo: V € { before, during, after, undgf v v
polarity pairs f1—=fa P((£V1,£Vo) | V4, V3) v v
f5: average distance betwe&handV; in tokens v -
relatedness fe: PMI for V; andV; in verb pairs V1, Va2): PMI(Vy,Va) v —
f7— fn: cond. prob. for conjunctions: P(c; | Vi, Va) v oV

Baselines:
Caiser Classifier: feoni: f7 — fr: conditional probability of conjunctionsgiven (1, V2)
Ce Classifier: feonnectives: €ONjuNction or grammatical function relating and V5.

Figure 4: Summary of Classification Architectures and Fea8ets.

feature vectors are calculated on the basis of a trainingfs&trpus instances, i.e. sets of sentences
involving pairs of verbs that are annotated on the type lforghe relation that constitutes the clas-
sification target. The classifier learns weights for theue=t on the basis of the annotated training
data and makes predictions for unseen verb pairs using dhneclé model. The performance of the
classifier is tested against the set of verb relation lakefimed in the gold standard data set.
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Classifier definition. We definea type-based classifiéty;... X — ) that receives as input a set
of instances: € X" of verb pair typegV;, 1»2) and a set of the feature vectq?;: (f1, fay--os fn)
calculated for any verb paitr under consideratiorC returns one of the target class lab&ls ).

We experiment with two classification architecturiat andhierarchical classification

In the flat classificationarchitecture, the classifi€ty;,., distinguishes all five relation types
including theunrelatedclass. Inhierarchical classificationwe first partition the instance set of
candidate verb pairs into two classeslatedvs. unrelated with the first class covering the four se-
lected semantic relatiori®¥(resupposition) E(ntailment) T(emporal InclusionpndA(ntonymy) In
a second classification stefy; ... performs 4-way flat classification for these four relatiomssks,
taking as input the verb pair candidates that were classifidd related] by the first stage classifier.

Detailed information on the setup of these architecturgsven in Sections 5.3.4 and 5.3.5.

5.2 Features for Classification

The discriminative semantic relation classifigg,..,. relies on the three groups of features motivated
in Section 3.2temporal sequenc®ehavior under negatioandcontextual relatedness

5.2.1 TEMPORAL SEQUENCE

Our analysis of relation properties (cf. Table 3) reveai some of our target semantic relations
involve a typical temporal order, while others do not. We mdkis property available for dis-
criminative classification by defining a type-based featypécal temporal ordemwhich records the
temporal relation that can be considered typical for a gien pair. We distinguish three basic
temporal relationdefore after andduring, plus undefinedin case no typical temporal sequence
can be determined. We obtain this information from a (tokesed) temporal relation classifier.
Detecting and classifying temporal relations holding kesw verbs in context is a difficult
task3® In contrast to theTempEvalchallenges (Verhagen et al., 2010), we use a coarse relation
inventory that is sufficient for our purposes. Moreover, asaim is to predict type-level temporal
relation properties, we will rely on a subset of confidemt, ireliable, token-level classifications.

A token-based temporal relation classifier. For token-based temporal relation classification we
define a variety of morpho-syntactic and semantic featimeljding tense aspect modality, aux-
iliaries, conjunctions grammatical function pathsadverbial adjunctsorder of appearancend
VerbNet classes (same/subsumed or diffe@@nff This extends the feature set used by Chambers
et al. (2007) for temporal relation classification in comtex

We built a token-level temporal relation classifier that veerted on a set of manually annotated
contexts, 200 contexts for each relation, using the thneetaemporal relations. Using the above
feature set we trained a 3-way BayesNet claséffifar classification on the token level, with the
target classelsefore afterandduring. We evaluated this classifier using a set of manually anedtat
contexts, 20 contexts for each relation and achieved, sstbre of 84.3% on this sét.

38. See e.g. Chambers et al. (2007), Bethard and Martin {206& (2010).

39. The VerbNet class feature is used as an indicator of teahpelusion, in particular for the troponymy relation.

40. We use all VerbNet classes except@rHER COS-45.4which includes many opposite verbs, eagcelerateslow.

41. We use the BayesNet algorithm implemented in Weka (Watal Frank, 2005).

42. It is difficult to compare the performance of this spdgidesigned temporal relation classifier to results rembrte
on the TimeBank corpus, because of the different tempotafioa inventories used: while we are using a coarse
set of relations, the relation set used in the TempEval ehg#s is more fine-grained (it distinguishes 6 relations).
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Predicting a type-based ‘typical’ temporal relation. We predict a type-based ‘typical’ temporal
relation for any pair of verbs, relying only on confident tolevel classifications (threshold 0.75).
The score for each relation is computed as the associatitvebe a verb pairl(;, 12) and the
assigned temporal relation instances in context, by apgliMI (point-wise mutual information):

PAIA.Va) Tenp-el) <o T2

For any given verb pair we choose the relation that obtaieasitphest PMI score. If PMI does
not indicate a typical temporal relation (we set a threshufl®.4, optimized on a held-out data
set®), we assign the labeindefined

The quality of this type-level temporal relation classifieas evaluated using the answers to the
first question Q) of our question-based annotation scenario as a gold staffdeOn this set it
achieves an f=score of 73%, with balanced precision and recall at 71% &84, fespectively.

5.2.2 NEGATION

A token-based polarity labeler. To determine the behavior under negation for given verbspair
we first need to correctly recognize the polarity of verbs miveen context. We use a number of
triggers to detect negative polarity contexts: negativéigdas (e.g.not/n’t); negative adverbs (e.qg.
neve); negative adjectives (e.gnpossibl¢ and negative verbs (e.mpfusg.*®

In case we detect a single negation trigger for a verb in a&sert the verb polarity isegative
If we find a combination of triggers (e.gever refuspand the number of triggers is even, we assign
the valuepositive if the number is odd, the verb polarity iegative We also use a small set of
adverbs that are able to switch a verb’s polarity in caseriegative (e.gbadly, etc.).

An example is given in (14). Here, the negation trigger eferthe verkplay, but due to the
combination with two negative triggers, we assign the [iylanositive

(14) We wanted to win the third Test as a matter of pride diddh’t play badly but every time
New Zealand came into our 22 they scored.

To evaluate the quality of the polarity labeler, we manualiyotated the polarity of 200 verbs
in context*® On this set we achieve an fcore of 85%, with 84% precision and 86% recall.

Computing type-based polarity co-occurrence features. For type-based classification of verb
pair polarity co-occurrences, we compute a negation vqﬁ;grwith four polarity co-occurrence
features for the different combinationg=V;, +£V5). We compute the values of these features
using the conditional probability of a given polarity coeocrence combination for any verb pair
(Vh, V2). 47

Another factor which influences our results positively iatttve apply the classifier on contexts labeteshtiguous
in our corpus preprocessing phase. That is, we compute tahatations only for closely co-occurring verb pairs
in contiguous syntactic contexts.

43. The held-out data consists of 100 manually annotatdulpars.

44. Qo: Which is the typical order of the following events?

45. We employ a manually compiled list of trigger predicatebected from various lexical resources.

46. A subset of 100 contexts of verb pairs that were prewoaishotated with a semantic relation on the context level.

47. The probability is computed using the set of verb paiointext that are labeledHcontiguous], see Section 5.3.2.
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fneg = (fo, f1, f2, f3), with: fo— (+V1,+Vo) V1, Va)
P((—=V1,+V2)|Vi, Va)

= P({ Va) )
f3— (- ) )

+‘/17 2 |V17 2
Vi, =Va)[V1, Va

AA/_\/_\

5.2.3 RELATEDNESS

Although temporal relation and negation properties carosidered discriminative for identifying
our core semantic relation types, they are not sufficientdopus-basedlassification. For example,
in (15) win andlose stand in an antonymy relation, but both verbs have positdarjty. So, the
evidence found in the corpus does not always corresponcttprtperties captured in Table 3.

(15) Winor lose you pay nothing.

Detecting relatedness features for corpus-based classditon. Thus, we include a third dimen-
sion of features that record surface-level properties afedging linguistic properties, as in this
case, where semantic opposition is not expressed by oppusirity, but via the conjunctioar.
Contextual relatedness features will prove particulaggful for distinguishingantonymyfrom
other relation types, especially tharelatedclass. Recall also that the discriminative relation prop-
erties that we established do not include the necessaigaieh betweersemantically relateds.
unrelatedverb pairs. For theinrelatedclass, we find a broad variety of syntagmatic properties,
while for the core semantic relations we find more charastiercontextual relatedness features.

Type-based relatedness features.As type-based syntagmatielatednesdeatures we employ
surface-level information aboualistanceand connectingonjunctionsbetween verb& as well as
distributional association measures, such as point-wisahinformation (PMI). These are raised
to the type level in the following way (see also Figureé*2):

faist:  average distance between two verbs in tokens within aseate
feumr: PMI calculated for the two verbs in a given verb patd/ 1(Vy, Vs)
feonj:  conditional probabilities for conjunctions given specific verb pairs{(c;|Vi, V2))

5.3 Experiments and Results
5.3.1 DaTA SETS

All candidate verb pairs that are presented to the classifeiselected from a set sémantically
related verbgrom the DIRT collection (Lin and Pantel, 2001).

Training Set. As training set we employ a small number of seed verb pairs §3dr each semantic
relation) that was used in previous experiments (Trem@t0R We extended this data set
with 30 additional verb pairs which were manually annotaigdwo annotators using our
novel question-based annotation method (see Section 4. oVérall set of 48 verb pairs
yields a nearly uniform distribution of classes.

48. We manually grouped the most informative conjunctiomsatset of 21 conjunction variants, collapsing, e.qg.
while/whilst cause/becaus¢o/in order ta Strongest conjunctions acg when, if, but, by

49. All values are calculated on the set of verb pairs in cdriteat are labeled{ contiguous] (see Section 5.3.2), except
for fparr, which was calculated on the basis of the full ukwacC corpus.
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Test Set. As our gold standard test set we employ the annotation setstomg of 250 verb pairs that
was produced using the question-based annotation setupdiStnibution of relations over
the 250 verb pairs is as followgresupposition 18%, entailment 23%, temporal inclusion
15%,antonymy 19%, other/unrelated 25%.

Corpus Instances. For the computation of type-based relation features wersddacorpus samples
from the ukWacC corpus (Baroni et al., 2009). We extractedexdtences in which both verbs
of a verb pair co-occur, considering sentences of up to 66n®kn length. The number of
contexts available for each verb pair ranges from 30 to aboQtinstances.

5.3.2 FRREPROCESSING SELECTING INFORMATIVE SAMPLES FORFEATURE EXTRACTION

To avoid noise in the computation of type-based featureoveete need to select informative corpus
instances of co-occurring verbs that stand in a close syra#g relation. To this end, we perform a
preprocessing step that selects context samples of cormaruerbs that are contiguously related.
We designed the following set @ontiguity features that record different types of indicators for
syntagmatic relatedness of co-occurring verbs.

Jpath—teny fpath: length and form of the path of grammatical functions relgdi; andV5

feoref: coreference relation holding between subjects and abjetci; and V5
(coreferent subjects or objects; subj coreferent w/ opjertoreference)

Sdist—toks faisi—very.  distance betweel; andVs (in tokens and verbs)

Seonnectives: subordinating or coordinating conjunction, or else digrammatical func-
tion connecting; andV,

Using this feature set, we constructed a classifigy, that labels verb pairs appearing in corpus
sentences asH contiguous]. The classifier was trained and tested on a riigraraotated set of
contexts involving our seed verb pairs (2343 contexts framcitv 90% were used for training and
10% for testingP® Best results were achieved using the J48 decision treeithlgdt (F;-score:
79.3%).

We applyC..., on the set of unlabeled verb pairs in context and select aliests that were
confidently labeled ast{contiguous] (above threshold 0.75) as corpus samples fopating the
feature vectors for the relation classifigy;,..,.. Classifications obtained from the contiguity classi-
fier are further used as a feature for the relatedness/hatedaeess classification in the hierarchical
classification scenario (see Section 5.3.5 for more detail)

5.3.3 LEARNING ALGORITHMS

For our main classification task we experimented with déffeeiclassification algorithms and achieved
best results using BayesNet. Thus, unless noted otheralisesults reported below were obtained
using the BayesNet classifier implementation of Weka (\Witted Frank, 2005).

5.3.4 EXPERIMENT |: FLAT CLASSIFICATION

Setup. Experiment | performs classification using that classification architecturewhich as-
signs class labels for all five relation classes includirgguhrelated classy € { P(resupposition)

50. Inter-annotator agreement was 81%, with a Kappa val0e7af
51. Weka implementation of the C4.5 decision tree algorifiifitten and Frank, 2005)
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Semantic Relation Precision Recall {-Bcore Baseline fscore

Presupposition 41% 45% 43% 25%
Entailment 47% 43% 44% 25%

Temporal Inclusion 38% 47% 42% 26%
Antonymy 68% 71% 70% 47%

Other/Unrelated 54% 53% 54% 12%
All 50% 51% 51% 27%

Table 7: Results for Experiment I: Flat Classification (Base best featuref,,,;: conjunctions).

E(ntailment) T(emporal Inclusion)A(ntonymy) U(nrelated) (cf. Figure 4). For each verb pair in
our training and test sets we compute feature vectors asiloedén Section 5.2.

Evaluation results. Table 7 displays the results, evaluated against the testsght The classifier
performance is compared against a baseline that uses theirigle featuref.,,;: conjunctions.

The classifier outperforms the baseline for all relatioregwith balanced precision and recall.
Precision is higher than recall fentailment For presuppositionentailmentandantonymyrecall
exceeds precision. With an overalj-Bcore of 51% the classification performance is still madest
however the difference between the chosen baseline and aiglrs significant 4 < 0.05). Note
further that the average,fscore for the more complex inferential relations (P, E, S)ower at
around 43%, while foantonymyit is at 70%.

5.3.5 EXPERIMENT Il: HIERARCHICAL CLASSIFICATION

Setup. As an alternative to flat classification, we investigate adn@hical architecture that first
separates related from non-related verb pairs, and substygsub-classifies related verb pairs into
the four relation classe®(resupposition)E(ntailment) T(emporal inclusionand A(ntonymy,)

A binary classifier C,..; separateselated from non-related verb paingsing as criterion (i) the
ratio of contexts for a given verb pair classified axpntiguous] by the contiguity classifier
in sample selection (see Section 5.3.2) and (ii) the typgaralporal relation calculated by the
type-based temporal relation classifier. We assign thd [abelated] to a verb pair if the
majority of contexts are annotated ascontiguous] and there is no typical temporal relation
for this verb pair (temprel mndefinedl

Cre: classify all input verb pairs € X as [ related]:
[—related] if count(Jrcontiguous])< count([-contiguous]) & temprel =undefined
[+related] otherwise.

Thesecond-stage discriminative relation classifie€ 4., takes as input all verb pairs classified
as [-related] by the first-stage classifier and performs 4-wagsifi@ation into the set of
relation classed = { P(resupposition)E(ntailment) T(emporal Inclusion)A(ntonymyy).

Since the unrelated class has already been separated insthddgsification step, the clas-
sifier does not make use of the relatedness featfy:eaverage distance between two verbs
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1st-stage Classifigt,.;: Related vs. Unrelated classification

Precision Recall Fscore Baseline f=score
Unrelated 82% 67% 74% 57%
Related 72% 84% 7% 54%

2nd-stage Classifiet ;.. 4-way semantic relation classification (oracle input)

Precision Recall Fscore Baseline f=score
Presupposition 62% 50% 56% 30%
Entailment 53% 49% 51% 33%
Temp. Inclusion 44% 62% 52% 25%
Antonymy 76% 80% 78% 63%
All 59% 60% 59% 38%

Table 8: Exp. lla: Individual Classifier Performance for tdiehical Classification (with oracle).
Baselines: Best features: Stepflynnectives: CONNECtives; Step 2f.,,;: conjunctions.

and fe: PM1(V1,V3), as these are designed to distinguish unrelated from deletd pairs.
However, the conjunction features are considered usefdisariminating the core semantic
relations, and are thus included as a feature in this cleatdn step (cf. Figure 4).

Evaluation Setup. For Experiment Il we perform evaluations for both classtfaa steps, using
adapted gold standard data sets:

(i) Classifications for théirst-stage binary classifieare evaluated against a test data set com-
piled from the gold standard test set used in Experimentbrisists of the set of all unrelated verb
pairs (58) and the same amount of (randomly selected) deletdd pairs.

(ii) For the classifications for theecond-stage classifieovering 4 relation classes, the test set
forms the subset of the standard test data set that conbisis kelated verb pairs onf#

We report two evaluations for hierarchical classificatibor both, we use best-feature baselines
for the individual classifiers: the best featyfg,,; for the discriminative relation classifi€y;., as
in Experiment I, and the best featufg,.ncctives fOr the relatedness classifiér.,;.

Experiment lla: Individual Classifier Performance. Table 8 analyzes the performance of the
individual classifiers, where the second-stage classfibased on perfect input, i.e. oracle classifi-
cations from the first-stage classifier.

The binary classifier C,..; obtains an I~score of 74% for the unrelated class, which clearly
outperforms the best feature baseline by a margin of 14 &inscore. While the related class
is recognized with higher {~score of 77%, we favour the results for the unrelated clagsch
is higher in precision (82% vs. 72%). Generally, misclasatfons of the first-stage classifier im-
pede the overall performance of the cascaded classificatmntecture, so while high precision is
beneficial, the weaker recall (67%) could still impact thera¥ results.

52. The distribution in this reduced data set fmesupposition 25%, entailment 31%, temporal inclusion 20%,
antonymy 24%.
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Semantic Baseline Flat Classification Hierarchical Cfasgion

Relation F-score Precision Recall Fscore Precision Recall Fscore
Presupposition 25% 41% 45% 43%  50% 46% 48%
Entailment 25% 47% 43% 44% 44% 46% 45%
Temp. Incl. 26% 38% 47% 42% 41% 47% 44%
Antonymy 47% 68% 71% 70% 72% 74% 73%
Unrelated 12% 54% 53% 54% 68% 63% 66%
All 27% 50% 51% 51% 55% 55% 55%

Table 9: Exp. llb: Hierarchical Classification (pipelineResults contrasted with Flat
Classification (Baseline: Best featurg,,,;: conjunctions).

Evaluating thelat 4-way relation classifierC 4. On oracle classificationsve obtain an over-
all performance of 59% Fscore>3

Experiment lIb: Full Hierarchical Classification.  Table 9 presents the results for full hierarchi-
cal classification, with system input for the second-stdgssifier>* For convenience, the results
are aligned with the results obtained for flat classificatiopBxperiment I. With an overall F=score

of 55%, hierarchical classification significantly outpenfis the baselines(< 0.05). It also outper-
forms flat classification, but not significantly at a significa level of 5%. We observe performance
gains for all relations, which are highest fmesuppositior(+5 points k-score) andinrelated/other
(+12 points k-score). Againantonymyperforms best. Among the inferential relatiopsgsuppo-
sition scores highest with 48%; Fscore and the highest precision at 50%.

5.4 Analysis of Results
5.4.1 IMPACT OFINDIVIDUAL FEATURES

We measured the impact of individual feature classes orethdts, using ablation testing for differ-
ent feature groups (cf. Figure #):negationfeaturestemporal sequencieatures andelatedness
features. As only theonjunctionsfeature was used in both settings, this was the only relatsin
feature we omitted. The outcome, displayed in Table 10 /yigederlines the observations made
in our analysis of the relation properties.

The result8® show that temporal sequence properties are the most inmpdetture forentail-
ment, presuppositioandtemporal inclusionwhereas fomntonymyand theunrelated/otherclass
theconjunctiondeature has the strongest effect. Eliminating conjunsticeses an overall drop to
30% (35%) k-score, forantonymyeven to 15% (14%). Eliminating the temporal relation feasur
incurs a drop to 32% (34%) with the biggest losstBamporal inclusion —12 (—11) points k-score.
Eliminating the negation features shows only a small impéebout 3-5 points in fscore.

53. These figures cannot be directly compared to the flatifitzg®on results of Experiment I, which were computed
over 5 classes (Table 7). However, the overall tendencesiarilar.

54. To enhance precision, we relied on the classificationthfounrelated class as input for the second-stage classifie
Cdiscr-

55. For hierarchical classification we performed the abietesting only for the second-stage classifier.

56. In ablation testing, lower results indicate higher imanoce of the feature (group) that has been omitted.
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Semantic Exp I: Flat Classification Exp llb: Hierarchicah&sification

Relation Alll w/oNeg w/oTmp w/oConj Al w/oNeg w/oTmp w/oCpn

Presupposition 43% 37% 24% 35% 48%  41% 22% 34%
Entailment  44%  41% 14% 28% 45%  43% 14% 25%
Temp. Incl.  42%  42% 12% 38% 44%  43% 11% 36%
Antonymy 70%  64% 64% 15% 73%  68% 59% 14%

Other/Unrelated 54% 47% 45% 35%

All Relations  51%  46% 32% 30% 55%  52% 34% 35%

Table 10: Ablation Testing: fscore results using different feature sets (Exp | & lIb).

Verb pair Gold Flat Hierarchical
(w/ prototypical arguments) Standard Classification Glizsgion

abandon(person, do sth) — try(person, to do sth) Pre Pre Pre
fly(plane) — land(plane) Ent Ent Ent
multiply(person, numbers) — calculate(person, solution) Tmp Ent Ent
cry(person) — laugh(person) Ant Ant Ant

enter(person, house) — open(person, door) Pre Ent UnR

boil(water) — evaporate(water) Ent UnR UnR
steal(product) — take(product) Tmp Ant Ant

Table 11: Examples of correct and wrong classifications.

Although the weakest feature type, with overall 5 points liosF -score, the negation features
clearly contribute to overall performance. Interestingiey have the strongest effect faesuppo-
sition, with a drop of 6—7 points in Fscore. This clearly reflects the specific negation progerti
found with presupposition. This analysis corroborates Wizile the negation properties are very
important for language understanding and logical infeeeand proved effective as a guide for hu-
man annotation, a corpus-based classification approads neeomplement its effects, as human
language often resorts to other means for expressing megatlarity, such as the use of conjunc-
tions (or, whereasetc.), or does not make it explicit at all.

5.4.2 Q.ASSIFICATION EXAMPLES AND DIVERGENCES
Table 11 displays examples of correct and wrong classificatfor both architectures. The verb
pairs are given with the prototypical arguments that weesldsr the gold standard annotation.

5.4.3 ERRORANALYSIS

The most frequent errors we observe (especially for the fftdtitecture) are misclassifications be-
tween related and unrelated verb pairs and betwsesuppositionand entailment This points
to weaknesses of contiguity features used in the contiggansple selection step and of nega-
tion features used for the main classification. We also adhatentailmentis often misclassified
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astemporal inclusion Misclassifications betweegoresuppositiorandtemporal inclusionare rare
compared to other relations. This indicates that the teai@@guence features are effective.

As further major error sources we identified problems withbvembiguity and coreference
resolution. Both of them affect the detection of semantiatiens as being related vs. unrelatéd.

Finally, we identified errors in selecting contexts from th&VaC corpus, which are used for
computing the distributional features for the main clasatfon. Inspection of a small section of
corpus samples shows that erroneous annotations of noaugeatives as verbs cause errors in the
computation of the type-based feature vectors. We haveddhe problem of erroneous annotations
of adjectives as verbs by double checking the dependenetagbn verbs and noufput we still
need to address the problem of erroneous annotations osraswerbs.

Regarding classification architectures, hierarchicadgifecation outperforms flat classification
for all relation types, and especially for thmmrelatedclass. Thus, the first-stage classifier that
separates related from unrelated verbs implements a sfilterg The pipeline architecture still
suffers from a performance loss due to misclassificatiortbefirst-stage classifier. This problem
can be addressed in future work by using a joint classifinajgproach.

5.5 Comparison to Related Work

Related work on semantic relation classification diffemrfrour approach in a variety of respects
(see Section 2). Nevertheless we compare our results toagliéd be achieved there, to give an
idea about the state of the art on comparable and relatesl task

Closest to our work is VerbOcean. Chklovski and Pantel (28@ply a semi-automatic pattern-
based approach for extracting fine-grained semantic oaktbetween verbsifnilarity, strength
antonymyenablemenandhappens-befoje This inventory is different from ours, especially it does
not include relations such as entailment and presuppositith complex inferential behavior. For
a sample of 100 automatically labeled verb pairs they déteina precision of 65.5% Results
for recall and F-score were not reported.

The only common class of semantic relations used by bothoaphes isantonymyor opposi-
tion. We investigated the verb pairs which are labeled with tlasscfor both systems, comparing
to our gold standard test set. Most antonyms are annotatéwthysystems correctly. Evaluating
both systems against our test set yields 71% precision a¥drdball for VerbOcean. With 72%
precision and 74% recall our system achieves better recdlbserall more balanced results. Ex-
amples of verb pairs which could not be found in VerbOcear(tdde, show)r (multiply, divide)
Some of the antonyms were annotated in VerbOcean with tlsssilailar, e.g.(marry, divorce)or
(play, work) We also find some verb pairs for which VerbOcean performteb#tan our system,
e.g. (catch, miss) With an overall k-score of 55% with balanced precision and recall obtained on
a more difficult and more balanced data set, our results caormsdered competitive.

Inui et al. (2005) perform classification of causal relasiéor Japanese. They report high preci-
sion and recall results (95% precision fmuse, precondndmeangelations with 80% recall and
90% precision foreffectwith 30% recall). They emphasize that the framework can Ipdieg to
other languages, such as English, but no experiments agerpegl in the paper.

57. For coreference resolution we employed the StanforélldP resolver (Lee et al., 2011) — the system that performed
best in the 2011 CoNLL Shared Task on coreference resolution

58. We check for the presence of the Stanford parser dependdmOD (adjectival modifier) between a verb and a noun
(de Marneffe et al., 2006) as an indicator of erroneous atioot

59. Only 2 and 8 pairs were evaluated érablemenandantonymyrespectively.
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Pekar (2008) performs acquisition of verb entailment rules main focus is on detecting
asymmetric relations between verbs and relating theirraegi positions, without trying to sub-
classify the obtained verb pairs into different relatiopas. His method is based on co-occurring
verbs within locally coherent text and measures their asgtniondependence using an information
theoretic approach. A precision of 71% is reported, but calf@nd F-score.

Acquisition of verb entailment rules is also the aim of Ahamt al. (2010). They acquire
inference rules from the FrameNet resource using franfeatoe relations and induce argument
mappings for the related predicates. The obtained ruleested against ACE events. Performance
results are mixed, with modest precision and very low regadecision: 55.1%, recall: 17.6%,
F-score: 24.6%.

Berant et al. (2010) explore graph optimization using iatdmear programming (ILP) in order
to find the best set of entailment rules under a transitiviagstraint. The approach is restricted
to entailment relations. They obtain balanced precisiath racall at 69.6% and 67.3%, respec-
tively. Their work establishes that global methods outpenflocal methods for learning entailment
relations. Berant et al. (2012) offer extensive evaluatind further refinements of this method.

Weisman et al. (2012) use a large set of linguistically nadéd features to acquire verb entail-
ment rules. This feature set is designed to extract a widetrgpe of rules, therefore the system
achieves a good recall of 71% with a moderate precision of #fi%he recognition of entailment
rules. No attempt is made to distinguish the different refatypes acquired by the system.

6. Summary and Conclusions

In this contribution we presented a corpus-based appraaatigcriminative analysis and classifi-
cation of fine-grained semantic relations between verbg. SEt of relations we consider comprise
the non-taxonomic inferential relatioestailment presuppositiorandtemporal inclusionand the
taxonomic relationantonymyandtroponymy We grouptemporal inclusiorandtroponymygiven
they have similar inferential properties, and excludgdonymyas a result of the nature and techni-
calities of our corpus-based approach. To the best of ounlauge, we are the first to investigate
presuppositiorin a corpus-based lexical semantic relation acquisitisi.ta

The focus of this paper was to analyze the underlying prigsedf the selected relations, the
design of features for a corpus-based learning approadhoatiscuss possibilities for the annota-
tion of such fine-grained semantic relations. We presergrxents for automatic classification of
the target relations with evaluation against the gold sieshdata set we constructed.

In contrast to prior work, we present an in-depth analysihefrelations we aim to sub-classify,
including a characterization of their inferential behavMye determine a small set of differentiating
properties relating to negation and temporal sequenceepiep. These do not only provide dif-
ferentiating features for classification. They are als@e$al for appropriate inference in context,
which is the ultimate goal of our work.

Inclusion of the presupposition relation is what clearlstisiguishes our work from the state of
the art in this area, which primarily focuses on the discpw@rentailment relations proper. The
acquired pairs of presupposition-triggering verbs and thresuppositional relata encode valuable
commonsense knowledge about typical verb sequences acwhdittons holding between events,
such asplay — win read — cite learn — masteror hire — fire. These are not broadly covered in
verb lexicons such as WordNet and only found with selectexhasto frames in FrameNet (Fill-
more et al., 2003). Related work by Chambers and Jurafskyg(2Z009), which aims at acquiring
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typical event sequences from large corpora, detects frelyueccurring verb pairs, yet does not
differentiate between fine-grained relation types. Rdggtesl. (2010) learn script-like knowledge
using sequences of events they gathered from crowd-sgurélowever, script-like knowledge is
only applicable to a small set of typical event chains. Ttheirk relies on gathering event sequences
for pre-specified situation types. Our approach is more igénes it is able to learn presupposition
and other clearly distinguished inferential relationsdiag between any verb pairs, using a small
set of manual annotations. Finally, our work targets theptnal and inferential differences be-
tween the various relation types that are crucial for apglyhe learned relations in context and for
drawing valid inferences.

Our analysis shows that the selected relations can be fisityichinated by their inferential and
temporal properties. However, this does not mean that attormr manual labeling of such verb re-
lations is a trivial task. The classification of fine-grairssinantic relations between verbs presents
a major challenge, due to complicating factors such as vetmiquity, coreference of arguments
and the complexity and subtlety of the inference propedsgsociated with such relations. This was
clearly brought out by our initial annotation experimethtattfollowed traditional annotation strate-
gies: type-based annotation forces annotators to conswheplex inferential patterns for (pairings
of) different verb meanings out of context; token-basedogation is difficult because the contexts
are often involved, with shades of meaning that make dewdilifficult. Moreover, acquiring suffi-
cient numbers of context-based annotations is expensiddt & difficult to ensure that all relevant
readings are appropriately represented.

We therefore designed a novel annotation setup that addréss specific problems we identi-
fied: (i) controlling for verb readings and ambiguity, (et need for abstraction from specific con-
texts and (iii) the need to reduce the complexity of the iefiéial patterns that need to be checked.

The first two problems are addressed by providing verb paiits pvototypical arguments de-
rived from selectional preference classes. From theseseptations we automatically generate
skeleton sentences offered to the annotators. This rssthe interpretation of the verbs and at
the same time provides sufficient generalization from paldir contexts. The third problem is ad-
dressed by designing a question-based annotation schelneecomplex annotation decisions are
broken down to basic decision units and are presented irothedf automatically generated skele-
ton phrases, with placeholders for prototypical argumenish this novel setup, we obtain reliable
inter-annotator agreement and are able to create a goldasthfor evaluating fine-grained seman-
tic relation classification. Our novel question-based &N scheme relieves the annotator from
considering several non-trivial decisions in a single aation step, and thus holds potential for
crowd-sourcing the annotation task to non-experts, inrot@cquire larger annotated data sets.
However, presenting our task to a non-expert annotator aicconfirm these expectations. More
adaptations are needed to open up this task for crowd-smurci

Having successfully addressed the difficulties of manualotation, we presented a method
for corpus-based acquisition of fine-grained semantidicgla between verbs, embedded in a dis-
criminative classification task. The classification modédhispired by the temporal and inferential
properties we established for the targeted relations, amerhanced with corpus-based features
designed to detect surface contiguity and semantic reles=dof verb co-occurrences.

The classification makes use of type-based distributiaetlfes that are generalized from cor-
pus samples. For this reason, the annotation of trainingtestddata sets can rely on type-based
annotations that can be quickly acquired — now that the atioot process has been clarified. Our
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classification model achieves good results with a smalhiingi set comprising about 10 verb pairs
per relation.

We proposed two classification architectures: flat and tdbieal classification. Hierarchical
classification outperforms flat classification by a margid goints in F-score, though not signifi-
cantly. Both classification architectures achieve sigaifigperformance (up to 100% improvement)
over a best-feature baseline. These results are still apamprovement, but with an overall per-
formance of 55% [~score we are able to show that — despite the considerablelegity of the
task — both manual and automatic classification are feasible

The individual results indicate thatesuppositionentailmentandtemporal inclusiorare more
difficult to classify tharantonymywe also foungresuppositiorio outperformentailmentyielding
higher precision. This effect might be due to the more premirspecific negation properties associ-
ated withpresupposition Closer investigation of the feature impact shows that walproperties
are most effective for the recognition of the inferentidati®nspresuppositionentailmenteandtem-
poral inclusion while relatedness features are strongesafdonymyand theunrelated classThe
negation features are most effective for identifyjgrgsupposition

The analysis of the experiment results offers avenues firduenhancements. Coming up with
better solutions for sense disambiguation and corefersssmution could help to eliminate major
sources of observed errors. Elimination of noise in pregssing could further improve the results.
The hierarchical classification architecture still susférom error propagation effects that could
be reduced through a collective classification approachallyj with only 10 seed verb pairs per
relation our current model is weakly supervised. Given#mato not require extensive annotations
on the token level, adding more verb pairs for training cdulther improve the results.

In future work we will apply the learned relations to trigg@rbs appearing in context to infer
implicit information. For the proper usage of the acquineféience rules we need to disambiguate
the candidates for trigger verbs. While prior and currentknan textual inference focusses on
entailment, we consider in particular the presuppositeation, which is ubiquitous in texts and
subject to special conditions regarding temporal sequandenegation properties.
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Appendix 1. Web-based Annotator Interface

‘ Verbl: lose - Verb2: find

| Target Language: Geman =

Translation
fose finden
| e

Current Question Previous Answers

1. Which is the typical order of the following events? (according to the
Allen interval relations (Allen, 1883))

@ Jack loses the keys and then Jack finds these keys. ({m, o, <})
@ Jack finds the keys and then Jack loses these keys. ({mi, oi, >})
& Jack leses the keys and Jack finds these keys at the same time.
({s, si, f,fi, d, di, =})

@ More than one order of events is possible.

' Not sure (difficult to define)

Consulf the guidelines
Interval Relations. adapted from Allen (1983

Verbl: lose - Verb2: find

Target Language: Geman =

Translation

fose ‘ finden

find verlieren

Previous Answers

2. Jack loses the keys. Will Jack find these keys?

1. Which is the typical order of the following events? (according to the
Allen interval relations (Allen, 1983))
= Jack loses the keys and then Jack finds these keys. ({m, o, <})

@ yes
© no
@ maybe (both yes and no are possible)

[ NextQueston> ][ Clear Answers |

Consult the quidelines

Interval Relations. adapted from Allen (1983)

‘ Current Question ‘

Verbl: lose - Verb2: find

Target Language: Geman

Translation
fose finden ]
find verieren

Current Question

Previous Answers

6. Jack doesn't lose the keys. Will Jack find these keys?

yes
{®:no
@ maybe (both yes and no are possible)

Nest Quiestion -> Clear Answers

1. Which is the typical order of the following events? (according to the
Allen interval relations (allen, 1983))
= Jack loses the keys and then Jack finds these keys. ({m, o, <})

2. Jack loses the keys. Will Jack find these keys?
= maybe (both yes and no are possible)

Consult the quidelines

Interval Relations. adapted from Allen (1983)

Figure 5: Question-based Annotation for verb pase — find
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Appendix 2. Mapping of Allen’s Relations to Coarse TemporalRelation Classes

Temporal Relation Class Allen’s Relation Graphical Repngation

before(X,Y) X <Y (strict precedence)

XmY (X meetsy)

X oY (X overlapsY)

after(X,Y) X > Y (strict succession)

XmiY (inverse of meets)

X oiY (inverse of overlaps)

during(X.,Y) XsY (XstartsY)

XY (X finishesY)

XdY (X duringY)

EBEEYY i

X =Y (X equalsy)

Table 12: Mapping of Allen’s Relations
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