Project Proposal of Veri-Spec Version : 1 Date : 24/1/01

1
PROJECT IDENTIFICATION

1.1 Project Title:

 Consistance Checker for Verilog-Netlists against MIF-Specifications

1.2 Acronym:

Veri-Spec

1.3 Keywords:

A consistancy checker for Verilog netlists (IC Hardware Descriptions) against specifications available in FrameMaker Interchange Format (MIF)

1.4 Duration: 9 months
1.5 Intended Starting Date: January 2001
1.6 Participant list:

Name
Short name
Address
phone
e-mail

Pang,

Yu-wen
YP
Im Neuenheimer Feld 133,

Zi. 09-05-03,

69120 Heidelberg
06221-834303
ypang@ix.urz.uni-heidelberg.de

1.7 Project summary

Veri-Spec is a consistance checking program suited for the needs of the IC design community. The program is intended to reveal errors by comparing the informartion contained in a Verilog hardware description with the equivalent information contained in

specification documents intended for the design engineer.These specification documents have to be available in MIF-format. If there are inconsistancies, the designer is able to rapidly correct the IC design database or the system architect can amend his specification which also may be not correct.

The emphasis of this program is the interface region of Integrated Circuits (IC), where certain characteristics of the connectors are of interest. Currently, these kind of checks are performed manually or semi-automated with a high degree of manual work. Due to the huge number of connectors nowadays, such manual work is both time consuming and error prone.

2
PROJECT DESCRIPTION

2.1 Project objective(s)

The goal of computational linguistics is to reproduce the natural transmission of information by modeling the mechanism of natural languages, capture the desired information and transmit them. This project is linked with computational linguistics by its

fundamental task of extracting and processing information contained

in text written in certain languages. The difference is that these languages are not natural but artificial languages. These artificial languages are structured in a more clear fashion than natural languages and are in general not ambigous, which simplifies the process of

information extraction. Concerning the processing of specification documents, we have a partly natural language (English and Tables) embedded in an artificial language (MIF). In this project information extraction is limited to information contained in tables.

Within the Semiconductor Industry, the characteristics and construction of ICs are described as so-called netlists. These netlists are descriptive texts written in Hardware Description Languages (HDL) which provide the structure of an elecronic circuit build from basic electronic elements. In the digital world this are logic gates. These netlists are generated and processed by Electronic Design Automation Tools (EDA). Certain characteristics of these netlist are described within specifications written by system designers and are intended for IC design engineers.

The programm is restricted to verilog-netlists and specifications written in MIF-format. These are widely used in the IC design community.

The following parts of the netlist will be examined: the primary input/ouput region, consting of unidirectional terminals, bidirectional terminals, differential signals and bussed signals.

For every terminal is to be checked

a) its existance inside the specifiaction

b) its direction (input , output or whatsoever)

c) its primary drivers, buffers or pull resistors

If the terminal is used for a differential signal, it has to be checked, that its complementary signal is connected with the identical buffer. If the terminal is used for a bussed signal, it has to be checked that each bus member is connected with a primary buffer of the same type and whether every bus member is mentioned in the specification.

2.2 Technical Baseline

Currently consistancy checks between verilog-netlists and specification documents are performed by design engineers. They either inspect the netlist on a textual base using a text editor or on a graphical base using a netlist viewer. Then the netlist is verified manually against the specification by ticking the informations off. Sometimes there are scripts available to extract partially the desired information from the netlist. After an optional data processing the verification will again be performed by the design engineer himself. Always there is a significant amount of human effort involved, which comes in alliance with logging, documatation and reliability issues.

The proposed program will improve the whole verification process concerning speed, reliability and reproducability. The results of the verification process will be stored in an informative log-file.

Another valuable ability is the comparison of netlists against netlists. By this, it is possible to keep track of changes which are not checked by functional consistancy tools since pull-resistors can not be modeled digitally.

As the implementation language PERL is chosen since it is platform-independant and a rapid implementation is possible due to its sophisticated facilities. A decreased performance is therefore accepted.

2.3 Implementation

Verilog Netlist MIF-Specifications

logfile logfile

 + Comparison

Report-file

2.4 Expected Impact and Exploitation

 It is expected that Veri-Spec will relieve the design engineer from a boring and tedious task. It will save a lot of verification time and human effort as the processing is automated. It will also be reliable and will check a set of desired items in order to minimise the amount of errors in the netlist and to reduce production costs.

 The further exploitation is directed towards other regions of the netlist. Through modifications of the program it should be possible to examine other informations of the netlist and specifiaction.

3
WORKPLAN
3.1 Workpackage list

3.1.1 Workpackages

Work Package ID
WP-0 : Management

Objectives
Co-ordinate and direct the project

Effort
21 hours
Start : t0
End : t9

Description
Identify project tasks,work packages, milestones and deliverables.

Estimate project effort and track project progress.

Participate and prepare customer-meetings

Deliverable
D-0 : Project Proposal

Work Package ID
WP-1 : Requirements and Specification

Objectives
Collect customer input and bind them into a requirement specification

Effort
7 hours
Start : t1
End : t2

Description
The customer input is collected, reviewed and discussed. Afterwards, this information is grouped into categories and seperated into tagged requirements.

Aspects of interest will be relevance of requirements to the customer, consistancy between the identified requirements and their estimated impact on time and cost.

As a result a »Specification of Customer Requirements« [SCR] will be written on which both customer and software provider agree upon.

Deliverables
D-1 Specifications of Customer Requirements

Work Package ID
WP -2: Training and Study

Objectives
Study used Programming and Description Languages

Effort
63 hours
Start : t1
End : t3

Description
Study Verilog Hardware Description Language (Netlist Subset)

Study FrameMaker Interchange Format

Study PERL until its fundamental capabilities are understood.

Work Package ID
WP -3: Architecture Composition

Objectives
Compose the architecture of the program to block and sub-block level

Effort
21 hours
Start : t4
End : t4

Description
Identify and describe the main program blocks, data structures and algorithms of the program. Describe the relations between the building functions and their interfaces.

Deliverable
D-3 Architecture Block Diagram

Work Package ID
WP-4: Implementation of Main Program Blocks

Objectives
Implement and Test the Main Program Blocks

Effort
70 hours
Start : t5
End : t7

Description
Implement modules defined in the architectural phase. Provide tests for the modules and debugging functions for the data-structures.

Deliverables
D-4.1—D-4.4 Program Code for Main Modules

Work Package ID
WP -5: Integration of Program and Test

Objectives
Combine the modules and test the program

Effort
21 hours
Start : t8
End : t8

Description
Combine the modules, write program integration test, run the test, fix bugs if applicable.

Deliverable
D-5.1 Program Integration Test Protocol

D-5.2 Program Veri-Spec

Work Package ID
WP –6 : Release and demonstration of program

Objectives
Release program to customer and demonstrate

Effort
7 hours
Start : t9
End : t9

Description
Release program to customer and demonstrate it

Deliverable
D-6 Demonstration

3.1.2 Tasks

Task ID
T-1: identification of Specification

Objectives
Requirement specification

Effort
7 hours
Start : t1
End : t2

Description
The customer input is collected, reviewed and discussed. A »Specification of Customer Requirements« [SCR] will be written on which both customer and software provider agree upon.

Resources
Customer input, Verilog-Netlist Example, MIF-specification Example

Critical Factors

Dependencies

Deliverables
D-1 Specifications of Customer Requirements

Task ID
T-2.1 : Study PERL

Objectives
Learn Programming in PERL

Effort
42 hours
Start : t1
End : t3

Description

Obtain an overview of the capabilities of PERL. Understand available data structures, especially associative arrays, subroutines and file i/o.

Resources
PERL interpreter, documentation and PERL course documentation

Critical Factors

Dependencies

Deliverables

Task ID
T-2.2 : Study Verilog

Objectives
Understand Verilog Hardware Desciption Language Netlist Subset

Effort
11 hours
Start : t3
End : t3

Description

Study Verilog-Netlist, analyse language elements, grammar and information contained in a Verilog netlist.

Resources
Verilog-Netlist Examples, Verilog-Language Definition

Critical Factors

Dependencies

Deliverables

Task ID
T-2.3 : Study FrameMaker Interchange Format

Objectives
Understand FrameMaker Interchange Format

Effort
10 hours
Start : t3
End : t3

Description

Study MIF documents. Analyse language elements grammar and information contained in a MIF-specification.

Resources
MIF specification examples, Information about MIF

Critical Factors

Dependencies

Deliverables

Task ID
T-3: Architecture Composition

Objectives
Compose the architecture of the program to block and sub-block level

Effort
21 hours
Start : t4
End : t4

Description
Identify and describe the main program blocks, data structures and algorithms of the program. Describe the relations between the building functions and their interfaces.

Resources
PERL Document, Verilog-Document, MIF specification

Critical Factors

Dependencies

Deliverable
D-3 Architecture Block Diagram

Task ID
T-4.1:Command Line Parser Implementation

Objectives
Implement Command Line Parser

Effort
14 hours
Start : t5
End : t5

Description

According to required user options, implenent function to receive control information via command line.

Resources
PERL – Interpeter, PERL-Documentation,Architecture Diagram

Critical Factors

Dependencies

Deliverables
D-4.1 Command-Line Parser Function

Task ID
T-4.2 : Verilog-Netlist Extractor

Objectives
Implement Verilog Netlist Extractor

Effort
21 hours
Start : t5
End : t6

Description

Implement a module to extract all necessary information from the Verilog – netlist. Generate META-structure output.

Resources
PERL-Interpeter, PERL-Documentation, Architecture Diagram, Verilog-Documentation, Verilog-Netlists

Critical Factors

Dependencies

Deliverables
D-4.2 Verilog netlist extractor function

Task ID
T-4.3 : Implementation of MIF-Reader

Objectives
Implement MIF-Reader

Effort
21 hours
Start : t6
End : t7

Description

Implement a module to extract all necessary information from the Maker Interchange File. Generate Meta-structure output.

Resources
PERL-Interpeter, PERL-Documentation, Architecture Diagram, MIF-Specification

Critical Factors

Dependencies

Deliverables
D-4.3 MIF extractor function

Task ID
T-4.4 : Implementation of Meta-structure

Objectives
Implement META-structure comparator

Effort
14 hours
Start : t7
End : t7

Description

Implement a module to compare the META-structures generated by the Verilog or MIF extraction modules.

Resources
PERL-Interpeter, PERL-Documentation, Architecture Diagram, Verilog-Documentation,Verilog-Netlist, MIF-Specification

Critical Factors

Dependencies
D-4.2 / D-4.3

Deliverables
D-4.4 Meta-structure comparison module

Task ID
T-5: Integration of Program and Test

Objectives
Combine the modules and test the program

Effort
21 hours
Start : t8
End : t8

Description
Combine the modules, write program integration test, run the test, fix bugs if applicable.

Resources
PERL-Interpeter, PERL-Documentation, Architecture Diagram

Critical Factors

Dependencies
D-4.1 / D-4.2 / D-4.3 / D-4.4

Deliverable
D-5.1 Program Integration Test Protocol

D-5.2 Program Veri-Spec

Task ID
T–6 : Release and demonstration of program

Objectives
Release program to customer and demonstrate

Effort
7 hours
Start : t9
End : t9

Description
Release program to customer and demonstrate it

Resources
Released Program Veri-Spec

Critical Factors

Dependencies

Deliverable
D-6 Demonstration

3.2 List of deliverables

No
Del. Ident.
Title
Type
Date
Task Reference

1
D-0
Project Proposal
Document
24/1/01
WP-0

2
D-1
Specifications of Customer Requirements
Document
15/2/01
T-1

3
D-3
Architecture Block Diagram
Document
30/4/01
T-3

4
D-4.1
Command-Line Parser Function
Software
15/5/01
T-4.1

5
D-4.2
Verilog netlist extractor function
Software
15/6/01
T-4.2

6
D-4.3
MIF extractor function
Software
15/7/01
T-4.3

7
D-4.4
Meta-structure comparison module
Software
31/7/01
T-4.4

8
D-5.1
Program Integration Test Protocol
Document
31/8/01
T-5

9
D-5.2
Program Veri-Spec
Software
31/8/01
T-5

10
D-6
Demonstration
Report
30/9/01
T-6

3.3 Workplan timetable

Tasks
Month 1
Month 2
Month 3
Month 4
Month 5
Month 6
Month 7
Month 8
Month 9

T-1

T-2.1

T-2.2

T-2.3

T-3

T-4.1

T-4.2

T-4.3

T-4.4

T-5

T-6

Verilog-Reader

 MIF-Reader

Converter

 META

Converter

 META

SEITE
Yu-wen Pang Seite 1 von 8

