Specification for Veri-Spec Version : 1 30. Apr. 01

Requirement Group 1 : General Requirements

R-1.1. The program compares netlist against netlist.

[E] This is useful to track changes in similar netlist

R-1.2. The program compares netlist against MIF

[E] This is the main function of the program

R-1.3. The program compares MIF against MIF.

[E] This is useful to detect changes in similar MIF-documents

Implementation Requirements:

R-1.4. The program has to be implemented in PERL

[E] PERL will allow easier maintenance and interfacing from scripts to the program

R-1.5 The program works on a meta database.

[E] This will increase re-usability by future functions. Refer to R-6.2 for details.

Requirement Group 2 : Command-Line Parser Function

R-2.1. The program name is VeriSpec.

R-2.2. Without any option, a brief help text is displayed showing how the program is invoked.

This will be the same as invoking the program with the help-option.

R-2.3. The program is invoked with the following options and parameters :

 VeriSpec [-h/-help/--help] [-d/-debug/--debug][-v/-verbose/--verbose]

<filename> <filename>

R-2.3.1. The kind of file is determined by its suffix.

 A MIF file is indicated by .mif

 A Verilog file is indicated by .v

 [E] The syntax allowed in the verilog file is described in `verilog_syntax.doc´.
R-2.3.2. Help Option

Invoked with -h or -help or --help

R-2.3.3. Debug Option

Invoked with -d or -debug or --debug

This option is to be used for maintenance of the program itself.

R-2.3.4. Verbose Option

Invoked with -v or -verbose or --verbose

In this mode the program will print out status information on its current processing.

Requirement Group 3 : Verilog-Reader

R-3.1. Verilog-Reader reads Verilog-netlist(s). The syntax is enclosed in `verilog_syntax.doc´

R-3.2. Verilog-Reader extracts from each netlist(s) :

a. Signal Name

b. Pull-Resistor

c. Buffer Type

d. I/O

R-3.3. Verilog-reader stores the extracted data from netlists in a two-step approach

first into a netlist database (NDB), then converts it into a meta-database (MDB)
described in Requirement Group 6.

R-3.4. Netlist Database Structure:

NDB{$filename}{$module}
{ports}
{$port}{direction}

{net}

{busport}
{$bus} {direction}

{indexlist}

{instances}{$instance}{module}

 {pins}{$pin}{direction}

{indexlist}

{net}

 {buspins}{$bus}{direction}

 {$bus}{indexlist}

{nets}

{$net}

Requirement Group 4 : MIF-Reader

R-4.1. MIF-Reader reads MIF-Specification in.

R-4.2. MIF-Reader extracts from Signal Descriptions in MIF-Specification each:

a. Signal Name

b. Pull

c. Buffer Type

d. I/O

R-4.3. MIF-Reader pass the extracted Data from MIF-Specification into the Meta-Database
as described in R6-2.

Requirement Group 5 : Logfile

R-5.1. Every time the program is started without the Help-Option, a log-file will be created.

R-5.2. The logfile will contain at least the following information

1.)The program name and a copyright information of Lucent Technologies

2.)Time the program started and ended

3.)The user who used the program

4.)The specified options

5.)The netlists names and file-stamps

6.)The result of the comparison

R-5.3. In case of errors the reason for the error is written to the logfile.

R-5.4. Location and Name of the logfile

The logfile is stored in the working directory. Its name is VeriSpec.log

Requirement Group 6 : META-Database

R-6.1 The program is operating on a META-Database.

[E] This will provide a standardised interface to the information the MIF and

Verilog-reader collect and allow for future functions to work on it.

R-6.2 The META-Database shall have the following structure:

Names embraced with { } are keys. If keys are prefixed with $, they are variable keys.

MDB{$filename}{toplevel}

{ports}
{$port}{direction}

{buffer-type}

{pull-resistor}

{busport}
{$bus} {direction}

{indexlist}

{buffer-type}

{pull-resistor}

There may be additional scratch fields which are not described herein.

Requirement Group 7 : Comparison

R-7.1. Comparison of netlist against MIF

The attributes of the netlist will be described below:

R-7.1.1.Completeness Check for Port Names

Every port name in the netlist must exist in the MIF-document.

For bussed ports,existance of each member has to be checked.

R-7.1.2. Pull Resistor Check

For each input port it is checked whether a pull-resistor is provided if the pull resistor

is an individual cell in the netlist. It should be possible to specify which cell corresponds to which resistance value.

R-7.1.3. Buffer Type Check

For each port it is checked which buffer type it is connected to.

For bussed ports, a consistancy check between all bus members is performed.

R-7.1.4. Differential Pair Check

Differential Pairs are checked whether they are connected to the same I/O buffer cell.

R-7.2. MIF versus MIF Comparisons

R-7.2.1. It is checked whether every port name in Signal Descriptions from MIF-document 1 exist also in MIF-document 2.

R-7.2.2. For each port it is checked whether the pull-resistor is the same in MIF-document 1 and in MIF-document 2.

R-7.2.3. For each port it is checked whether the buffer type is identical in MIF-document 1 and in MIF-document 2.

R-7.2.4. For each port it is checked whether I/O is identical in MIF-document 1 and in MIF-document 2.

R-7.3. Netlist versus Netlist Comparisons

The same comparisons as in Requirement 7.1 are performed.

R-7.4. Every inconsistency will be reported in the logfile.
Yu-wen Pang Copyright : Lucent Technologies. All rights reserved Page 1 0f 3

