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Generalized Additive Models (GAMS)

GAMs are regression models for a random variable Y from the
exponential family (Gaussian, gamma, Bernoulli, categorial,
exponential, beta, . . .)
Extension of a standard linear regression model that allows to model
non-linear functions
Tabular dataset: [[xn, yn]Nn=1]

⊤ where x ∈ Rp and y ∈ R
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Generalized Additive Models (GAMs)

General form of interpretable GAMs

E[Y |x1, . . . , xp] =

univariatez }| {
f1,1(x1) + f1,2(x2) + . . .+

bivariatez }| {
f2,1(x1, x2) + . . .| {z }

non-parametric

+ Xβ|{z}
parametric

f (·) called smoother (non-linear function)
non-parametric regression models
splines
deep neural networks
regression trees

parametric part is typically used to model categorical variables
f (·) and β are estimated from the data
See [Wood, 2017, Hastie and Tibshirani, 1986, Hastie and Tibshirani, 1990, Wahba, 1990,

Green and Silverman, 1993, Riezler and Hagmann, 2021].
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What are splines?

Well known technique from numerical mathematics for function
interpolation
Key Idea: Interpolation is done by piece-wise polynomial functions
that connect smoothly at knots to model globally smooth functions

Definition: Spline
A function p:[τ0, τn−1) 7→ R that can be expressed by a polynomial with
a degree of at most d for each sub-interval [τi , τi+1] of a strictly
increasing knot sequence τ := [τi ]i=0,...,n−1 is called a piece-wise
polynomial function or spline on τ of maximum degree d .

The spline space Sd ,τ

Sd ,τ denotes the vector space of all (d − 1)-times continuously
differentiable splines on τ .
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A Basis for Sd ,τ

Truncated power function

(u)d+ :=

(
0 u < 0
ud otherwise

with d ∈ N0

Result
For every spline p on τ with maximum degree d exist a unique set of
coefficients cij for i = 0, . . . , d and j = 0, . . . , (n − 2) such that

p(x) =
n−2X

j=0

dX

i=0

cij(x − τj)
d
+

The most commonly used splines (natural splines, B-Spline, cubic splines,
TP-splines, etc) differ mostly by the chosen base to represent Sd,τ .
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Smoothing Splines

Functional minimization problem
Let H be the class of twice differentiable univariate functions and assume
N datapoints:

min
h∈H

NX

n=1

(yn − h(xn))2 + λ

Z
(h′′(x))2 dx

where λ ∈ R+ and
R
(h′′(x))2dx is a measure for the roughness of a

function over its domain.

Solution: Natural cubic splines with knots at each input xn
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Smoothing Splines

Idea for spline based GAMs
Fix a Basis for Sd ,τ , transform the input feature x by the base functions
and estimate the ci ,j from data

Matrix notation of a spline

f (·) =
dX

j=1

βjbj(·) = b(·)β

where b(·) = [b1(·), b2(·), . . . , bd(·)]
β = [β1,β2, . . . ,βd ]

⊤
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Penalized Least Squares Parameter Estimation

Penalized least squares objective

β̂ = argmin
β∈Rs



Y − Gβ


2
+

pX

k=1

λk

Z
(f ′′k (x))

2 dx

where s =
Pp

k=1 dk , λk ∈ R+ and G stores the base function values of
the input features.

Useful fact about the roughness penalty

Z
(f ′′(x))2 dx = β⊤Ωβ

where Ω := [

Z
b′′s (x)b

′′
t (x)dx ]s,t=1,...,N
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Penalized Least Squares Parameter Estimation

PLSE objective (for one spline)

min
β∈RN



Y − Gβ


2
+λβ⊤Ωβ

REMARK: Note similarity to OLS objective

Estimators

β̂ = (G⊤G + λΩ)−1G⊤y

Thus, the estimated smoother is:

f̂ (·) = b(·)(G⊤G + λΩ)−1G⊤y
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Choice of λ
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Estimating λ

cross validation [Wood, 2017]

marginal likelihood estimation in tandem with β [Wood et al., 2016]
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Consistency

Definition: Consistency
Let M : = {pθ : θ ∈ Θ} be a parametric statistical model where θ 7→ pθ
is injective. Further, let pθ0 ∈ M denote the true model of the data
generating process for a dataset D = {(xn, yn)}Nn=1. Then an estimator
θN is called consistent iff for all ϵ > 0 holds

P (|θN − θ0| > ϵ)
N→∞−−−−→ 0.

Consistency has been shown for spline based GAMs by [Heckman, 1986].
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Measuring Model Fit: Deviance

A likelihood based measure of model fit
Difference between the log-likelihood ℓ(µ) of a model µ and the largest
possible log-likelihood ℓ∗

D∗
µ := 2(ℓ∗ − ℓ(µ))

ℓ∗ corresponds to the likelihood of a model that perfectly reproduces the
targets

Deviance explained

D2(µ) = 1 −
D∗
µ

Dµ0

∈ [0, 1]

where µ0 denotes the intercept only model
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