Generalized Additive Models

Outline

- GAMs in a nut shell
- A brief sketch of splines
- Estimating spline based GAMs
- Two important measures
- Consistency

Generalized Additive Models (GAMS)

- GAMs are regression models for a random variable Y from the exponential family (*Gaussian*, gamma, Bernoulli, categorial, exponential, beta, ...)
- Extension of a standard linear regression model that allows to model non-linear functions
- Tabular dataset: $[[x^n, y^n]_{n=1}^N]^\top$ where $x \in \mathbb{R}^p$ and $y \in \mathbb{R}$

Generalized Additive Models (GAMs)

- Well known technique from numerical mathematics for function interpolation
- Key Idea: Interpolation is done by piece-wise polynomial functions that connect smoothly at knots to model globally smooth functions

Definition: Spline

A function $p:[\tau_0, \tau_{n-1}) \mapsto \mathbb{R}$ that can be expressed by a polynomial with a degree of at most d for each sub-interval $[\tau_i, \tau_{i+1}]$ of a strictly increasing knot sequence $\tau := [\tau_i]_{i=0,...,n-1}$ is called a piece-wise polynomial function or *spline* on τ of maximum degree d.

The spline space $S_{d,\tau}$

 $S_{d,\tau}$ denotes the vector space of all (d-1)-times continuously differentiable splines on τ .

A Basis for $S_{d,\tau}$

Truncated power function

$$(u)^d_+ \coloneqq \begin{cases} 0 & u < 0 \\ u^d & \text{otherwise} \end{cases}$$
 with $d \in \mathbb{N}_0$

Result

For every spline p on τ with maximum degree d exist a unique set of coefficients c_{ij} for i = 0, ..., d and j = 0, ..., (n-2) such that

$$p(x) = \sum_{j=0}^{n-2} \sum_{i=0}^{d} c_{ij}(x - \tau_j)^d_+$$

The most commonly used splines (natural splines, B-Spline, cubic splines, TP-splines, etc) differ mostly by the chosen base to represent $S_{d,\tau}$.

Stefan Riezler and Michael Hagmann

Functional minimization problem

Let \mathfrak{H} be the class of twice differentiable univariate functions and assume N datapoints:

$$\min_{h\in\mathfrak{H}}\sum_{n=1}^{N}(y^n-h(x^n))^2+\lambda\int(h''(x))^2\,dx$$

where $\lambda \in \mathbb{R}^+$ and $\int (h''(x))^2 dx$ is a measure for the roughness of a function over its domain.

Solution: Natural cubic splines with knots at each input x^n

Idea for spline based GAMs

Fix a Basis for $S_{d,\tau}$, transform the input feature x by the base functions and estimate the $c_{i,j}$ from data

Matrix notation of a spline

$$f(\cdot) = \sum_{j=1}^{d} \beta_j b_j(\cdot) = b(\cdot)\beta$$

where $b(\cdot) = [b_1(\cdot), b_2(\cdot), \dots, b_d(\cdot)]$
 $\beta = [\beta_1, \beta_2, \dots, \beta_d]^\top$

Penalized Least Squares Parameter Estimation

Penalized least squares objective

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{s}}{\operatorname{argmin}} \|\boldsymbol{Y} - \boldsymbol{G}\boldsymbol{\beta}\|^{2} + \sum_{k=1}^{p} \lambda_{k} \int (f_{k}''(x))^{2} dx$$

where $s = \sum_{k=1}^{p} d_k$, $\lambda_k \in \mathbb{R}^+$ and G stores the base function values of the input features.

Useful fact about the roughness penalty

$$\int (f''(x))^2 dx = \beta^\top \Omega \beta$$

where $\Omega := [\int b''_s(x) b''_t(x) dx]_{s,t=1,...,N}$

Penalized Least Squares Parameter Estimation

PLSE objective (for one spline)

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{N}} \left\| \boldsymbol{\mathsf{Y}} - \boldsymbol{\mathsf{G}} \boldsymbol{\beta} \right\|^{2} + \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\Omega} \boldsymbol{\beta}$$

REMARK: Note similarity to OLS objective

Estimators

$$\hat{\boldsymbol{eta}} = (\boldsymbol{\mathsf{G}}^{ op}\boldsymbol{\mathsf{G}} + \lambda \boldsymbol{\Omega})^{-1}\boldsymbol{\mathsf{G}}^{ op}\boldsymbol{\mathsf{y}}$$

Thus, the estimated smoother is:

$$\hat{f}(\cdot) = \mathsf{b}(\cdot)(\mathsf{G}^{\top}\mathsf{G} + \lambda\Omega)^{-1}\mathsf{G}^{\top}\mathsf{y}$$

Choice of λ

Estimating λ

- cross validation [Wood, 2017]
- **•** marginal likelihood estimation in tandem with β [Wood et al., 2016]

Definition: Consistency

Let $M: = \{p_{\theta} : \theta \in \Theta\}$ be a parametric statistical model where $\theta \mapsto p_{\theta}$ is injective. Further, let $p_{\theta_0} \in M$ denote the true model of the data generating process for a dataset $D = \{(x^n, y^n)\}_{n=1}^N$. Then an estimator θ_N is called *consistent* iff for all $\epsilon > 0$ holds

$$P(|\theta_N - \theta_0| > \epsilon) \xrightarrow{N \to \infty} 0.$$

Consistency has been shown for spline based GAMs by [Heckman, 1986].

A likelihood based measure of model fit

Difference between the log-likelihood $\ell(\mu)$ of a model μ and the largest possible log-likelihood ℓ^*

$$D^*_\mu\coloneqq 2(\ell^*-\ell(\mu))$$

 ℓ^\ast corresponds to the likelihood of a model that perfectly reproduces the targets

Deviance explained

$$D^2(\mu) = 1 - rac{D_{\mu}^*}{D_{\mu_0}} \in [0,1]$$

where μ_0 denotes the intercept only model