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Linear Mixed Effect Models (LMEMs)

m LMEM is a regression model for a random variable Y from the
exponential family (Gaussian, gamma, Bernoulli, categorial,
exponential, beta, ...)

m Extension of a standard linear regression model that allows to model
non-iid variance-covariance patterns

m Tabular dataset: [[x",z",y"]"_,]" where x ¢ R?, zc R9 and y € R

 General form of LMEM for a single observation

yn:an6+an_|_en

m (3 fixed effect parameters

m Random effect parameters b and errors ¢ modeled by Gaussian
variables

m 0 and 3 are estimated from the data

H See [McCulloch and Searle, 2001, Demidenko, 2013, Wood, 2017, Riezler and Hagmann, 2021].
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Linear Mixed Effect Models (LMEMs)

Matrix notation for the whole dataset

y=XB+7Zb+e€

sy c RV X e RNVXP and Z € RV*9 denote the stacked y"/x"/z"
mb~N(0,v¢9), € ~N(0,Ag) where 1pg and Ag are positive definite
s E[y|X] = X8 and V]y] = ZapgZ" + Ag

Data distribution for Gaussian Y

Y ~ N(XB, ZpoZ' + Ng)

REMARK I: £ (11, 2) o |8 = exp (~1(y — ) T2y — )
REMARK 1l Inversion of ZayZ " + Ag is computationally expensive
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Profile Likelihood based ML Estimator

AIM: Find an expression for f, that avoids the inversion of ZvoZ' + Mg

Elementary facts

Marginal Distribution: f, :/fy,b db

Conditional Distribution: f, ,, = £, f,

'Conditional distribution of Y given b

y|b ~ N(XB + Zb, Ag)
b ~ N(07 ng)

= Just need to invert Ag and g which are typically simple and sparse
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Profile Likelihood based ML Estimator

Result: Marginal distribution

£(8,60) o [ZTAG'Z + 5|~ F,5(8, 0)£;(6)

where b= argmax log(f, (3, 9))
beRdY

PROOF: f, = [ exp(log(f, b)) db & Taylor Series of log(#, ) around b

ML Objective based on the marginal distribution

L(3,8,b) = —(y — XB+ Zb) "Ag (y — XB + Zb) — b4, b
— log(|Ag|) — log(|tbel) — log(1Z' Ag'Z + b5 )

What happened to b?
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Profile Likelihood based ML Estimator

Assume we know 0: MLE for B and b (Henderson equations)

XTA,IX  XTA,'Z ] | {B

~[XTAgty
ZTAX ZTAS Z 44| | b

T 1ZTA Yy

How to estimate 6

= ML: Find 8 by optimizing the profile likelihood L(B, B,H)

m No closed form solution
m Computations can be sped up due to simple and sparse matrices
m Convergence can be sped up combining EM and Newton-Raphson

methods

m REML (Restricted Maximum Likelihood)
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Important Large Sample Results for MLE

| Consistency [nie, 2006]
Ve>0: P (d(,@/\/,ﬁ) > e) M=o

= (3 is asymptotically unbiased
m V[3] decreases with N

Distribution of 3 given 6

(B — B) T N0, (X (ZpoZ" + Ng) X))

m Allows statistical inference for (3

= Results still holds when 8 is replaced by
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Principles of Hypothesis Testing

Fundamental goal

Decide between two mutually exclusive and exhaustive sets of hypotheses,
called null hypothesis Hy and alternative hypothesis Hi; about the data
generating probability measures by evidence obtained from observed

random samples.

= The test decision is a random event!

(Important probabilities of a hypothesis test

Type-| error probability:  P(reject Hy while Hy is true)
Power: P(reject Hy while Hy is true)
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Principles of Hypothesis Testing

(Conducting a hypothesis test

Define a test statistic T which allows to discriminate
between Hy and H,

Assume Hp is true and derive the distribution of T
Set the Type-l error probability to a predefined level «
Reject Hyp when P(|T| > tops) < @

Notes

m |t is important that the actual o, equals the nominal «, otherwise
the test either wastes power (cacr < @) or is not admissible
(aet > )

m Usually 2 is the difficult step. If one resorts to resampling based

methods one has to be careful to implement an appropriate
resampling mechanism [canty et al, 2006].
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Generalized Likelihood Ratio Test

| Hypothesis

Suppose we have two nested models describing the same data f(©g) and
f(©1) where ©g C ©1 with dfy := dim(©g) < dim(©1) =: df are the
parameter spaces of the models. We want to test if m(©1) is more
appropriate.

Hy: 6 € ©g
H12 (96@1\@0

| Likelihood ratio
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Generalized Likelihood Ratio Test

Interpretation of 0 < A < 1:
m Values of X close to 1 suggest that restricted model (Hp) explains
the data as well as more complex model (H;)

m Hp should be accepted for large values of A

m Conversely, values close to 0 suggest that the data are not very
compatible with the parameter values in the restricted model

m Hy should be rejected for small values of A

Stefan Riezler and Michael Hagmann 25 / 130




Generalized Likelihood Ratio Test

test decision

accept Ho
reject Ho

distribution of test statistic W under Hg

O O
(1-o)-quantile w
test statistic W value

Test statistiC [wilks, 1938, van der Vaart, 1098]

b3 %k H
W = —2log A = 2(log £} — log £§) ~ Xar, _ar,

Reject Hy if p := P, (W > wops) < «
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