Linear Mixed Effect Models & Generalized Likelihood Ratio Test

- LMEMs in a nut shell
- Estimating LMEMs
- Asymptotic Results for Maximum Likelihood Estimators
- Principles of hypothesis testing
- Generalized Likelihood Ratio Test

Linear Mixed Effect Models (LMEMs)

- LMEM is a regression model for a random variable Y from the exponential family (*Gaussian*, gamma, Bernoulli, categorial, exponential, beta, ...)
- Extension of a standard linear regression model that allows to model non-iid variance-covariance patterns
- Tabular dataset: $[[x^n, z^n, y^n]_{n=1}^N]^\top$ where $x \in \mathbb{R}^p$, $z \in \mathbb{R}^q$ and $y \in \mathbb{R}$

General form of LMEM for a single observation

$$y^n = x^n \beta + z^n b + \epsilon^n$$

- β fixed effect parameters
- \blacksquare θ and β are estimated from the data

See [McCulloch and Searle, 2001, Demidenko, 2013, Wood, 2017, Riezler and Hagmann, 2021].

Linear Mixed Effect Models (LMEMs)

Matrix notation for the whole dataset

$$y = X\beta + Zb + \epsilon$$

- $y \in \mathbb{R}^N$, $X \in \mathbb{R}^{N \times p}$ and $Z \in \mathbb{R}^{N \times q}$ denote the stacked $y^n/x^n/z^n$
- $b \sim \mathcal{N}(0, \psi_{\theta}), \ \epsilon \sim \mathcal{N}(0, \Lambda_{\theta})$ where ψ_{θ} and Λ_{θ} are positive definite • $\mathbb{E}[y|X] = X\beta$ and $\mathbb{V}[y] = Z\psi_{\theta}Z^{\top} + \Lambda_{\theta}$

Data distribution for Gaussian Y

$$\mathsf{Y} \sim \mathcal{N}(\mathsf{X}\boldsymbol{\beta},\mathsf{Z}\boldsymbol{\psi}_{\theta}\mathsf{Z}^{\top}+\mathsf{\Lambda}_{\boldsymbol{\theta}})$$

REMARK I: $f_{y}(\mu, \Sigma) \propto |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(y - \mu)^{\top}\Sigma^{-1}(y - \mu)\right)$ REMARK II: Inversion of $Z\psi_{\theta}Z^{\top} + \Lambda_{\theta}$ is computationally expensive

Profile Likelihood based ML Estimator

r

AIM: Find an expression for f_y that avoids the inversion of $Z \psi_{\theta} Z^{\top} + \Lambda_{\theta}$

Elementary facts

Marginal Distribution:
$$f_y = \int f_{y,b} db$$

Conditional Distribution: $f_{y,b} = f_{y|b}f_b$

Conditional distribution of Y given b

 $egin{aligned} \mathsf{y}|\mathsf{b} &\sim \mathcal{N}(\mathsf{X}oldsymbol{eta}+\mathsf{Z}\mathsf{b},\mathsf{\Lambda}_{oldsymbol{ heta}}) \ \mathsf{b} &\sim \mathcal{N}(\mathsf{0},\psi_{oldsymbol{ heta}}) \end{aligned}$

 \Rightarrow Just need to invert Λ_{θ} and ψ_{θ} which are typically simple and sparse

Profile Likelihood based ML Estimator

Result: Marginal distribution

$$\begin{split} f_{\mathsf{y}}(\boldsymbol{\beta},\boldsymbol{\theta}) &\propto |\mathsf{Z}^{\top} \Lambda_{\boldsymbol{\theta}}^{-1} \mathsf{Z} + \psi_{\boldsymbol{\theta}}^{-1}|^{-1/2} f_{\mathsf{y}|\hat{\mathsf{b}}}(\boldsymbol{\beta},\boldsymbol{\theta}) f_{\hat{\mathsf{b}}}(\boldsymbol{\theta}) \\ \text{where} \quad \hat{\mathsf{b}} &\coloneqq \operatorname*{argmax}_{\mathsf{b} \in \mathbb{R}^{q}} \log(f_{\mathsf{y},\mathsf{b}}(\boldsymbol{\beta},\boldsymbol{\theta})) \end{split}$$

PROOF: $f_y = \int \exp(\log(f_{y,b})) db$ & Taylor Series of $\log(f_{y,b})$ around \hat{b}

ML Objective based on the marginal distribution

$$L(\beta, \theta, \mathsf{b}) = \frac{-(\mathsf{y} - \mathsf{X}\beta + \mathsf{Z}\mathsf{b})^{\top} \Lambda_{\theta}^{-1} (\mathsf{y} - \mathsf{X}\beta + \mathsf{Z}\mathsf{b}) - \mathsf{b}^{\top} \psi_{\theta}^{-1} \mathsf{b}}{-\log(|\Lambda_{\theta}|) - \log(|\Psi_{\theta}|) - \log(|\mathsf{Z}^{\top} \Lambda_{\theta}^{-1} \mathsf{Z} + \psi_{\theta}^{-1}|)}$$

What happened to \hat{b} ?

Profile Likelihood based ML Estimator

Assume we know θ : MLE for β and b (Henderson equations)

$$\begin{bmatrix} \mathsf{X}^{\top} \mathsf{\Lambda}_{\boldsymbol{\theta}}^{-1} \mathsf{X} & \mathsf{X}^{\top} \mathsf{\Lambda}_{\boldsymbol{\theta}}^{-1} \mathsf{Z} \\ \mathsf{Z}^{\top} \mathsf{\Lambda}_{\boldsymbol{\theta}}^{-1} \mathsf{X} & \mathsf{Z}^{\top} \mathsf{\Lambda}_{\boldsymbol{\theta}}^{-1} \mathsf{Z} + \psi_{\boldsymbol{\theta}}^{-1} \end{bmatrix} \cdot \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathsf{b}} \end{bmatrix} = \begin{bmatrix} \mathsf{X}^{\top} \mathsf{\Lambda}_{\boldsymbol{\theta}}^{-1} \mathsf{y} \\ \mathsf{Z}^{\top} \mathsf{\Lambda}_{\boldsymbol{\theta}}^{-1} \mathsf{y} \end{bmatrix}$$

How to estimate θ

- ML: Find $\hat{\theta}$ by optimizing the profile likelihood $L(\hat{\beta}, \hat{b}, \theta)$
 - No closed form solution
 - Computations can be sped up due to simple and sparse matrices
 - Convergence can be sped up combining EM and Newton-Raphson methods
- REML (Restricted Maximum Likelihood)

Important Large Sample Results for MLE

Consistency [Nie, 2006]

$$\forall \epsilon > 0: \quad P\left(d(\hat{\beta}_N, \beta) > \epsilon\right) \xrightarrow{N \to \infty} 0$$

Distribution of $\hat{\boldsymbol{\beta}}$ given $\boldsymbol{\theta}$

$$(\hat{oldsymbol{eta}} - oldsymbol{eta}) \stackrel{\textit{app}}{\sim} \mathcal{N}(\mathsf{0}, (\mathsf{X}^ op (\mathsf{Z}\psi_ heta \mathsf{Z}^ op + \mathsf{\Lambda}_{oldsymbol{ heta}})^{-1} \mathsf{X})^{-1})$$

Allows statistical inference for $\hat{\beta}$

Results still holds when heta is replaced by $\hat{ heta}$

Fundamental goal

Decide between two mutually exclusive and exhaustive sets of hypotheses, called *null hypothesis* H_0 and *alternative hypothesis* H_1 about the data generating probability measures by evidence obtained from observed random samples.

 \Rightarrow The test decision is a random event!

Important probabilities of a hypothesis test

Type-I error probability: $P(\text{reject } H_0 \text{ while } H_0 \text{ is true})$ Power: $P(\text{reject } H_0 \text{ while } H_1 \text{ is true})$

Principles of Hypothesis Testing

Conducting a hypothesis test

- 1 Define a test statistic T which allows to discriminate between H_0 and H_1
- **2** Assume H_0 is true and derive the distribution of T
- ${\rm \ensuremath{\overline{3}}}$ Set the Type-I error probability to a predefined level α
- 4 Reject H_0 when $P(|T| > t_{obs}) \leq \alpha$

Notes

- It is important that the actual α_{act} equals the nominal α, otherwise the test either wastes power (α_{act} < α) or is not admissible (α_{act} > α)
- Usually 2 is the difficult step. If one resorts to resampling based methods one has to be careful to implement an appropriate resampling mechanism [Canty et al., 2006].

Hypothesis

Suppose we have two *nested models* describing the same data $f(\Theta_0)$ and $f(\Theta_1)$ where $\Theta_0 \subseteq \Theta_1$ with $df_0 := \dim(\Theta_0) < \dim(\Theta_1) =: df_1$ are the parameter spaces of the models. We want to test if $m(\Theta_1)$ is more appropriate.

$$\begin{array}{ll} H_0 & \theta \in \Theta_0 \\ H_1 & \theta \in \Theta_1 \setminus \Theta_0 \end{array} \end{array}$$

Likelihood ratio $\lambda := \frac{f(\hat{\theta}_0^{ML})}{f(\hat{\theta}_1^{ML})} = \frac{\ell_0^*}{\ell_1^*}$

Stefan Riezler and Michael Hagmann

Interpretation of $0 < \lambda \leq 1$:

- Values of λ close to 1 suggest that restricted model (H_0) explains the data as well as more complex model (H_1)
- H_0 should be accepted for large values of λ
- Conversely, values close to 0 suggest that the data are not very compatible with the parameter values in the restricted model
- H_0 should be rejected for small values of λ

Generalized Likelihood Ratio Test

Test statistic [Wilks, 1938, van der Vaart, 1998]

$$W = -2\log\lambda = 2(\log\ell_1^* - \log\ell_0^*) \stackrel{H_0}{\sim} \chi^2_{df_1-df_0}$$

Reject H_0 if $p := P_{H_0}(W > w_{obs}) \leq \alpha$