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Linear Mixed Effect Models (LMEMs)

LMEM is a regression model for a random variable Y from the
exponential family (Gaussian, gamma, Bernoulli, categorial,
exponential, beta, . . .)
Extension of a standard linear regression model that allows to model
non-iid variance-covariance patterns
Tabular dataset: [[xn, zn, yn]Nn=1]

⊤ where x ∈ Rp, z ∈ Rq and y ∈ R

General form of LMEM for a single observation

yn = xnβ + znb + ϵn

β fixed effect parameters
Random effect parameters b and errors ϵ modeled by Gaussian
variables
θ and β are estimated from the data
See [McCulloch and Searle, 2001, Demidenko, 2013, Wood, 2017, Riezler and Hagmann, 2021].
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Linear Mixed Effect Models (LMEMs)

Matrix notation for the whole dataset

y = Xβ + Zb + ϵ

y ∈ RN , X ∈ RN×p and Z ∈ RN×q denote the stacked yn/xn/zn

b ∼ N (0,ψθ), ϵ ∼ N (0,Λθ) where ψθ and Λθ are positive definite
E[y|X] = Xβ and V[y] = ZψθZ⊤ + Λθ

Data distribution for Gaussian Y

Y ∼ N (Xβ,ZψθZ⊤ + Λθ)

REMARK I: fy(µ,Σ) ∝ |Σ| − 1/2 exp (− 1
2 (y − µ)⊤Σ−1(y − µ))

REMARK II: Inversion of ZψθZ⊤ + Λθ is computationally expensive
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Profile Likelihood based ML Estimator

AIM: Find an expression for fy that avoids the inversion of ZψθZ⊤ + Λθ

Elementary facts

Marginal Distribution: fy =

Z
fy ,b db

Conditional Distribution: fy,b = fy|bfb

Conditional distribution of Y given b

y|b ∼ N (Xβ + Zb,Λθ)

b ∼ N (0,ψθ)

⇒ Just need to invert Λθ and ψθ which are typically simple and sparse
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Profile Likelihood based ML Estimator

Result: Marginal distribution

fy(β,θ) ∝ |Z⊤Λ−1
θ Z +ψ−1

θ |− 1/2fy|b̂(β,θ)fb̂(θ)

where b̂ := argmax
b∈Rq

log(fy,b(β,θ))

PROOF: fy =
R
exp (log(fy ,b)) db & Taylor Series of log(fy,b) around b̂

ML Objective based on the marginal distribution

L(β,θ, b) = −(y − Xβ + Zb)⊤Λ−1
θ (y − Xβ + Zb)− b⊤ψ−1

θ b

− log(|Λθ|)− log(|ψθ|)− log(|Z⊤Λ−1
θ Z +ψ−1

θ |)

What happened to b̂?
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Profile Likelihood based ML Estimator

Assume we know θ: MLE for β and b (Henderson equations)
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How to estimate θ

ML: Find θ̂ by optimizing the profile likelihood L(β̂, b̂,θ)
No closed form solution
Computations can be sped up due to simple and sparse matrices
Convergence can be sped up combining EM and Newton-Raphson
methods

REML (Restricted Maximum Likelihood)
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Important Large Sample Results for MLE

Consistency [Nie, 2006]

∀ϵ > 0 : P
�
d(β̂N ,β) > ϵ

�
N→∞−−−−→ 0

β̂ is asymptotically unbiased
V[β̂] decreases with N

Distribution of β̂ given θ

(β̂ − β)
app∼ N (0, (X⊤(ZψθZ⊤ + Λθ)

−1X)−1)

Allows statistical inference for β̂
Results still holds when θ is replaced by θ̂
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Principles of Hypothesis Testing

Fundamental goal
Decide between two mutually exclusive and exhaustive sets of hypotheses,
called null hypothesis H0 and alternative hypothesis H1 about the data
generating probability measures by evidence obtained from observed
random samples.

⇒ The test decision is a random event!

Important probabilities of a hypothesis test

Type-I error probability: P(reject H0 while H0 is true)
Power: P(reject H0 while H1 is true)
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Principles of Hypothesis Testing

Conducting a hypothesis test
1 Define a test statistic T which allows to discriminate

between H0 and H1

2 Assume H0 is true and derive the distribution of T
3 Set the Type-I error probability to a predefined level α
4 Reject H0 when P(|T | > tobs) ≤ α

Notes
It is important that the actual αact equals the nominal α, otherwise
the test either wastes power (αact < α) or is not admissible
(αact > α)
Usually 2 is the difficult step. If one resorts to resampling based
methods one has to be careful to implement an appropriate
resampling mechanism [Canty et al., 2006].
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Generalized Likelihood Ratio Test

Hypothesis
Suppose we have two nested models describing the same data f (Θ0) and
f (Θ1) where Θ0 ⊆ Θ1 with df0 := dim(Θ0) < dim(Θ1) =: df1 are the
parameter spaces of the models. We want to test if m(Θ1) is more
appropriate.

H0: θ ∈ Θ0

H1: θ ∈ Θ1 \Θ0

Likelihood ratio

λ :=
f (θ̂ML

0 )

f (θ̂ML
1 )

=
ℓ∗0
ℓ∗1
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Generalized Likelihood Ratio Test

Interpretation of 0 < λ ≤ 1:
Values of λ close to 1 suggest that restricted model (H0) explains
the data as well as more complex model (H1)
H0 should be accepted for large values of λ
Conversely, values close to 0 suggest that the data are not very
compatible with the parameter values in the restricted model
H0 should be rejected for small values of λ
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Generalized Likelihood Ratio Test

Test statistic [Wilks, 1938, van der Vaart, 1998]

W = −2 log λ = 2(log ℓ∗1 − log ℓ∗0)
H0∼ χ2

df1−df0

Reject H0 if p := PH0(W > wobs) ≤ α
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