Conclusion
Conclusion: Inferential Reproducibility

Stefan Riezler and Michael Hagmann
Inferential Reproducibility

- Validity, reliability, and significance are methodological pillars of empirical science.
- Easily neglected in race for improved state-of-the-art results on benchmark data.
- Old-fashioned statistical methods come the rescue to analyze inferential reproducibility!
 - Enter **interpretable GAMs and LMEMs** as analysis tools.
 - **Statistical tests like GLRT, VCA, or circularity test** are **justified by identifiability and consistency** of maximum likelihood estimators for GAMs and LMEMs.
 - **Wide applicability, well established software.**
Focus of our work

- **Significance:**
 - Related to partial conjunction testing for multiple datasets
 [Dror et al., 2017],
 - and to score distribution comparison for multiple models
 [Dror et al., 2019].
 - **Our focus:** **Unified approach** for significance testing under **meta-parameter and data variation**, using likelihood ratio tests.
Focus of our work

- **Reliability:**
 - Related to approaches that analyze meta-parameter importance in model prediction [Hutter et al., 2014, Bergstra and Bengio, 2012],
 - or report expected validation performance w.r.t. computational budget [Dodge et al., 2019, Tang et al., 2020].
 - **Our focus:** Explain variability by LMEM variance component analysis and justify reliability by ICC-like coefficient.
Focus of our work

- **Validity:**
 - Related to descriptive statistics to detect dataset bias
 [Poliak et al., 2018, Gururangan et al., 2018],
 - with goal of using machine learning to reduce influence of bias features
 [Clark et al., 2019, Kim et al., 2019].
 - **Our focus:** GAM-based test to **detect** validity-violating features and **remove** them from datasets.
Open Questions, Comments, Suggestions

- Towards **inferential reproducibility** as a **new standard in machine learning evaluation**?
 - How to get there?
 - Would you go the extra mile?
 - What did we forget?

- Please tell us in Q&A or by email to
 {riezler,hagmann}@cl.uni-heidelberg.de
Thank you!

Data, code, and preprint:

https://www.cl.uni-heidelberg.de/statnlpgroup/empirical_methods/

A systematic review of reproducibility research in natural language processing.
In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL)*, Online.

An empirical investigation of statistical significance in NLP.
In *Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, Jeju Island, Korea.

Random search for hyper-parameter optimization.

Some asymptotic theory for the bootstrap.

Cambridge University Press.

Test validity in cognitive assessment.

The concept of validity.

CoRR, abs/2204.02311.

What does research reproducibility mean?

We need to talk about standard splits.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy.

A methodology for building a patent test collection for prior art search.

Nonparametric regression and generalized linear models: a roughness penalty approach.
Crc Press.

Annotation artifacts in natural language inference data.

PHS: A toolbox for parallel hyperparameter search.

Generalized additive models.

Generalized Additive Models.
Chapman and Hall.

Spline smoothing in a partly linear model.

Reproducibility standards for machine learning in the life sciences.
Nature Methods, 18:1122–1144.

Deep reinforcement learning that matters.
In *Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI)*, New Orleans, LA, USA.

The large-sample power of tests based on permutations of observations.

Artificial intelligence faces reproducibility crisis.

An efficient approach for assessing hyperparameter importance.
In *Proceedings of the 31st International Conference on Machine Learning (ICML)*, Beijing, China.

The Growth of Logical Thinking from Childhood to Adolescence.
Basic Books.

Scaling laws for neural language models.

Generalization in deep learning.
CoRR, abs/1710.05468.

Learning not to learn: Training deep neural networks with biased data.
In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, Long Beach, CA, USA.

Derivation of new readability formulas for navy enlisted personnel.
Technical report, Technical Report, Naval Air Station, Millington, TN.

A guideline of selecting and reporting intraclass correlations coefficients for reliability research.
Correct me if you can: Learning from error corrections and markings.
In *Proceedings of the 22nd Annual Conference of the European Association for Machine Translation (EAMT)*, Lisbon, Portugal.

Content Analysis. An Introduction to Its Methodology.
Sage.

Deep learning reproducibility and explainable AI (XAI).
CoRR, abs/2202.11452.

BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension.

Automatic evaluation of summaries using n-gram co-occurrence statistics.

Towards reproducible machine learning research in natural language processing.

Lucic, M., Kurach, K., Michalski, M., Bousquet, O., and Gelly, S. (2018).
Are GANs created equal? A large-scale study.

Magdy, W. and Jones, G. J. F. (2010).
Applying the KISS principle for the CLEF-IP 2010 prior art candidate patent search task.
In In *Proceedings of the CLEF 2010 Workshop*, Padua, Italy.

Manning, C. D., Raghavan, P., and Schütze, H. (2008).
Introduction to Information Retrieval.
Cambridge University Press.

Marie, B., Fujita, A., and Rubino, R. (2021).
Scientific credibility of machine translation research: A meta-evaluation of 769 papers.
In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP)*, Online.

McCulloch, C. E. and Searle, S. R. (2001).
Generalized, Linear, and Mixed Models.
Wiley.

Melis, G., Dyer, C., and Blunsom, P. (2018).
On the state of the art of evaluation in neural language models.

CoRR, abs/2204.06815.

Smoothing parameter and model selection for general smooth models.

Assumptions behind intercoder reliability indices.
Communication Yearbook, 36:419–480.

Extractive summarization as text matching.
In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, Online.

Auto-pytorch tabular: Multi-fidelity metalearning for efficient and robust autodl.
CoRR, abs/2006.13799.