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Introduction
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Methodology of Machine Learning

Theory of machine learning
Goal:

Learn a mathematical function to make predictions on unseen test
data, based on given training data of inputs and outputs, without
explicit programmed instructions on how to perform the task.

Learning functional relationships between inputs and outputs builds
on methods of mathematical optimization. [Bottou et al., 2018]

Important twist: Optimize prediction performance in
expectation, thus enabling generalization to unseen data.
[von Luxburg and Schölkopf, 2011, Kawaguchi et al., 2020, Shen et al., 2021]
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Methodology of Machine Learning

Practical workflow of machine learning experiments
The train-dev-test paradigm:

Optimize a model on given training data,
tune meta-parameters on development data,
evaluate the model using a standard automatic evaluation metric on
benchmark test data.

Assume data splits to represent i.i.d. samples from a representative
data population.
Define SOTA by best achieved result, publish code, and report
corresponding meta-parameter settings.
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Digging Deeper: Methodology of Deep Learning

Inherent non-determinism of deep learning
Non-convex optimization under randomness in weight initialization,
dropout, data shuffling and batching.
[Clark et al., 2011, Dauphin et al., 2014, D’Amour et al., 2020]

Non-determinism due to variations in architecture, meta-parameter
settings, pre-processing and data splits.
[Lucic et al., 2018, Henderson et al., 2018, Post, 2018, Gorman and Bedrick, 2019, Søgaard et al., 2021]

Non-determinism due to differences in available computational
budget. [Strubell et al., 2019, Dodge et al., 2019]
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The Quest for Replicability

Replicability = reproducibility of SOTA results under exactly same
circumstances

Quest for replicability fostered by sharing data, code,
meta-parameter settings, e.g., on paperswithcode.com
[Pineau et al., 2021, Heil et al., 2021, Lucic et al., 2022]

Non-determinism in deep learning is spoiling the party
Slight changes in training settings can reverse relations between
baseline and SOTA. [Reimers and Gurevych, 2017, Melis et al., 2018]

Large-scale SOTA results may be impossible to replicate, even if code
and data are shared [Kaplan et al., 2020, Chowdhery et al., 2022].
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Crisis Management

Does AI face a replicability crisis? [Hutson, 2018]

Or is replicability uninteresting and not worth having?
[Drummond, 2009, Belz et al., 2021]

➡ Quest for replicability of SOTA result under exactly same
circumstances is asking the wrong question!
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An Alternative: Inferential Reproducibility

Inferential reproducibility
Question: Can qualitatively similar conclusions be drawn from an
independent replication of a study? [Goodman et al., 2016]

Inferential reproducibility in machine learning:
Which conclusions about comparison SOTA-baseline can be drawn
across data properties under variability of meta-parameters?
Inferential reproducibility is interesting feature of non-deterministic
machine learning, not a bug that needs to be resolved.
:: Training reproducibility :: Ability to duplicate prior results
using the same means as used in the original work.
[Leventi-Peetz and Östreich, 2022]
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Towards Inferential Reproducibility

Questions of theory of science to analyze inferential reproducibility
Significance – how likely is it that a result difference between two
models (incorporating sources of variation) is due to chance?
Reliability – how consistent is a performance evaluation if replicated
under variations of meta-parameters (or varying data properties)?
Validity – does a machine learning model predict what it purports
to predict?
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Towards Inferential Reproducibility
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Towards Inferential Reproducibility

Statistical methods as analysis tools
Significance:

Training reproducibility: Replicability of best SOTA result on
benchmark testset.
Inferential reproducibility: Reproducibility of experiment under
variations of meta-parameters and varying data properties.

Reliability:
Variance decomposition: Decompose variance into components due
to variations in meta-parameters and data properties.
Reliability coefficient: Calculate amount of variance attributable to
objects of interest.

Validity: Further reproducibility problems caused by dataset biases.
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Tutorial Outline

Statistical models for significance, reliability, and validity
Interpretable statistical models linear mixed effects models
(LMEMs), generalized additive models (GAMs), trained on
predictions of machine learning models. [Wood, 2017]

Significance testing under data/meta-parameter variation by
likelihood ratio test on nested LMEM models.
Reliability coefficient and variance component analysis of
meta-parameter and data effect of LMEM models.
Validity test exposing circularity by GAM feature shape analysis.
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Tutorial Material

Textbook
Stefan Riezler & Michael Hagmann (2021). Validity, Reliability,
and Significance: Empirical Methods for NLP and Data Science.
Morgan & Claypool/Springer.

Data, code, and preprint available at https://www.cl.
uni-heidelberg.de/statnlpgroup/empirical_methods/.
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Linear Mixed Effect Models &
Generalized Likelihood Ratio Test
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Outline

LMEMs in a nut shell
Estimating LMEMs
Asymptotic Results for Maximum Likelihood Estimators
Principles of hypothesis testing
Generalized Likelihood Ratio Test
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Linear Mixed Effect Models (LMEMs)

LMEM is a regression model for a random variable Y from the
exponential family (Gaussian, gamma, Bernoulli, categorial,
exponential, beta, . . .)
Extension of a standard linear regression model that allows to model
non-iid variance-covariance patterns
Tabular dataset: [[xn, zn, yn]Nn=1]

⊤ where x ∈ Rp, z ∈ Rq and y ∈ R

General form of LMEM for a single observation

yn = xnβ + znb + ϵn

β fixed effect parameters
Random effect parameters b and errors ϵ modeled by Gaussian
variables
θ and β are estimated from the data
See [McCulloch and Searle, 2001, Demidenko, 2013, Wood, 2017, Riezler and Hagmann, 2021].
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Linear Mixed Effect Models (LMEMs)

Matrix notation for the whole dataset

y = Xβ + Zb + ϵ

y ∈ RN , X ∈ RN×p and Z ∈ RN×q denote the stacked yn/xn/zn

b ∼ N (0, ψθ), ϵ ∼ N (0,Λθ) where ψθ and Λθ are positive definite
E[y|X] = Xβ and V[y] = ZψθZ⊤ + Λθ

Data distribution for Gaussian Y

Y ∼ N (Xβ,ZψθZ⊤ + Λθ)

REMARK I: fy(µ,Σ) ∝ |Σ| − 1/2 exp (− 1
2 (y − µ)

⊤Σ−1(y − µ))
REMARK II: Inversion of ZψθZ⊤ + Λθ is computationally expensive
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Profile Likelihood based ML Estimator

AIM: Find an expression for fy that avoids the inversion of ZψθZ⊤ + Λθ

Elementary facts

Marginal Distribution: fy =

∫
fy ,b db

Conditional Distribution: fy,b = fy|bfb

Conditional distribution of Y given b

y|b ∼ N (Xβ + Zb,Λθ)

b ∼ N (0, ψθ)

⇒ Just need to invert Λθ and ψθ which are typically simple and sparse
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Profile Likelihood based ML Estimator

Result: Marginal distribution

fy(β,θ) ∝ |Z⊤Λ−1
θ Z +ψ−1

θ |− 1/2fy|b̂(β,θ)fb̂(θ)

where b̂ := argmax
b∈Rq

log(fy,b(β,θ))

PROOF: fy =
∫
exp (log(fy ,b)) db & Taylor Series of log(fy,b) around b̂

ML Objective based on the marginal distribution

L(β,θ, b) = −(y − Xβ + Zb)⊤Λ−1
θ (y − Xβ + Zb)− b⊤ψ−1

θ b

− log(|Λθ|)− log(|ψθ|)− log(|Z⊤Λ−1
θ Z +ψ−1

θ |)

What happened to b̂?
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Profile Likelihood based ML Estimator

Assume we know θ: MLE for β and b (Henderson equations)

[
X⊤Λ−1

θ X X⊤Λ−1
θ Z

Z⊤Λ−1
θ X Z⊤Λ−1

θ Z +ψ−1
θ

]
·

[
β̂

b̂

]
=

[
X⊤Λ−1

θ y
Z⊤Λ−1

θ y

]

How to estimate θ

ML: Find θ̂ by optimizing the profile likelihood L(β̂, b̂,θ)
No closed form solution
Computations can be sped up due to simple and sparse matrices
Convergence can be sped up combining EM and Newton-Raphson
methods

REML (Restricted Maximum Likelihood)
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Important Large Sample Results for MLE

Consistency [Nie, 2006]

∀ϵ > 0 : P
(
d(β̂N ,β) > ϵ

)
N→∞−−−−→ 0

β̂ is asymptotically unbiased
V[β̂] decreases with N

Distribution of β̂ given θ

(β̂ − β) app∼ N (0, (X⊤(ZψθZ⊤ + Λθ)
−1X)−1)

Allows statistical inference for β̂
Results still holds when θ is replaced by θ̂
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Principles of Hypothesis Testing

Fundamental goal
Decide between two mutually exclusive and exhaustive sets of hypotheses,
called null hypothesis H0 and alternative hypothesis H1 about the data
generating probability measures by evidence obtained from observed
random samples.

⇒ The test decision is a random event!

Important probabilities of a hypothesis test

Type-I error probability: P(reject H0 while H0 is true)
Power: P(reject H0 while H1 is true)
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Principles of Hypothesis Testing

Conducting a hypothesis test
1 Define a test statistic T which allows to discriminate

between H0 and H1

2 Assume H0 is true and derive the distribution of T
3 Set the Type-I error probability to a predefined level α
4 Reject H0 when P(|T | > tobs) ≤ α

Notes
It is important that the actual αact equals the nominal α, otherwise
the test either wastes power (αact < α) or is not admissible
(αact > α)
Usually 2 is the difficult step. If one resorts to resampling based
methods one has to be careful to implement an appropriate
resampling mechanism [Canty et al., 2006].
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Generalized Likelihood Ratio Test

Hypothesis
Suppose we have two nested models describing the same data f (Θ0) and
f (Θ1) where Θ0 ⊆ Θ1 with df0 := dim(Θ0) < dim(Θ1) =: df1 are the
parameter spaces of the models. We want to test if m(Θ1) is more
appropriate.

H0: θ ∈ Θ0

H1: θ ∈ Θ1 \Θ0

Likelihood ratio

λ :=
f (θ̂ML

0 )

f (θ̂ML
1 )

=
ℓ∗0
ℓ∗1
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Generalized Likelihood Ratio Test

Interpretation of 0 < λ ≤ 1:
Values of λ close to 1 suggest that restricted model (H0) explains
the data as well as more complex model (H1)
H0 should be accepted for large values of λ
Conversely, values close to 0 suggest that the data are not very
compatible with the parameter values in the restricted model
H0 should be rejected for small values of λ
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Generalized Likelihood Ratio Test

Test statistic [Wilks, 1938, van der Vaart, 1998]

W = −2 log λ = 2(log ℓ∗1 − log ℓ∗0)
H0∼ χ2

df1−df0

Reject H0 if p := PH0(W > wobs) ≤ α
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Significance
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Significance Testing under Measurement Variations

State-of-the-art: Statistical significance testing is mostly ignored in
NLP and ML in general. [Marie et al., 2021, Ulmer et al., 2022]

Goal: Start reproducibility analysis by significance testing, w/ and
w/o incorporation of variability in meta-parameters and data.
Method:

Train LMEM on performance scores of baseline and SOTA models,
obtained w/ or w/o meta-parameter variation during training.
Apply GLRT to system effect parameter of LMEM.
Analyze significance w/ and w/o meta-parameter variation and
conditional on data properties.
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Reminder: General Form of LMEMs

For given dataset of N input-output pairs {(xn, yn)}Nn=1, general
form of an LMEM is

Y = Xβ + Zb + ϵ.

Y are N stacked response variables,
X and Z known design matrices,
β fixed effects,
b random effects,
ϵ residual errors,
where b ∼ N (0, ψθ), ϵ ∼ N (0,Λθ).
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Significance Testing with LMEMs

GLRTs based on LMEMS
Response variables Y for LMEM training: Performance
evaluation scores of meta-parameter variants of baseline and SOTA
systems.
GLRT: Train LMEM with fixed effect βc accounting for
competing systems on performance scores of baseline and SOTA
systems, and compare their likelihood ratio.
Pairing of systems on the sentence level: Incorporation of
random sentence effect bs allows incorporation of meta-parameter
variations and reduces residual variance.
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Significance Testing with LMEMs

The nested models setup [Pinheiro and Bates, 2000]

Restricted null hypothesis model not distinguishing between
systems:

m0 : Y = β + bs + ϵres ,

where β is fixed effect for common mean for both systems, bs is
random effect for sentence-specific deviation with variance σ2

s , and
residual error ϵres with variance σ2

res .
General model with different means for baseline and SOTA:

m1 : Y = β + βc · Ic + bs + ϵres ,

where indicator function Ic activates fixed effect βc for deviation of
competing SOTA model from the baseline mean β when data point
was obtained by a SOTA evaluation.
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Significance Testing with LMEMs

GLRTs in the nested models setup
Restricted model m0 is special case ("nested") of more general
model m1 since it restricts factor βc to zero.
Let ℓ0 be likelihood of restricted model m0, ℓ1 be likelihood of more
general model m1, intuition of GLRT is to reject the null hypothesis
if the test statistic of likelihood ratio

λ =
ℓo
ℓ1

yields values close to zero.
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Significance Testing with LMEMs

Analyzing significance conditional on data properties
Extend models m0 and m1 by a fixed effect βd modeling a test
data property d like segment length, readability, or word rarity.
Add interaction effect βc:d to assess expected system performance
for different levels of d .
Perform GLRT comparing

m′
1 : Y = β + βd · d + (βc + βc:d · d) · Ic + bs + ϵres

to null hypothesis model

m′
0 : Y = β + βd · d + bs + ϵres .
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Example: Interactive Machine Translation

Fine-Tuning Neural Machine Translation (NMT) from human
feedback [Kreutzer et al., 2020]

Baseline: NMT system pre-trained on large out-of-domain data.
SOTA: Fine-tuning on in-domain data annotated with human error
markings or error corrections.
Response variables for LMEM training: TER scores on test data.
[Snover et al., 2006]

Data properties: Sentence lengths, binned into short (< 15 words),
typical (15 − 55 words), very long (> 55 words).
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Example: Interactive Machine Translation

Meta-parameter Grid values

learning_rate 0.0001 0.0003 0.0005 0.003
random_seed 42 43 44
encoder_dropout 0 0.2 0.4 0.6
decoder_dropout 0 0.2 0.4 0.6
decoder_dropout_hidden 0 0.2 0.4 0.6

Meta-parameter grid of attention-based RNN for interactive NMT.
[Kreutzer et al., 2020]
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Significance Testing of Difference Baseline - SOTA

TER scores for fine-tuning on human error markings or human
post-edits compared to baseline, evaluated on test sentences of 3
length classes.

SOTA systems trained under three different random seeds, thus one
replication for each of three random seeds in LMEM input data.
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Significance Testing of Difference Baseline - SOTA

p-value effect size

baseline - marking 0.000332 1.24
baseline - post-edit 0.0000000358 1.28
marking - post-edit 0.0252 0.589

p-values and effect sizes (standardized mean difference) for
comparison of fine-tuning on human error markings or human
post-edits to baseline on very long test sentences.

p-values < 0.05, medium to very large effect sizes
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Significance Testing under Meta-Parameter Variation

Extended meta-parameter configuration space by grid search over
4× 4× 4× 4× 3 = 768 trained models for each of the fine-tuning runs.
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Significance Testing under Meta-Parameter Variation

Meta-parameters:
initial learning rate (learning_rate),
probability of zeroing out connections during training of encoder
(enc_dropout), decoder (dec_dropout), and hidden decoder layers
(dec_dropout_h),
seed of random number generator (random_seed).

p-values for all pairwise differences are above 0.05 across different
classes of sentence length.

Significance of result difference lost!
Investigate reasons ➡ reliability analysis!
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Summary: Significance Testing with LMEMs

Advantages of Model-Based Significance Testing with LMEMs
One-stop approach to test statistical significance of performance
differences between machine learning models:

Variance in evaluation scores due meta-parameter variation is
incorporated naturally into training data for LMEM.
No matching of evaluation metrics to significance tests
required [Dror et al., 2020] since test statistics is not based on evaluation
metrics, but on MLE parameters of LMEM [van der Vaart, 1998].
Further key advantage is analysis of significance of result
difference conditional on data properties.
Power of significance test is intimately related to reliability of
model under analysis - next chapter!
Further reading: [van der Vaart, 1998, Pinheiro and Bates, 2000, Davison, 2003].
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Alternative: Sampling-Based Significance Tests

Goal:
Applicability to arbitrary and arbitrarily complex evaluation metrics
(e.g., non-linear combinations of counts like F-score [Manning et al., 2008],
BLEU [Papineni et al., 2002], ROUGE [Lin and Hovy, 2003]).
No restriction to "mean of samples" metrics which is requirement in
parametric tests (t-test, Z -test).
More powerful than nonparametric tests (e.g. sign test).
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Alternative: Sampling-Based Significance Tests

Examples
Bootstrap resampling: [Efron and Tibshirani, 1993] Sample itself is a
representative “proxy” for the population, sampling distribution of
test statistic is estimated by repeatedly sampling (with replacement)
from the sample itself.
Permutation test: [Fisher, 1935] Principle of stratified shuffling
[Noreen, 1989] allows generation of null-hypothesis conditions by shuffling
(sampling without replacement) outputs between two systems at
strata that partition the data.
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Bootstrap Test

Given test set outputs (A0,B0) = (ai , bi )
N
i=1, where ai is the output

of system A, and bi is the output of system B, on test instance i .
Compute score difference ∆S0 = S(A0)− S(B0) on test data.
For k = 1, . . . ,K :

Generate bootstrap dataset Sk = (Ak ,Bk) by sampling N examples
from (ai , bi )

N
i=1 with replacement.

Compute score difference ∆Sk = S(Ak)− S(Bk) on bootstrap data.
Compute ∆Sk = 1

K

∑K
k=1 ∆Sk .

Set c = 0.
For k = 1, . . . ,K :

If |∆Sk −∆Sk | ≥ |∆S0|
c ++

p = c/K .
Reject null hypothesis if p is less than or equal to rejection level α.
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Permutation Test

Given test set outputs (A0,B0) = (ai , bi )
N
i=1, where the first element

in the ordered pair (ai , bi ) is the output of system A, and the second
element is the output of system B, on test instance i .
Compute score difference ∆S0 = S(A0)− S(B0) on test data.
Set c = 0.
For r = 1, . . . ,R :

Compute shuffled outputs (Ar ,Br ) where for each i = 1, . . . ,N:

swap(ai , bi ) =

{
(ai , bi ) with probability 0.5,
(bi , ai ) with probability 0.5.

Compute score difference ∆Sr = S(Ar )− S(Br ) on shuffled data.
If |∆Sr | ≥ |∆S0|
c ++

p = c/R .
Reject null hypothesis if p is less than or equal to rejection level α.
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Problems with Bootstrap

Bootstrap test makes more Type I errors (i.e., rejecting H0 when it is
true) and more Type II errors (i.e., not rejecting H0 when it is false)
than the permutation test if bootstrap consistency is not given
(i.e., if data from which is resampled are not representative of
population). [Canty et al., 2006, Riezler and Maxwell, 2005, Berg-Kirkpatrick et al., 2012]

Designed for comparing a pair of selected systems on a single test
set, no easy incorporation of variability in meta-parameters or data!
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Problems with Permutation

Permutation test has great power (i.e., high probability of rejecting
H0 when it is false) for large samples [Hoeffding, 1952].
Stratified shuffling principle needs to be applicable, which is not
always the case.
Designed for comparing a pair of selected systems on a single test
set, no easy incorporation of variability in meta-parameters or data!
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Further Alternatives

Significance testing across multiple meta-parameter and data
settings

Bootstrap and permutation tests are designed for comparing a pair
of selected systems on a single test set - extensions apply this
principle to sampling w/ and w/o replacement from system outputs
under meta-parameter variations, but ignore variation of data
properties. [Clark et al., 2011, Sellam et al., 2021, Bouthillier et al., 2021].
Statistical significance test based on the stochastic order/dominance
of performance score distributions allow incorporation of
meta-parameter variation, but still ignore variation of data
properties. [Dror et al., 2019, Ulmer et al., 2022]
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Reliability
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Reliability of Measurements

State-of-the-art: Bootstrap confidence intervals ("error bars")
around evaluation scores under meta-parameter variation.
[Lucic et al., 2018, Henderson et al., 2018]

Goal:
Analyze sources of variability in performance evaluation,
analyze interaction of meta-parameters variance with data properties,
compute coefficient to quantify general robustness of a model.

Method:
Variance component analysis (VCA): Untangle sources of
variability in measurement.
Reliability coefficient: Assess general robustness of model by ratio
of substantial variance out of total variance.

Stefan Riezler and Michael Hagmann 49 / 130



Variance Component Analysis

VCA in classical ANOVA [Fisher, 1925, Searle et al., 1992]

Example: Specify model with random effects for variation in outcome
Y between sentences s and between settings of meta-parameter r .
Tautological decomposition:

Y = µ+ (µs − µ) + (µr − µ) + (Y − µs − µr + µ),

grand mean µ of observed evaluation score across all levels of
meta-parameter r and sentences s,
deviation νs = (µs − µ) of mean score µs for sentence s from µ,
deviation νr = (µr − µ) of mean score µr for meta-param. r from µ,
residual error, reflecting deviation of observed score Y from what
would be expected given the first three terms.
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Variance Component Analysis

VCA in classical ANOVA [Fisher, 1925, Searle et al., 1992]

Components in decomposition are uncorrelated with each other.
Total variance σ2(Y − µ) can be decomposed into following
variance components:

σ2(Y − µ) = σ2
s + σ2

r + σ2
res ,

σ2
s and σ2

r denote variance due to sentences and meta-parameter
settings,
σ2
res denotes residual variance including variance due to interaction of

s and r .
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Reminder: General Form of LMEMs

For given dataset of N input-output pairs {(xn, yn)}Nn=1, general
form of an LMEM is

Y = Xβ + Zb + ϵ.

Y are N stacked response variables,
X and Z known design matrices,
β fixed effects,
b random effects,
ϵ residual errors,
where b ∼ N (0, ψθ), ϵ ∼ N (0,Λθ).
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Estimation of Variance Components by LMEMs

Conditions of measurement that contribute to variance in the
measurement besides the objects of interest (here: sentences) are
called facets of measurement (example: meta-parameters).

Each facet-specific component νf = µf − µ modeled as component
bf of random effects vector b,
corresponding variance component σ2

f modeled as component of
variance-covariance matrix ψθ.
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LMEMs and ANOVA

Advantages LMEM over ANOVA
Flexibility!

General estimation procedure that is not design-driven.
Elegant handling of missing data situations.
Flexible modeling, e.g., random-effects-only models.

Further reading: [Baayen et al., 2008, Barr et al., 2013, Bates et al., 2015]
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Modeling Interactions with Data Properties in LMEMs

Identify facet f with large variance contribution σ2
f in VCA.

Analyze interaction of facet f with data property d :
Change random effect bf to fixed effect βf ,
Add fixed effect βd modeling test data characteristics,
Add interaction effect βf :d modeling interaction between data
property d and facet f .
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Reliability Coefficient

Intra-class correlation coefficient (ICC) [Fisher, 1925]

Fundamental interpretation as measure of proportion of variance
that is attributable to objects of measurement.
Ratio of variance between objects of interest σ2

B to the total variance
σ2
total , including variance within objects of interest σ2

W .

ICC =
σ2
B

σ2
total

=
σ2
B

σ2
B + σ2

W

.

Name of coefficient is derived from goal of measuring how strongly
objects in the same class are grouped together: Variance between
objects of interest should outweigh variance within!
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Reliability Coefficient

General reliability coefficient φ [Brennan, 2001]

Ratio of substantial variance σ2
s to the sum of itself and absolute

error variance σ2
∆, defined for facets f1, f2, . . . and selected

interactions s : f1, s : f2, f1 : f2, . . . , all modeled as random effects:

φ =
σ2
s

σ2
s + σ2

∆

, where σ2
∆ = σ2

f1 + σ2
f2 + . . .+ σ2

s:f1 + σ2
s:f2 + . . .

+ σ2
f1:f2 + · · ·+ σ2

res .
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Reliability Coefficient

Reliability coefficient φ applied to NLP/data science
Reliability of performance evaluation across replicated
measurements is assessed as the ratio by which the amount of
substantial variance outweighs the total error variance.

Variance should explained by variance between test sentences, not by
variance-inducing facets like meta-parameter settings or by
unspecified facets of measurement procedure.
Interpretation of threshold on ratio:

Values less than 50%, between 50% and 75%, between 75% and
90%, and above 90%, indicative of poor, moderate, good, and
excellent reliability [Koo and Li, 2016]
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Example: Variance Component Analysis of Meta-Parameter
Importance

Assessing importance of meta-parameters
Goal: Assess importance of meta-parameters in automatic
meta-parameter search. [Habelitz and Keuper, 2020]

Method: VCA using LMEM with random effects for
meta-parameters (and interactions)

LMEMs offer unified framework to assess importance of
meta-parameter across all levels of other meta-parameters, not just in
context of a single fixed instantiation of remaining meta-parameters.
Previous work used less flexible functional ANOVA for same purpose.
[Hutter et al., 2014, Zimmer et al., 2020]
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Example: VCA of Meta-Parameter Importance

Example: A neural model for disease score prediction
Multi-layer perceptron (MLP) to predict Sequential Organ Failure
Assessment (SOFA) score.
Meta-parameters:

maximal number of neurons in hidden layer (hidden_size_max),
number of hidden layers (hidden_number),
values of initial learning rate (learning_rate),
number of training examples in each gradient computation
(batch_size),
seed of random number generator (random_seed),
number of iterations over training set (epochs),
probability of zeroing out hidden connections during training
(dropout).
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Example: VCA of Meta-Parameter Importance

Meta-parameter Grid values

batch_size 1 4 8 16 32 64
dropout 0 0.05 0.1 0.15 0.2
epochs 1 5 10
hidden_number 3 5 7
hidden_size_max 16 32 64 128 256
learning_rate 0.001 0.01 0.1
random_seed −7712 6483 20777

Meta-parameter values in grid search for SOFA-score MLP.
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Example: VCA of Meta-Parameter Importance

Random-effects-only LMEM:

Y = µ+ bhidden_size_max + bhidden_number + blearning_rate

+ bbatch_size + brandom_seed + bepochs + bdropout + ϵres .

Training data for LMEM:
Performance evaluations of summative evaluation metric, e.g., mean
accuracy over test data instances.
Evaluations for fully crossed meta-parameter configuration space,
yielding 6 × 5 × 3 × 3 × 5 × 3 × 3 = 12,150 models.
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Example: VCA of Meta-Parameter Importance

Variance component v Variance σ2
v Percent

residual 0.0000314 61.2
hidden_number 0.0000159 31.0
learning_rate 0.00000318 6.2
batch_size 0.000000517 1.01
hidden_size_max 0.000000260 0.505
dropout 0.0000000599 0.117
random_seed 0.00000000405 0.00788

Most variance induced by variation in number of hidden layers (31%),
followed with a wide margin by learning rate (6.2% of total variance),
all other meta-parameters introduce negligible variance of ≤ 1%.
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Example: Reliability Analysis in Interactive Machine
Translation

Reminder: Significance between baseline and SOTA model was lost in
extended meta-parameter grid search.
Goal: Reliability analysis of SOTA model!
Question: Which meta-parameter setting is responsible for
performance drop, and what is interaction with data properties?
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Reliability Analysis of SOTA model

Response variable Y is TER score on test sentence, µ is grand mean,
bs is sentence-specific deviation, and brandom_seed is random effect
modeling 3 random seeds:

Y = µ+ bs + brandom_seed + ϵres .

Excellent reliability φ = 98.4%, essentially no contribution of variance
due to replications under random seeds.

Variance component Variance σ2 Percent

sentence 0.984 98.4
residual 0.0163 1.63
random_seed 0 0
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Reliability Analysis of SOTA under Meta-Parameter
Variation

Add random effect bf for each meta-parameter f in grid search:

Y = µ+ bs + blearning_rate + brandom_seed + benc_dropout

+ bdec_dropout + bdec_dropout_h + ϵres .

Reliability coefficient drops below 90% with learning rate having
largest contribution to variance.

Variance component Variance σ2 Percent

sentence 0.0574 88.4
residual 0.00737 11.3
learning_rate 0.000127 0.2
decoder_dropout 0.0000303 0.05
encoder_dropout 0.0000224 0.03
decoder_dropout_hidden 0.00000130 0
random_seed 0.000000578 0
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Interaction between Meta-Parameters and Data Properties

Add fixed effect βsrc_length for source sentence length and interaction
effect βsrc_length:learning_rate .

Y = µ+ bs + βsrc_length + βlearning_rate + βsrc_length:learning_rate + ϵres .
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Interpretation of Reliability Analysis

Significant improvements by fine-tuning over baseline with large
effect size only on very long sentences.

➡ Such improvements are likely to be reproducible on very long
sentences of new datasets.

Strong dependency of consistency of evaluation results on initial
learning rate settings.

➡ Likely that the results will be reproducible only for small initial
learning rates (< 0.0005), but not for large initial learning rates.

Questionable reproducibility of result differences on short and
medium length sentences, especially between fine-tuned systems.
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Summary: LMEM-Based Reliability Analysis

Distinctive idea:
Compute reliability coefficient as proportion of substantial
variance attributable to the objects of interest, compared to
insubstantial variance due to idiosyncrasies of measurement situation.
Ideas date back to [Fisher, 1925] and allow interpretation of reasons
for (un)reliability and understanding of interactions of variance
components and data.
Based on well-understood statistical models (LMEMs).
Further reading: [Searle et al., 1992, Brennan, 2001, Webb et al., 2006].
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Alternative Reliability Measures

Agreement coefficients for data annotation
Scott’s π [Scott, 1955], Cohen’s κ [Cohen, 1960], or Krippendorff’s α
[Krippendorff, 2004] are commonly used descriptive statistics to measure
agreement of raters in data annotation.
Based on simple concept of percent agreement that is adjusted to
include agreement by chance.
Easily computable from experimental data by collecting relative
count statistics.
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Alternative Reliability Measures

Problems with agreement coefficients
Convenience in computation is due to a fixed choice of a model for
computing chance agreement:

Sampling with replacement (Scott’s π and Cohen’s κ) or without
replacement (Krippendorff’s α),
from distributions for individual raters (Cohen’s κ) or from observed
ratings averaged over raters (Scott’s π and Krippendorff’s α).
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Alternative Reliability Measures

Problems with agreement coefficients

chance-adjusted agreement =
observed agreement - chance agreement

n − chance agreement
.

Counter-intuitive principle of maximum randomness, leading to many
paradoxes and abnormalities. [Zhao et al., 2013]

Main disadvantages:
No generalization beyond concrete raters and concrete data points
examined in a concrete experiment.
No explanation of reasons for high/low agreement by properties of
raters or data, or by interactions between them.
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Alternative Reliability Measures

Bootstrap confidence intervals for model evaluation
Interest is in reliability of predictions of a machine learning algorithm
itself, not just reliability of single concrete evaluation experiment.
Bootstrap-inspired resampling to compute confidence bounds for
evaluation scores on test data. [Henderson et al., 2018, Lucic et al., 2018]

Goal: Quantify variation in maximum out-of-sample performance
with respect to meta-parameter choice and computational budget.
Method: Resample performance evaluation scores from pool of
models trained under increasing budget for meta-parameter search.
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Alternative Reliability Measures

Bootstrap Confidence Interval for Evaluation Metric
1 Generate M meta-parameter configurations for the model class.
2 For each m = 1, . . . ,M: Train model pm and calculate the

performance evaluation score um = u(pm).
3 For each B ≤ M: Construct a bootstrap distribution by K times

drawing B random samples with replacement from
{um : m = 1, . . . ,M}. For each sample select the maximum
performance score.

4 Calculate the mean x̄ and the standard deviation σx̄ of this
distribution. Plug both estimates into the standard normal 95%
confidence interval of the population mean µ:

x̄ − 1.96σx̄ ≤ µ ≤ x̄ + 1.96σx̄ .
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Alternative Reliability Measures

Mean and 95% confidence intervals for F1-score, precision, recall of
GANs for different computational budgets. [Lucic et al., 2018]
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Alternative Reliability Measures

Problems with bootstrap confidence intervals
Idea: Use confidence bounds to directly signify reliability of an
evaluation meta-parameter settings: At the same level of confidence,
smaller confidence bounds indicate higher reliability.
Problems:

Lacking bootstrap consistency, either if test set from which bootstrap
samples are drawn is not representative of population [Canty et al., 2006],
or if the parameter to be estimated is on the boundary of the
parameter space [Andrews, 2000, Bickel and Freedman, 1981] as in calculations of
expected maximum performance [Lucic et al., 2018, Dodge et al., 2019].

Main shortcoming:
Confidence intervals do not tell us which meta-parameters have the
most influence on variations in evaluation scores, and how
meta-parameter settings interact with properties of test data.
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Recap: Inferential Reproducibility
- A Worked-Through Example
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Recap: A Worked-Through Example

BART-RXF: Better Fine-Tuning by Reducing Representational
Collapse [Aghajanyan et al., 2021]

SOTA on paperswithcode.com for text summarization task on
CNN/Dailymail and RedditTIFU datasets.
Baseline: BART [Lewis et al., 2019]

SOTA Model: Approximate trust region method by constraining
updates on embeddings f and classifier g during fine-tuning in order
not to forget original pre-trained representations.

LR3F (f , g , θ) = L(θ) + λKL(g · f (x)||g · f (x + z))

s.t. z ∼ N (0, σ2I ) or z ∼ U(−σ, σ).
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Recap: A Worked-Through Example

Experimental setup and SOTA results
Datasets hosted on paperwithcode.com

train/dev/test split for Reddit not given, used split of [Zhong et al., 2020]

instead.
Reported meta-parameter ranges: λ ∈ [0.001, 0.01, 0.1], noise
distribution N or U , maximum result of 10 random seeds .

Seeds of random number generator not given, used new 18 random
seeds for baseline and 5 for SOTA.

Results reported in [Aghajanyan et al., 2021]:
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Significance Testing for Training Reproducibility

baseline - SOTA p-value effect size

Rouge1 1.99e − 14 −0.101
Rouge2 0.00000000114 −0.0803
RougeL 1.35e − 15 −0.105

Rouge [Lin and Hovy, 2003] evaluation of best baseline versus best SOTA
model on CNN/DailyMail shows significant improvements of best
SOTA model over baseline with small effect sizes.
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A First Step towards Inferential Reproducibility:
Significance Conditional on Data Properties

Measuring difficulty of summarization data
Word rarity [Platanios et al., 2019]: Negative log of empirical probabilities
of words in segment, higher value means higher rarity.
Flesch-Kincaid readability [Kincaid et al., 1975]: Pro-rates
words/sentences and syllables/word; in principle unbounded, but
interpretation scheme exists for ranges from 0 (difficult) to 100
(easy).
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Interaction of Performance with Data Properties

Significant difference in performance slope with respect to ease of
readability.
Performance for SOTA system increases faster for easier inputs than
for baseline.
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Interaction of Performance with Data Properties

Significant difference in performance with respect to word rarity.
SOTA is better than baseline for inputs with lower word rarity.
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Significance Testing for Inferential Reproducibility

Incorporating meta-parameter variation into significance testing
Grid search over 18 random seeds for baseline, 30 SOTA models for
3 λ values × 2 noise distributions × 5 random seeds.

baseline - SOTA p-value effect size

Rouge1 0.0 0.390
Rouge2 0.0 0.301
RougeL 0.0 0.531

Relations turned around: Baseline significantly better than
SOTA, at medium effect size!
Performance variation of baseline model over 18 random seeds
negligible (standard deviations < 0.2% for Rouge-X scores)
➡ Reliability analysis of SOTA model!
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Reliability Analysis for Inferential Reproducibility

Reliability coefficient and variance component analysis

Variance component v Variance σ2
v Percent

summary_id 0.00923 55.7
lambda 0.00254 15.3
random_seed 0.000122 0.73
noise_distribution 0.0000473 0.29
residual 0.00464 28.0

Only moderate value of reliability coefficient.
Largest variance component for Rouge1 estimate due to
regularization constant λ.
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Reliability Analysis for Inferential Reproducibility

Reliability coefficient and variance component analysis

Variance component v Variance σ2
v Percent

summary_id 0.00992 62.7
lambda 0.00131 8.31
random_seed 0.0000766 0.48
noise_distribution 0.0000318 0.2
residual 0.00449 28.3

Only moderate value of reliability coefficient.
Largest variance component for Rouge2 estimate due to
regularization constant λ.
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Reliability Analysis for Inferential Reproducibility

Reliability coefficient and variance component analysis

Variance component v Variance σ2
v Percent

summary_id 0.00875 47.9
lambda 0.00519 28.4
random_seed 0.0000370 0.2
noise_distribution 0.0000144 0.08
residual 0.00428 23.4

Poor value of reliability coefficient.
Largest variance component for RougeL estimate due to
regularization constant λ.
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Interaction of Meta-Parameters with Data Properties

Significant drop in performance of SOTA model across levels of
reading difficulty for regularization constant λ = 0.1.
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Interaction of Meta-Parameters with Data Properties

Significant drop in performance of SOTA model for regularization
constant λ = 0.1, especially for rare words.
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Reproducibility Results on RedditTIFU

Interesting data since much harder to read (mean readability score of
−348.9).
Significant improvement of best SOTA over baseline only for Rouge2
at small effect size.
No significant improvements of SOTA over baseline if
meta-parameter variation is taken into account.
Reliability coefficients of around 80% with negligible variance
contributions from λ values.
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Interpretation of Statistical Analysis

Losing or winning a new SOTA score strongly depends on finding the
sweet spot of a single meta-parameter (here: λ) – paper’s goal
was explicitly to reduce instability across meta-parameter settings!
Performance improvements by fine-tuning mostly on easy-to-read
and frequent-word inputs – less than one quarter of the
CNN/Dailynews data.
Lacking robustness against data variability – new random split
on RedditTIFU negates gains reported for split used in paper.
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Generalized Additive Models
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Outline

GAMs in a nut shell
A brief sketch of splines
Estimating spline based GAMs
Two important measures
Consistency
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Generalized Additive Models (GAMS)

GAMs are regression models for a random variable Y from the
exponential family (Gaussian, gamma, Bernoulli, categorial,
exponential, beta, . . .)
Extension of a standard linear regression model that allows to model
non-linear functions
Tabular dataset: [[xn, yn]Nn=1]

⊤ where x ∈ Rp and y ∈ R
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Generalized Additive Models (GAMs)

General form of interpretable GAMs

E[Y |x1, . . . , xp] =

univariate︷ ︸︸ ︷
f1,1(x1) + f1,2(x2) + . . .+

bivariate︷ ︸︸ ︷
f2,1(x1, x2) + . . .︸ ︷︷ ︸

non-parametric

+ Xβ︸︷︷︸
parametric

f (·) called smoother (non-linear function)
non-parametric regression models
splines
deep neural networks
regression trees

parametric part is typically used to model categorical variables
f (·) and β are estimated from the data
See [Wood, 2017, Hastie and Tibshirani, 1986, Hastie and Tibshirani, 1990, Wahba, 1990,

Green and Silverman, 1993, Riezler and Hagmann, 2021].
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What are splines?

Well known technique from numerical mathematics for function
interpolation
Key Idea: Interpolation is done by piece-wise polynomial functions
that connect smoothly at knots to model globally smooth functions

Definition: Spline
A function p:[τ0, τn−1) 7→ R that can be expressed by a polynomial with
a degree of at most d for each sub-interval [τi , τi+1] of a strictly
increasing knot sequence τ := [τi ]i=0,...,n−1 is called a piece-wise
polynomial function or spline on τ of maximum degree d .

The spline space Sd ,τ

Sd ,τ denotes the vector space of all (d − 1)-times continuously
differentiable splines on τ .

Stefan Riezler and Michael Hagmann 96 / 130



A Basis for Sd ,τ

Truncated power function

(u)d+ :=

{
0 u < 0
ud otherwise

with d ∈ N0

Result
For every spline p on τ with maximum degree d exist a unique set of
coefficients cij for i = 0, . . . , d and j = 0, . . . , (n − 2) such that

p(x) =
n−2∑
j=0

d∑
i=0

cij(x − τj)
d
+

The most commonly used splines (natural splines, B-Spline, cubic splines,
TP-splines, etc) differ mostly by the chosen base to represent Sd,τ .
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Smoothing Splines

Functional minimization problem
Let H be the class of twice differentiable univariate functions and assume
N datapoints:

min
h∈H

N∑
n=1

(yn − h(xn))2 + λ

∫
(h′′(x))2 dx

where λ ∈ R+ and
∫
(h′′(x))2dx is a measure for the roughness of a

function over its domain.

Solution: Natural cubic splines with knots at each input xn
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Smoothing Splines

Idea for spline based GAMs
Fix a Basis for Sd ,τ , transform the input feature x by the base functions
and estimate the ci ,j from data

Matrix notation of a spline

f (·) =
d∑

j=1

βjbj(·) = b(·)β

where b(·) = [b1(·), b2(·), . . . , bd(·)]
β = [β1, β2, . . . , βd ]

⊤
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Penalized Least Squares Parameter Estimation

Penalized least squares objective

β̂ = argmin
β∈Rs

∥∥Y − Gβ
∥∥2
+

p∑
k=1

λk

∫
(f ′′k (x))

2 dx

where s =
∑p

k=1 dk , λk ∈ R+ and G stores the base function values of
the input features.

Useful fact about the roughness penalty

∫
(f ′′(x))2 dx = β⊤Ωβ

where Ω := [

∫
b′′s (x)b

′′
t (x)dx ]s,t=1,...,N
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Penalized Least Squares Parameter Estimation

PLSE objective (for one spline)

min
β∈RN

∥∥Y − Gβ
∥∥2
+λβ⊤Ωβ

REMARK: Note similarity to OLS objective

Estimators

β̂ = (G⊤G + λΩ)−1G⊤y

Thus, the estimated smoother is:

f̂ (·) = b(·)(G⊤G + λΩ)−1G⊤y
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Choice of λ
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Estimating λ

cross validation [Wood, 2017]

marginal likelihood estimation in tandem with β [Wood et al., 2016]
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Consistency

Definition: Consistency
Let M : = {pθ : θ ∈ Θ} be a parametric statistical model where θ 7→ pθ
is injective. Further, let pθ0 ∈ M denote the true model of the data
generating process for a dataset D = {(xn, yn)}Nn=1. Then an estimator
θN is called consistent iff for all ϵ > 0 holds

P (|θN − θ0| > ϵ)
N→∞−−−−→ 0.

Consistency has been shown for spline based GAMs by [Heckman, 1986].
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Measuring Model Fit: Deviance

A likelihood based measure of model fit
Difference between the log-likelihood ℓ(µ) of a model µ and the largest
possible log-likelihood ℓ∗

D∗
µ := 2(ℓ∗ − ℓ(µ))

ℓ∗ corresponds to the likelihood of a model that perfectly reproduces the
targets

Deviance explained

D2(µ) = 1 −
D∗
µ

Dµ0

∈ [0, 1]

where µ0 denotes the intercept only model
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Validity
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Psychological Measurement Theory

Validity in psychological measurement theory
"A test is valid for measuring an attribute if (a) the attribute exists and
(b) variations in the attribute causally produce variation in the
measurement outcomes."
[Borsboom et al., 2004, Borsboom, 2005, Borsboom and Mellenbergh, 2007]

Measurement model explicates how the structure of theoretical
attributes relates to the structure of observations
Example: Measurement model for temperature stipulates how the level
of mercury in a thermometer systematically relates to temperature
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Example: Psychological Measurement of Developmental
Stages

Example: Psychological test of developmental stages by Jean Piaget
[Inhelder and Piaget, 1958]

Different positions in the attribute (e.g. children of age 3-5 versus
10-12) lead to different test outcomes
Observed test outcomes can be used to infer position of children in one
of four discrete stages of cognitive development
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Example: Measurement in the train-dev-test Paradigm

Machine learning models as measurement models
Example: Multiclass classification

Variation in attribute = variation of test pairs (x , y) where x are
inputs, y gold standard outputs
Measurement outcome = model prediction ŷ for input x
Causal relation = variation in feature values and labels correlates
invariantly across environments (here: test (re-)splits)
[Peters et al., 2016, Arjovsky et al., 2019]

Is accurate prediction across test sets all we need to claim validity?
No! Further criterion of absence of circularity from philosophy of
science. [Balzer and Brendel, 2019]
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Circularity in Machine Learning

Circular features
Indirect measurements: Target label is determined by indirect
measurement, but fundamental measurements needed to determine
this indirect measurement are part of input feature representation.
Circularity: Circular feature (= fundamental measurement) will lead
to an exact reconstruction of the known deterministic function (=
indirect measurement) by machine learning, but achieves nothing
else.
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The Circularity Problem

Why is circularity a problem?
Machine learning models trained on data including circular features
will yield nearly perfect predictions on input data including the
defining measurements, but they cannot be transferred to unseen
data where the defining features are not or only incompletely
available.
Circular features in machine learning models will nullify the
contribution of all features except those defining the target,
thus such models will not learn new predictive patterns that
involve features other than the known defining measurements.
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Circularity Test

Goal: A Circularity Test for Black-Box Models
Assume we know the functional definition of the target, but not the
training data of the machine learning model
Our data are model predictions on test data T = {(xm, ŷm)}Mm=1

Detect whether black-box model used circular features and remove
them from dataset.
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GAMs, Deviance, and Nullification

GAMs: Expressive and yet interpretable model class [Wood, 2017]

Decompose complex function into sum of non-linear feature shapes
fk(xk), e.g., regression splines [Hastie and Tibshirani, 1990]

Y n =

p∑
k=1

fk(x
n
k ) +

∑
i ̸=j

fij(x
n
i , x

n
j ) + ϵn, where ϵn ∼ N (0, σ2).

Deviance: D2(µ) ∈ [0, 1] measures proportion of log-likelihood of
model µ out of maximal data fit.
Nullification: Identifies circular features by non-null feature shapes,
based on identifiability and consistency of maximum likelihood
estimators for GAMs.
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Statistical Test for Circularity

Dataset T = {(xm, ŷm)}Mm=1 where xm ∈ Rp,
Candidate circular features C ⊆ P({1, . . . , p}),
Models M := {µc : c ∈ C} obtained by fitting a GAM based on
feature set c to data T .

Two-step test to detect circular features c∗

1 Deviance: c∗ = argmaxc∈C D2(µc) where D2(µc∗) is close to 1,
and in case the maximizer is not unique, the maximizer is chosen
whose associated GAM µc∗ has the smallest degrees of freedom.

2 Nullification: The feature shape of every feature
xj : j ∈ {1, . . . , p} \ c∗ added to the GAM µc∗ is nullified in the
resulting model.
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Example: Circularity in Patent Prior-Art Search

Condition Relevance Score

no citation 0
inventor citation 1
examiner citation 2
family patent 3

Data: Construction of gold standard relevance judgements from
citations of patents in other patents. [Graf and Azzopardi, 2008]

Model: Non-linear combination of features by MLP, trained for logistic
regression on binarized relevance ranks (level 1 for citations, 0 else).
Teacher MLP trained on 1,500 patent queries, resulting in 318,375
observations of query-document pairs.
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Example: Circularity in Patent Prior-Art Search

What if patent citations are included as features in ranking
model (e.g., KISS principle of [Magdy and Jones, 2010])?

Feature Meaning Range

(1) neural similarity score learned by neural network R
(2) tf-Idf cosine similarity of tf-Idf scores R
(3) inventor indicator for inventor citation {0, 1}
(4) examiner indicator for examiner citation {0, 1}
(5) family indicator for family patent {0, 1}
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Deviance of Student GAMs

Rank Included Features D2 Complexity

1 {inventor, examiner, family} 100% 5
2 {inventor, examiner, family, neural} 100% 6.33
3 {inventor, examiner, family, tf-Idf} 100% 7.95
4 {inventor, examiner, family, neural, tf-Idf} 100% 11.1
5 {examiner, family, neural, tf-Idf} 95% 22

Top five models visited during circularity search for IR training data.
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Nullification in Student GAMs
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Example: Circularity in Medical Data Science

Circularity in SOFA/Sepsis Score Prediction
Sepsis-3 consensus definition defines sepsis as a change in total
SOFA (sequential organ failure assessment) score of at least 2 points
consequent to an infection. [Singer et al., 2016, Seymour et al., 2016]

SOFA scoring system itself is defined for 6 organ systems whose
scores are defined by thresholds on measurable physiological
quantities like heart rate, creatinin, bilirubine, urine output etc.
[Vincent et al., 1996]

Recent overview examined 22 studies on machine learning for (early)
prediction of sepsis, with the exception of one, all studies define
ground-truth sepsis labels using the deterministic rules of the
consensus definition like Sepsis-3. [Moor et al., 2021]
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Circularity in Liver SOFA Datasets

Condition Liver SOFA Score

0 < bilirubin ≤ 1.2 0
1.2 < bilirubin ≤ 1.9 1
1.9 < bilirubin ≤ 5.9 2
5.9 < bilirubin ≤ 11.9 3

bilirubin > 11.9 4

Definition and reconstruction of liver SOFA score.
Stefan Riezler and Michael Hagmann
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Circularity in Liver SOFA Prediction
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Circularity in Medical Data Science

How likely is it that other datasets and machine learning models
exhibit a yet undetected circularity problem?

Critical candidates are machine learning applications in
measurement-based sciences like medicine that define the objects of
their research, e.g., diseases, by rigid measurement procedures
(e.g., on physiological features, images, or text data).
Circularity problems extend to a longitudinal design for
prognosis where feature measurements at a current point in time are
used to forecast disease status at future points in time.

Circularity will be introduced by the auto-correlation of the time
series, especially if data imputation methods like last-value carried
forward are used in dataset creation.
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Summary: Circularity

Circularity inhibits machine learning at its core
If circular features are included in data/models, nothing else but a
reconstruction of the known functional definition of the target
will be learned.
If circular features are not or only incompletely available,
reproducibility is lost in any case.
No insights into new predictive patterns, no transfer to data
labeled in other ways.

Remedy: Detect and remove circular features in data/models!
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Conclusion
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Conclusion: Inferential Reproducibility

Stefan Riezler and Michael Hagmann
124 /
130



Conclusion

Inferential Reproducibility
Validity, reliability, and significance are methodological pillars of
empirical science.
Easily neglected in race for improved state-of-the-art results on
benchmark data.
Old-fashioned statistical methods come the rescue to analyze
inferential reproducibility!

Enter interpretable GAMs and LMEMs as analysis tools.
Statistical tests like GLRT, VCA, or circularity test are justified
by identifiability and consistency of maximum likelihood
estimators for GAMs and LMEMs.
Wide applicability, well established software.
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Conclusion

Focus of our work
Significance:

Related to partial conjunction testing for multiple datasets
[Dror et al., 2017],
and to score distribution comparison for multiple models
[Dror et al., 2019].
Our focus: Unified approach for significance testing under
meta-parameter and data variation, using likelihood ratio tests.
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Conclusion

Focus of our work
Reliability:

Related to approaches that analyze meta-parameter importance in
model prediction [Hutter et al., 2014, Bergstra and Bengio, 2012],
or report expected validation performance w.r.t. computational
budget [Dodge et al., 2019, Tang et al., 2020].
Our focus: Explain variability by LMEM variance component
analysis and justify reliability by ICC-like coefficient.

Stefan Riezler and Michael Hagmann
127 /
130



Conclusion

Focus of our work
Validity:

Related to descriptive statistics to detect dataset bias
[Poliak et al., 2018, Gururangan et al., 2018],
with goal of using machine learning to reduce influence of bias
features[Clark et al., 2019, Kim et al., 2019].
Our focus: GAM-based test to detect validity-violating features and
remove them from datasets.
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Conclusion

Open Questions, Comments, Suggestions
Towards inferential reproducibility as a new standard in
machine learning evaluation?

How to get there?
Would you go the extra mile?
What did we forget?

Please tell us in Q&A or by email to
{riezler,hagmann}@cl.uni-heidelberg.de
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Thank you!

Data, code, and preprint:

https://www.cl.uni-heidelberg.de/statnlpgroup/empirical_methods/
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