Recap: Inferential Reproducibility - A Worked-Through Example

Recap: A Worked-Through Example

BART-RXF: Better Fine-Tuning by Reducing Representational Collapse [Aghajanyan et al., 2021]

- SOTA on paperswithcode.com for text summarization task on CNN/Dailymail and RedditTIFU datasets.
- Baseline: BART [Lewis et al., 2019]
- SOTA Model: Approximate trust region method by constraining updates on embeddings *f* and classifier *g* during fine-tuning in order not to forget original pre-trained representations.

$$\mathcal{L}_{R3F}(f, g, \theta) = \mathcal{L}(\theta) + \lambda KL(g \cdot f(x) || g \cdot f(x + z))$$

s.t. $z \sim \mathcal{N}(0, \sigma^2 I)$ or $z \sim \mathcal{U}(-\sigma, \sigma)$.

Recap: A Worked-Through Example

Experimental setup and SOTA results

Datasets hosted on paperwithcode.com

- train/dev/test split for Reddit not given, used split of [Zhong et al., 2020] instead.
- Reported meta-parameter ranges: $\lambda \in [0.001, 0.01, 0.1]$, noise distribution \mathcal{N} or \mathcal{U} , maximum result of 10 random seeds .
 - Seeds of random number generator not given, used new 18 random seeds for baseline and 5 for SOTA.

Results reported in [Aghajanyan et al., 2021]:

	CNN/DailyMail	Gigaword	Reddit TIFU (Long)
Random Transformer BART PEGASUS	38.27/15.03/35.48 44.16/21.28/40.90 44.17/ 21.47 /41.11	35.70/16.75/32.83 39.29/20.09/35.65 39.12/19.86/36.24	15.89/1.94/12.22 24.19/8.12/21.31 26.63/9.01/21.60
ProphetNet (Old SOTA)	44.20/21.17/ 41.30	39.51/20.42/ 36.69	-
BART+R3F (New SOTA)	44.38/21.53/41.17	40.45/20.69/36.56	30.31/10.98/24.74

Significance Testing for Training Reproducibility

basalina SOTA		offoct size
	<i>p</i> -value	
Rouge1	1.99e - 14	-0.101
Rouge2	0.0000000114	-0.0803
RougeL	1.35 <i>e</i> — 15	-0.105

Rouge [Lin and Hovy, 2003] evaluation of best baseline versus best SOTA model on CNN/DailyMail shows significant improvements of best SOTA model over baseline with small effect sizes.

A First Step towards Inferential Reproducibility: Significance Conditional on Data Properties

Measuring difficulty of summarization data

- Word rarity [Platanios et al., 2019]: Negative log of empirical probabilities of words in segment, higher value means higher rarity.
- Flesch-Kincaid readability [Kincaid et al., 1975]: Pro-rates words/sentences and syllables/word; in principle unbounded, but interpretation scheme exists for ranges from 0 (difficult) to 100 (easy).

Interaction of Performance with Data Properties

- Significant difference in performance slope with respect to ease of readability.
- Performance for SOTA system increases faster for easier inputs than for baseline.

Interaction of Performance with Data Properties

Significant difference in performance with respect to word rarity.

SOTA is better than baseline for inputs with lower word rarity.

Significance Testing for Inferential Reproducibility

Incorporating meta-parameter variation into significance testing

Grid search over 18 random seeds for baseline, 30 SOTA models for 3λ values $\times 2$ noise distributions $\times 5$ random seeds.

baseline - SOTA	<i>p</i> -value	effect size
Rouge1	0.0	0.390
Rouge2	0.0	0.301
RougeL	0.0	0.531

- Relations turned around: Baseline significantly better than SOTA, at medium effect size!
- Performance variation of baseline model over 18 random seeds negligible (standard deviations < 0.2% for Rouge-X scores)</p>
- ➡ Reliability analysis of SOTA model!

Reliability co	efficient and variance	component	analysis
	Variance component v	Variance σ_v^2	Percent
	summary_id	0.00923	55.7
	lambda	0.00254	15.3
	random_seed	0.000122	0.73
	noise_distribution	0.0000473	0.29
	residual	0.00464	28.0

- Only moderate value of reliability coefficient.
- Largest variance component for Rouge1 estimate due to regularization constant λ.

Reliability coefficient and variance component analysis			
	Variance component v	Variance σ_v^2	Percent
	summary_id	0.00992	62.7
	lambda	0.00131	8.31
	random_seed	0.0000766	0.48
	noise_distribution	0.0000318	0.2
	residual	0.00449	28.3

- Only moderate value of reliability coefficient.
- Largest variance component for Rouge2 estimate due to regularization constant λ.

Reliability co	efficient and variance	component	analysis
	Variance component v	Variance σ_v^2	Percent
	summary_id	0.00875	47.9
	lambda	0.00519	28.4
	random_seed	0.0000370	0.2
	noise_distribution	0.0000144	0.08
	residual	0.00428	23.4

- Poor value of reliability coefficient.
- Largest variance component for RougeL estimate due to regularization constant λ.

Interaction of Meta-Parameters with Data Properties

Significant drop in performance of SOTA model across levels of reading difficulty for regularization constant $\lambda = 0.1$.

Interaction of Meta-Parameters with Data Properties

Significant drop in performance of SOTA model for regularization constant $\lambda = 0.1$, especially for rare words.

- Interesting data since much harder to read (mean readability score of -348.9).
- Significant improvement of best SOTA over baseline only for Rouge2 at small effect size.
- No significant improvements of SOTA over baseline if meta-parameter variation is taken into account.
- Reliability coefficients of around 80% with negligible variance contributions from λ values.

- Losing or winning a new SOTA score strongly depends on finding the sweet spot of a single meta-parameter (here: λ) – paper's goal was explicitly to reduce instability across meta-parameter settings!
- Performance improvements by fine-tuning mostly on easy-to-read and frequent-word inputs – less than one quarter of the CNN/Dailynews data.
- Lacking robustness against data variability new random split on RedditTIFU negates gains reported for split used in paper.