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Reliability of Measurements

m State-of-the-art: Bootstrap confidence intervals ("error bars")
around evaluation scores under meta-parameter variation.

[Lucic et al., 2018, Henderson et al., 2018]
m Goal:

m Analyze sources of variability in performance evaluation,
m analyze interaction of meta-parameters variance with data properties,
m compute coefficient to quantify general robustness of a model.

m Method:

m Variance component analysis (VCA): Untangle sources of
variability in measurement.

m Reliability coefficient: Assess general robustness of model by ratio
of substantial variance out of total variance.
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Variance Component Analysis

VCA |n ClaSS|Ca| ANOVA [Fisher, 1925, Searle et al., 1992]

m Example: Specify model with random effects for variation in outcome
Y between sentences s and between settings of meta-parameter r.

m Tautological decomposition:

Y =p+ (ps — p) + (or — ) + (Y — pis — por + 1),

grand mean u of observed evaluation score across all levels of
meta-parameter r and sentences s,

deviation v = (s — p) of mean score s for sentence s from p,
deviation v, = (u, — p) of mean score p, for meta-param. r from p,
residual error, reflecting deviation of observed score Y from what
would be expected given the first three terms.
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Variance Component Analysis

VCA in ClaSS|Ca| ANOVA [Fisher, 1925, Searle et al., 1992]

m Components in decomposition are uncorrelated with each other.

m Total variance o(Y — ) can be decomposed into following
variance components:

0_2(Y - :LL) — O-g T O-E T O-%esv

m 02 and 02 denote variance due to sentences and meta-parameter
settings,

2 g idual variance including variance due to | on of

®m 0, denotes residual variance Including variance due to interaction o

s and r.
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Reminder: General Form of LMEMs

m For given dataset of N input-output pairs {(x", y")}N_., general
form of an LMEM is

Y =XB+Zb+e€.

Y are N stacked response variables,
X and Z known design matrices,

3 fixed effects,

b random effects,

€ residual errors,

where b ~ N(0,g), € ~ N(0,\p).
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Estimation of Variance Components by LMEMs

m Conditions of measurement that contribute to variance in the
measurement besides the objects of interest (here: sentences) are
called facets of measurement (example: meta-parameters).

m Each facet-specific component v = r — u modeled as component

bs of random effects vector b,
= corresponding variance component o2 modeled as component of

variance-covariance matrix .
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LMEMs and ANOVA

(Advantages LMEM over ANOVA

m Flexibility!
m General estimation procedure that is not design-driven.

m Elegant handling of missing data situations.
m Flexible modeling, e.g., random-effects-only models.

| Further reading: [Baayen et al., 2008, Barr et al., 2013, Bates et al., 2015]
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Modeling Interactions with Data Properties in LMEMs

= Identify facet f with large variance contribution 0% in VCA.

m Analyze interaction of facet f with data property d:

m Change random effect br to fixed effect 5y,

m Add fixed effect 34 modeling test data characteristics,

m Add interaction effect 5r.4 modeling interaction between data
property d and facet f.
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Reliability Coefficient

Intra-class correlation coefficient (ICC) [Fisher, 1025

m Fundamental interpretation as measure of proportion of variance
that is attributable to objects of measurement.

m Ratio of variance between objects of interest 03 to the total variance

2 . . . . . . . 2
0%.., iNCluding variance within objects of interest o7,
2 2
o %
ICC=—B- ="
O total OB + Tw

m Name of coefficient is derived from goal of measuring how strongly
objects in the same class are grouped together: Variance between

objects of interest should outweigh variance within!
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Reliability Coefficient

General reliability coefficient ¢ [Brennan, 2001]

m Ratio of substantial variance 02 to the sum of itself and absolute

error variance UA, defined for facets f1, f», ... and selected
interactions s : f1,s : f»,f1 : f»,..., all modeled as random effects:
52

2

2 2 2 2
> WhereO'A:O'f1—|—0'f2—|—...—|—0'5:f'1—|—O'S:f2—|—...

02+ 04’

(p:

2 2
—|_ O-flifz —|_ T —|_ UreS'
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Reliability Coefficient

(Reliability coefficient  applied to NLP /data science

= Reliability of performance evaluation across replicated
measurements is assessed as the ratio by which the amount of
substantial variance outweighs the total error variance.

m Variance should explained by variance between test sentences, not by
variance-inducing facets like meta-parameter settings or by
unspecified facets of measurement procedure.

m Interpretation of threshold on ratio:

m Values less than 50%, between 50% and 75%, between 75% and
90%, and above 90%, indicative of poor, moderate, good, and
excellent reliability [Koo and Li, 2016]
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Example: Variance Component Analysis of Meta-Parameter

Importance

Assessing importance of meta-parameters

m Goal: Assess importance of meta-parameters in automatic
meta-parameter search. [Habelitz and Keuper, 2020]

m Method: VCA using LMEM with random effects for
meta-parameters (and interactions)

m LMEMs offer unified framework to assess importance of
meta-parameter across all levels of other meta-parameters, not just in
context of a single fixed instantiation of remaining meta-parameters.

m Previous work used less flexible functional ANOVA for same purpose.

[Hutter et al., 2014, Zimmer et al., 2020]
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Example: VCA of Meta-Parameter Importance

Example: A neural model for disease score prediction

m Multi-layer perceptron (MLP) to predict Sequential Organ Failure
Assessment (SOFA) score.

m Meta-parameters:

m maximal number of neurons in hidden layer (hidden_size_max),

m number of hidden layers (hidden_number),

= values of initial learning rate (learning_rate),

m number of training examples in each gradient computation

(batch_size),

seed of random number generator (random_seed),

m number of iterations over training set (epochs),

m probability of zeroing out hidden connections during training
(dropout).
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Example: VCA of Meta-Parameter Importance

Meta-parameter Grid values

batch size 1 4 8 16 32 64
dropout 0 0.05 0.1 0.15 0.2
epochs 1 5 10

hidden number 3 5 7

hidden size max 16 32 64 128 256
learning rate 0.001 0.01 0.1

random seed —7712 6483 20777

m Meta-parameter values in grid search for SOFA-score MLP.
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Example: VCA of Meta-Parameter Importance

m Random-effects-only LMEM:

Y = v + bhidden_size_max + bhidden_number + blearning_rate

-+ bbatch_size + brandom_seed + bepochs =+ bdropout + €res-

m Training data for LMEM:

m Performance evaluations of summative evaluation metric, e.g., mean
accuracy over test data instances.
m Evaluations for fully crossed meta-parameter configuration space,

yielding 6 x 5 x 3 x 3 x5 x 3 x 3 = 12,150 models.
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Example: VCA of Meta-Parameter Importance

Variance component v Variance o2 Percent
residual 0.0000314 61.2
hidden number 0.0000159 31.0
learning rate 0.00000318 6.2
batch size 0.000000517 1.01
hidden size max 0.000000260 0.505
dropout 0.0000000599  0.117
random seed 0.00000000405 0.00788

m Most variance induced by variation in number of hidden layers (31%),
m followed with a wide margin by learning rate (6.2% of total variance),

m all other meta-parameters introduce negligible variance of < 1%.
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Example: Reliability Analysis in Interactive Machine

Translation

system
0-81 Baseline
® Marking

PostEdit

0.7 4

Estimated Group Mean

0.6

shlort typzcal veryllong
Source Sentence Length (grouped)

m Reminder: Significance between baseline and SOTA model was lost in
extended meta-parameter grid search.

m Goal: Reliability analysis of SOTA model!

m Question: Which meta-parameter setting is responsible for
performance drop, and what is interaction with data properties?
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Reliability Analysis of SOTA model

m Response variable Y is TER score on test sentence, 1 is grand mean,
bs is sentence-specific deviation, and brapdom seed IS random effect
modeling 3 random seeds:

Y = [y bs + brandom_seed + €res.

m Excellent reliability ¢ = 98.4%, essentially no contribution of variance
due to replications under random seeds.

Variance component  Variance 0° Percent
sentence 0.984 98.4
residual 0.0163 1.63
random seed 0 0
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Reliability Analysis of SOTA under Meta-Parameter

Variation

m Add random effect bs for each meta-parameter f in grid search:

Y = [y bs - blearning_rate - brandom_seed - benc_dropout
=+ bdec_dropout =+ bdec_dropout_h + €res-

m Reliability coefficient drops below 90% with learning rate having
largest contribution to variance.

Variance component Variance 0®>  Percent
sentence 0.0574 38.4
residual 0.00737 11.3
learning rate 0.000127 0.2
decoder dropout 0.0000303 0.05
encoder dropout 0.0000224 0.03
decoder dropout hidden 0.00000130 O
random seed 0.000000578 O
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Interaction between Meta-Parameters and Data Properties

= Add fixed effect Bsc jengtn for source sentence length and interaction

effect 3 src_length:learning _ rate-

Y = pu+ bs + 5src_length - B/earning_rate - ﬁsrc_length:learning_rate —+ €res-

learning_rate
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Interpretation of Reliability Analysis

m Significant improvements by fine-tuning over baseline with large
effect size only on very long sentences.

m = Such improvements are likely to be reproducible on very long
sentences of new datasets.

m Strong dependency of consistency of evaluation results on initial
learning rate settings.

m = Likely that the results will be reproducible only for small initial
learning rates (< 0.0005), but not for large initial learning rates.

m Questionable reproducibility of result differences on short and
medium length sentences, especially between fine-tuned systems.
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Summary: LMEM-Based Reliability Analysis

m Distinctive idea:

m Compute reliability coefficient as proportion of substantial
variance attributable to the objects of interest, compared to
insubstantial variance due to idiosyncrasies of measurement situation.

m ldeas date back to [Fisher, 1925] and allow interpretation of reasons
for (un)reliability and understanding of interactions of variance
components and data.

m Based on well-understood statistical models (LMEMs).

m Further reading: [searle et al,, 1992, Brennan, 2001, Webb et al., 2006].

Stefan Riezler and Michael Hagmann 69 / 130




Alternative Reliability Measures

Agreement coefficients for data annotation

m Scott's 7 [scott, 1055], Cohen’'s K [cohen, 19601, or Krippendorff's o
[Krippendorff, 2004] are commonly used descriptive statistics to measure
agreement of raters in data annotation.

m Based on simple concept of percent agreement that is adjusted to
include agreement by chance.

m Easily computable from experimental data by collecting relative
count statistics.
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Alternative Reliability Measures

Problems with agreement coefficients

m Convenience in computation is due to a fixed choice of a model for
computing chance agreement:

m Sampling with replacement (Scott's 7w and Cohen's k) or without
replacement (Krippendorff's «),

m from distributions for individual raters (Cohen'’s ) or from observed
ratings averaged over raters (Scott's m and Krippendorff's ).
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Alternative Reliability Measures

Problems with agreement coefficients

observed agreement - chance agreement

chance-adjusted agreement =
n — chance agreement

m Counter-intuitive principle of maximum randomness, leading to many
paradoxes and abnormalities. [zhao et al., 2013]

m Main disadvantages:

m No generalization beyond concrete raters and concrete data points
examined in a concrete experiment.

m No explanation of reasons for high/low agreement by properties of
raters or data, or by interactions between them.
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Alternative Reliability Measures

Bootstrap confidence intervals for model evaluation

m Interest is in reliability of predictions of a machine learning algorithm
itself, not just reliability of single concrete evaluation experiment.

m Bootstrap-inspired resampling to compute confidence bounds for
eva|uati0n scores on test data. [Henderson et al., 2018, Lucic et al., 2018]

m Goal: Quantify variation in maximum out-of-sample performance
with respect to meta-parameter choice and computational budget.

m Method: Resample performance evaluation scores from pool of
models trained under increasing budget for meta-parameter search.
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Alternative Reliability Measures

Bootstrap Confidence Interval for Evaluation Metric

Generate M meta-parameter configurations for the model class.

For each m=1,..., M: Train model p,, and calculate the
performance evaluation score u, = u(pm)-

For each B < M: Construct a bootstrap distribution by K times
drawing B random samples with replacement from
{um: m=1,..., M}. For each sample select the maximum
performance score.

Calculate the mean x and the standard deviation ox of this
distribution. Plug both estimates into the standard normal 95%
confidence interval of the population mean u:

X — 1960z < u < X+ 1.960%.
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Alternative Reliability Measures

m Mean and 95% confidence intervals for F1l-score, precision, recall of
GANs for different computational budgets. [Lucic et a1, 2018

1.0

0.8

0.6

0.4

Value

0.2

0.0

-0.2

Stefan Riezler and Michael Hagmann 75 / 130

Measure = F1

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Budget

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Measure = Precision

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Budget

0.8

0.6

0.4

0.2

0.0

Measure = Recall

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Budget

Model
BEGAN
DRAGAN
MM GAN
NS GAN
WGAN
WGAN GP




Alternative Reliability Measures

Problems with bootstrap confidence intervals

m ldea: Use confidence bounds to directly signify reliability of an
evaluation meta-parameter settings: At the same level of confidence,

smaller confidence bounds indicate higher reliability.

m Problems:

m Lacking bootstrap consistency, either if test set from which bootstrap
samples are drawn is not representative of population [canty et al., 2006],
or if the parameter to be estimated is on the boundary of the
parameter Space [Andrews, 2000, Bickel and Freedman, 1981] @S in calculations of
expected maximum performance [Lucic et al., 2018, Dodge et al., 2019].

m Main shortcoming:
m Confidence intervals do not tell us which meta-parameters have the
most influence on variations in evaluation scores, and how
meta-parameter settings interact with properties of test data.
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