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Reliability of Measurements

State-of-the-art: Bootstrap confidence intervals ("error bars")
around evaluation scores under meta-parameter variation.
[Lucic et al., 2018, Henderson et al., 2018]

Goal:
Analyze sources of variability in performance evaluation,
analyze interaction of meta-parameters variance with data properties,
compute coefficient to quantify general robustness of a model.

Method:
Variance component analysis (VCA): Untangle sources of
variability in measurement.
Reliability coefficient: Assess general robustness of model by ratio
of substantial variance out of total variance.

Stefan Riezler and Michael Hagmann 49 / 130



Variance Component Analysis

VCA in classical ANOVA [Fisher, 1925, Searle et al., 1992]

Example: Specify model with random effects for variation in outcome
Y between sentences s and between settings of meta-parameter r .
Tautological decomposition:

Y = µ+ (µs − µ) + (µr − µ) + (Y − µs − µr + µ),

grand mean µ of observed evaluation score across all levels of
meta-parameter r and sentences s,
deviation νs = (µs − µ) of mean score µs for sentence s from µ,
deviation νr = (µr − µ) of mean score µr for meta-param. r from µ,
residual error, reflecting deviation of observed score Y from what
would be expected given the first three terms.
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Variance Component Analysis

VCA in classical ANOVA [Fisher, 1925, Searle et al., 1992]

Components in decomposition are uncorrelated with each other.
Total variance σ2(Y − µ) can be decomposed into following
variance components:

σ2(Y − µ) = σ2
s + σ2

r + σ2
res ,

σ2
s and σ2

r denote variance due to sentences and meta-parameter
settings,
σ2
res denotes residual variance including variance due to interaction of

s and r .
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Reminder: General Form of LMEMs

For given dataset of N input-output pairs {(xn, yn)}Nn=1, general
form of an LMEM is

Y = Xβ + Zb + ϵ.

Y are N stacked response variables,
X and Z known design matrices,
β fixed effects,
b random effects,
ϵ residual errors,
where b ∼ N (0,ψθ), ϵ ∼ N (0,Λθ).
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Estimation of Variance Components by LMEMs

Conditions of measurement that contribute to variance in the
measurement besides the objects of interest (here: sentences) are
called facets of measurement (example: meta-parameters).

Each facet-specific component νf = µf − µ modeled as component
bf of random effects vector b,
corresponding variance component σ2

f modeled as component of
variance-covariance matrix ψθ.
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LMEMs and ANOVA

Advantages LMEM over ANOVA
Flexibility!

General estimation procedure that is not design-driven.
Elegant handling of missing data situations.
Flexible modeling, e.g., random-effects-only models.

Further reading: [Baayen et al., 2008, Barr et al., 2013, Bates et al., 2015]
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Modeling Interactions with Data Properties in LMEMs

Identify facet f with large variance contribution σ2
f in VCA.

Analyze interaction of facet f with data property d :
Change random effect bf to fixed effect βf ,
Add fixed effect βd modeling test data characteristics,
Add interaction effect βf :d modeling interaction between data
property d and facet f .
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Reliability Coefficient

Intra-class correlation coefficient (ICC) [Fisher, 1925]

Fundamental interpretation as measure of proportion of variance
that is attributable to objects of measurement.
Ratio of variance between objects of interest σ2

B to the total variance
σ2
total , including variance within objects of interest σ2

W .

ICC =
σ2
B

σ2
total

=
σ2
B

σ2
B + σ2

W

.

Name of coefficient is derived from goal of measuring how strongly
objects in the same class are grouped together: Variance between
objects of interest should outweigh variance within!
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Reliability Coefficient

General reliability coefficient φ [Brennan, 2001]

Ratio of substantial variance σ2
s to the sum of itself and absolute

error variance σ2
∆, defined for facets f1, f2, . . . and selected

interactions s : f1, s : f2, f1 : f2, . . . , all modeled as random effects:

φ =
σ2
s

σ2
s + σ2

∆

, where σ2
∆ = σ2

f1 + σ2
f2 + . . .+ σ2

s:f1 + σ2
s:f2 + . . .

+ σ2
f1:f2 + · · ·+ σ2

res .
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Reliability Coefficient

Reliability coefficient φ applied to NLP/data science
Reliability of performance evaluation across replicated
measurements is assessed as the ratio by which the amount of
substantial variance outweighs the total error variance.

Variance should explained by variance between test sentences, not by
variance-inducing facets like meta-parameter settings or by
unspecified facets of measurement procedure.
Interpretation of threshold on ratio:

Values less than 50%, between 50% and 75%, between 75% and
90%, and above 90%, indicative of poor, moderate, good, and
excellent reliability [Koo and Li, 2016]
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Example: Variance Component Analysis of Meta-Parameter
Importance

Assessing importance of meta-parameters
Goal: Assess importance of meta-parameters in automatic
meta-parameter search. [Habelitz and Keuper, 2020]

Method: VCA using LMEM with random effects for
meta-parameters (and interactions)

LMEMs offer unified framework to assess importance of
meta-parameter across all levels of other meta-parameters, not just in
context of a single fixed instantiation of remaining meta-parameters.
Previous work used less flexible functional ANOVA for same purpose.
[Hutter et al., 2014, Zimmer et al., 2020]
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Example: VCA of Meta-Parameter Importance

Example: A neural model for disease score prediction
Multi-layer perceptron (MLP) to predict Sequential Organ Failure
Assessment (SOFA) score.
Meta-parameters:

maximal number of neurons in hidden layer (hidden_size_max),
number of hidden layers (hidden_number),
values of initial learning rate (learning_rate),
number of training examples in each gradient computation
(batch_size),
seed of random number generator (random_seed),
number of iterations over training set (epochs),
probability of zeroing out hidden connections during training
(dropout).
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Example: VCA of Meta-Parameter Importance

Meta-parameter Grid values

batch_size 1 4 8 16 32 64
dropout 0 0.05 0.1 0.15 0.2
epochs 1 5 10
hidden_number 3 5 7
hidden_size_max 16 32 64 128 256
learning_rate 0.001 0.01 0.1
random_seed −7712 6483 20777

Meta-parameter values in grid search for SOFA-score MLP.
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Example: VCA of Meta-Parameter Importance

Random-effects-only LMEM:

Y = µ+ bhidden_size_max + bhidden_number + blearning_rate

+ bbatch_size + brandom_seed + bepochs + bdropout + ϵres .

Training data for LMEM:
Performance evaluations of summative evaluation metric, e.g., mean
accuracy over test data instances.
Evaluations for fully crossed meta-parameter configuration space,
yielding 6 × 5 × 3 × 3 × 5 × 3 × 3 = 12,150 models.
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Example: VCA of Meta-Parameter Importance

Variance component v Variance σ2
v Percent

residual 0.0000314 61.2
hidden_number 0.0000159 31.0
learning_rate 0.00000318 6.2
batch_size 0.000000517 1.01
hidden_size_max 0.000000260 0.505
dropout 0.0000000599 0.117
random_seed 0.00000000405 0.00788

Most variance induced by variation in number of hidden layers (31%),
followed with a wide margin by learning rate (6.2% of total variance),
all other meta-parameters introduce negligible variance of ≤ 1%.
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Example: Reliability Analysis in Interactive Machine
Translation

Reminder: Significance between baseline and SOTA model was lost in
extended meta-parameter grid search.
Goal: Reliability analysis of SOTA model!
Question: Which meta-parameter setting is responsible for
performance drop, and what is interaction with data properties?
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Reliability Analysis of SOTA model

Response variable Y is TER score on test sentence, µ is grand mean,
bs is sentence-specific deviation, and brandom_seed is random effect
modeling 3 random seeds:

Y = µ+ bs + brandom_seed + ϵres .

Excellent reliability φ = 98.4%, essentially no contribution of variance
due to replications under random seeds.

Variance component Variance σ2 Percent

sentence 0.984 98.4
residual 0.0163 1.63
random_seed 0 0
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Reliability Analysis of SOTA under Meta-Parameter
Variation

Add random effect bf for each meta-parameter f in grid search:

Y = µ+ bs + blearning_rate + brandom_seed + benc_dropout

+ bdec_dropout + bdec_dropout_h + ϵres .

Reliability coefficient drops below 90% with learning rate having
largest contribution to variance.

Variance component Variance σ2 Percent

sentence 0.0574 88.4
residual 0.00737 11.3
learning_rate 0.000127 0.2
decoder_dropout 0.0000303 0.05
encoder_dropout 0.0000224 0.03
decoder_dropout_hidden 0.00000130 0
random_seed 0.000000578 0
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Interaction between Meta-Parameters and Data Properties

Add fixed effect βsrc_length for source sentence length and interaction
effect βsrc_length:learning_rate .

Y = µ+ bs + βsrc_length + βlearning_rate + βsrc_length:learning_rate + ϵres .
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Interpretation of Reliability Analysis

Significant improvements by fine-tuning over baseline with large
effect size only on very long sentences.

➡ Such improvements are likely to be reproducible on very long
sentences of new datasets.

Strong dependency of consistency of evaluation results on initial
learning rate settings.

➡ Likely that the results will be reproducible only for small initial
learning rates (< 0.0005), but not for large initial learning rates.

Questionable reproducibility of result differences on short and
medium length sentences, especially between fine-tuned systems.
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Summary: LMEM-Based Reliability Analysis

Distinctive idea:
Compute reliability coefficient as proportion of substantial
variance attributable to the objects of interest, compared to
insubstantial variance due to idiosyncrasies of measurement situation.
Ideas date back to [Fisher, 1925] and allow interpretation of reasons
for (un)reliability and understanding of interactions of variance
components and data.
Based on well-understood statistical models (LMEMs).
Further reading: [Searle et al., 1992, Brennan, 2001, Webb et al., 2006].
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Alternative Reliability Measures

Agreement coefficients for data annotation
Scott’s π [Scott, 1955], Cohen’s κ [Cohen, 1960], or Krippendorff’s α
[Krippendorff, 2004] are commonly used descriptive statistics to measure
agreement of raters in data annotation.
Based on simple concept of percent agreement that is adjusted to
include agreement by chance.
Easily computable from experimental data by collecting relative
count statistics.
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Alternative Reliability Measures

Problems with agreement coefficients
Convenience in computation is due to a fixed choice of a model for
computing chance agreement:

Sampling with replacement (Scott’s π and Cohen’s κ) or without
replacement (Krippendorff’s α),
from distributions for individual raters (Cohen’s κ) or from observed
ratings averaged over raters (Scott’s π and Krippendorff’s α).
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Alternative Reliability Measures

Problems with agreement coefficients

chance-adjusted agreement =
observed agreement - chance agreement

n − chance agreement
.

Counter-intuitive principle of maximum randomness, leading to many
paradoxes and abnormalities. [Zhao et al., 2013]

Main disadvantages:
No generalization beyond concrete raters and concrete data points
examined in a concrete experiment.
No explanation of reasons for high/low agreement by properties of
raters or data, or by interactions between them.
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Alternative Reliability Measures

Bootstrap confidence intervals for model evaluation
Interest is in reliability of predictions of a machine learning algorithm
itself, not just reliability of single concrete evaluation experiment.
Bootstrap-inspired resampling to compute confidence bounds for
evaluation scores on test data. [Henderson et al., 2018, Lucic et al., 2018]

Goal: Quantify variation in maximum out-of-sample performance
with respect to meta-parameter choice and computational budget.
Method: Resample performance evaluation scores from pool of
models trained under increasing budget for meta-parameter search.
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Alternative Reliability Measures

Bootstrap Confidence Interval for Evaluation Metric
1 Generate M meta-parameter configurations for the model class.
2 For each m = 1, . . . ,M: Train model pm and calculate the

performance evaluation score um = u(pm).
3 For each B ≤ M: Construct a bootstrap distribution by K times

drawing B random samples with replacement from
{um : m = 1, . . . ,M}. For each sample select the maximum
performance score.

4 Calculate the mean x̄ and the standard deviation σx̄ of this
distribution. Plug both estimates into the standard normal 95%
confidence interval of the population mean µ:

x̄ − 1.96σx̄ ≤ µ ≤ x̄ + 1.96σx̄ .
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Alternative Reliability Measures

Mean and 95% confidence intervals for F1-score, precision, recall of
GANs for different computational budgets. [Lucic et al., 2018]
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Alternative Reliability Measures

Problems with bootstrap confidence intervals
Idea: Use confidence bounds to directly signify reliability of an
evaluation meta-parameter settings: At the same level of confidence,
smaller confidence bounds indicate higher reliability.
Problems:

Lacking bootstrap consistency, either if test set from which bootstrap
samples are drawn is not representative of population [Canty et al., 2006],
or if the parameter to be estimated is on the boundary of the
parameter space [Andrews, 2000, Bickel and Freedman, 1981] as in calculations of
expected maximum performance [Lucic et al., 2018, Dodge et al., 2019].

Main shortcoming:
Confidence intervals do not tell us which meta-parameters have the
most influence on variations in evaluation scores, and how
meta-parameter settings interact with properties of test data.
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