Significance

Significance Testing under Measurement Variations

- State-of-the-art: Statistical significance testing is mostly ignored in NLP and ML in general. [Marie et al., 2021, Ulmer et al., 2022]
- Goal: Start reproducibility analysis by significance testing, w/ and w/o incorporation of variability in meta-parameters and data.
- Method:
 - Train LMEM on performance scores of baseline and SOTA models, obtained w/ or w/o meta-parameter variation during training.
 - Apply **GLRT** to system effect parameter of LMEM.
 - Analyze significance w/ and w/o meta-parameter variation and conditional on data properties.

Reminder: General Form of LMEMs

For given dataset of N input-output pairs {(xⁿ, yⁿ)}^N_{n=1}, general form of an LMEM is

$$\mathsf{Y} = \mathsf{X}\boldsymbol{\beta} + \mathsf{Z}\mathsf{b} + \boldsymbol{\epsilon}.$$

- Y are N stacked response variables,
- X and Z known design matrices,
- β fixed effects,
- b random effects,
- ϵ residual errors,
- where $b \sim \mathcal{N}(0, \psi_{\theta}), \ \epsilon \sim \mathcal{N}(0, \Lambda_{\theta}).$

GLRTs based on LMEMS

- Response variables Y for LMEM training: Performance evaluation scores of meta-parameter variants of baseline and SOTA systems.
- GLRT: Train LMEM with fixed effect β_c accounting for competing systems on performance scores of baseline and SOTA systems, and compare their likelihood ratio.
- Pairing of systems on the sentence level: Incorporation of random sentence effect b_s allows incorporation of meta-parameter variations and reduces residual variance.

The nested models setup [Pinheiro and Bates, 2000]

Restricted null hypothesis model not distinguishing between systems:

$$m_0: Y = \beta + b_s + \epsilon_{res},$$

where β is fixed effect for common mean for both systems, b_s is random effect for sentence-specific deviation with variance σ_s^2 , and residual error ϵ_{res} with variance σ_{res}^2 .

General model with different means for baseline and SOTA:

$$m_1: Y = \beta + \beta_c \cdot \mathbb{I}_c + b_s + \epsilon_{res},$$

where indicator function \mathbb{I}_c activates fixed effect β_c for deviation of competing SOTA model from the baseline mean β when data point was obtained by a SOTA evaluation.

GLRTs in the nested models setup

- Restricted model m₀ is special case ("nested") of more general model m₁ since it restricts factor β_c to zero.
- Let ℓ_0 be likelihood of restricted model m_0 , ℓ_1 be likelihood of more general model m_1 , intuition of GLRT is to reject the null hypothesis if the **test statistic of likelihood ratio**

$$\lambda = \frac{\ell_o}{\ell_1}$$

yields values close to zero.

Analyzing significance conditional on data properties

- Extend models m₀ and m₁ by a fixed effect β_d modeling a test data property d like segment length, readability, or word rarity.
- Add interaction effect $\beta_{c:d}$ to assess expected system performance for different levels of d.
- Perform GLRT comparing

$$m'_1: Y = \beta + \beta_d \cdot d + (\beta_c + \beta_{c:d} \cdot d) \cdot \mathbb{I}_c + b_s + \epsilon_{res}$$

to null hypothesis model

$$m'_0: Y = \beta + \beta_d \cdot d + b_s + \epsilon_{res}.$$

Example: Interactive Machine Translation

Fine-Tuning Neural Machine Translation (NMT) from human feedback [Kreutzer et al., 2020]

- Baseline: NMT system pre-trained on large out-of-domain data.
- SOTA: Fine-tuning on in-domain data annotated with human error markings or error corrections.
- Response variables for LMEM training: TER scores on test data.

Data properties: Sentence lengths, binned into short (< 15 words), typical (15 – 55 words), very long (> 55 words).

[[]Snover et al., 2006]

Example: Interactive Machine Translation

Meta-parameter	Grid values			
learning_rate	0.0001	0.0003	0.0005	0.003
random_seed	42	43	44	
encoder_dropout	0	0.2	0.4	0.6
decoder_dropout	0	0.2	0.4	0.6
decoder_dropout_hidden	0	0.2	0.4	0.6

Meta-parameter grid of attention-based RNN for interactive NMT.

[Kreutzer et al., 2020]

Significance Testing of Difference Baseline - SOTA

- TER scores for fine-tuning on human error markings or human post-edits compared to baseline, evaluated on test sentences of 3 length classes.
 - SOTA systems trained under three different random seeds, thus one replication for each of three random seeds in LMEM input data.

Significance Testing of Difference Baseline - SOTA

	<i>p</i> -value	effect size	
baseline - marking	0.000332	1.24	
baseline - post-edit	0.000000358	1.28	
marking - post-edit	0.0252	0.589	

- *p*-values and effect sizes (standardized mean difference) for comparison of fine-tuning on human error markings or human post-edits to baseline on very long test sentences.
 - *p*-values < 0.05, medium to very large effect sizes

Significance Testing under Meta-Parameter Variation

Extended meta-parameter configuration space by grid search over $4 \times 4 \times 4 \times 4 \times 3 = 768$ trained models for each of the fine-tuning runs.

Significance Testing under Meta-Parameter Variation

Meta-parameters:

- initial learning rate (learning_rate),
- probability of zeroing out connections during training of encoder (enc_dropout), decoder (dec_dropout), and hidden decoder layers (dec_dropout_h),
- seed of random number generator (random_seed).
- *p*-values for all pairwise differences are above 0.05 across different classes of sentence length.
 - Significance of result difference lost!
 - Investigate reasons → reliability analysis!

Advantages of Model-Based Significance Testing with LMEMs

- One-stop approach to test statistical significance of performance differences between machine learning models:
 - Variance in evaluation scores due meta-parameter variation is incorporated naturally into training data for LMEM.
 - No matching of evaluation metrics to significance tests required [Dror et al., 2020] since test statistics is not based on evaluation metrics, but on MLE parameters of LMEM [van der Vaart, 1998].
 - Further key advantage is analysis of significance of result difference conditional on data properties.
 - Power of significance test is intimately related to reliability of model under analysis - next chapter!
 - Further reading: [van der Vaart, 1998, Pinheiro and Bates, 2000, Davison, 2003].

Alternative: Sampling-Based Significance Tests

Goal:

- Applicability to arbitrary and arbitrarily complex evaluation metrics (e.g., non-linear combinations of counts like F-score [Manning et al., 2008], BLEU [Papineni et al., 2002], ROUGE [Lin and Hovy, 2003]).
- No restriction to "mean of samples" metrics which is requirement in parametric tests (*t*-test, *Z*-test).
- More powerful than nonparametric tests (e.g. sign test).

Examples

- Bootstrap resampling: [Efron and Tibshirani, 1993] Sample itself is a representative "proxy" for the population, sampling distribution of test statistic is estimated by repeatedly sampling (with replacement) from the sample itself.
- Permutation test: [Fisher, 1935] Principle of stratified shuffling
 [Noreen, 1989] allows generation of null-hypothesis conditions by shuffling
 (sampling without replacement) outputs between two systems at strata that partition the data.

Given test set outputs $(A_0, B_0) = (a_i, b_i)_{i=1}^N$, where a_i is the output of system \mathcal{A}_i , and b_i is the output of system \mathcal{B}_i , on test instance *i*. Compute score difference $\Delta S_0 = S(A_0) - S(B_0)$ on test data. For k = 1, ..., K: Generate bootstrap dataset $S_k = (A_k, B_k)$ by sampling N examples from $(a_i, b_i)_{i=1}^N$ with replacement. Compute score difference $\Delta S_k = S(A_k) - S(B_k)$ on bootstrap data. Compute $\overline{\Delta S_k} = \frac{1}{K} \sum_{k=1}^{K} \Delta S_k$. Set c = 0. For k = 1, ..., K: If $|\Delta S_k - \overline{\Delta S_k}| \geq |\Delta S_0|$ c + +p = c/K. Reject null hypothesis if p is less than or equal to rejection level α .

Given test set outputs $(A_0, B_0) = (a_i, b_i)_{i=1}^N$, where the first element in the ordered pair (a_i, b_i) is the output of system \mathcal{A} , and the second element is the output of system \mathcal{B}_{i} , on test instance *i*. Compute score difference $\Delta S_0 = S(A_0) - S(B_0)$ on test data. Set c = 0. For r = 1, ..., R: Compute shuffled outputs (A_r, B_r) where for each i = 1, ..., N: $\operatorname{swap}(a_i, b_i) = \begin{cases} (a_i, b_i) & \text{with probability 0.5,} \\ (b_i, a_i) & \text{with probability 0.5.} \end{cases}$ Compute score difference $\Delta S_r = S(A_r) - S(B_r)$ on shuffled data. If $|\Delta S_r| \geq |\Delta S_0|$ c + +p = c/R. Reject null hypothesis if p is less than or equal to rejection level α .

- Bootstrap test makes more Type I errors (i.e., rejecting H₀ when it is true) and more Type II errors (i.e., not rejecting H₀ when it is false) than the permutation test if **bootstrap consistency** is not given (i.e., if data from which is resampled are not representative of population). [Canty et al., 2006, Riezler and Maxwell, 2005, Berg-Kirkpatrick et al., 2012]
- Designed for comparing a pair of selected systems on a single test set, no easy incorporation of variability in meta-parameters or data!

- Permutation test has great power (i.e., high probability of rejecting H_0 when it is false) for large samples [Hoeffding, 1952].
- Stratified shuffling principle needs to be applicable, which is not always the case.
- Designed for comparing a pair of selected systems on a single test set, no easy incorporation of variability in meta-parameters or data!

Significance testing across multiple meta-parameter and data settings

- Bootstrap and permutation tests are designed for comparing a pair of selected systems on a single test set - extensions apply this principle to sampling w/ and w/o replacement from system outputs under meta-parameter variations, but ignore variation of data properties. [Clark et al., 2011, Sellam et al., 2021, Bouthillier et al., 2021].
- Statistical significance test based on the stochastic order/dominance of performance score distributions allow incorporation of meta-parameter variation, but still ignore variation of data properties. [Dror et al., 2019, Ulmer et al., 2022]