
Significance

Stefan Riezler and Michael Hagmann 27 / 130



Significance Testing under Measurement Variations

State-of-the-art: Statistical significance testing is mostly ignored in
NLP and ML in general. [Marie et al., 2021, Ulmer et al., 2022]

Goal: Start reproducibility analysis by significance testing, w/ and
w/o incorporation of variability in meta-parameters and data.
Method:

Train LMEM on performance scores of baseline and SOTA models,
obtained w/ or w/o meta-parameter variation during training.
Apply GLRT to system effect parameter of LMEM.
Analyze significance w/ and w/o meta-parameter variation and
conditional on data properties.
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Reminder: General Form of LMEMs

For given dataset of N input-output pairs {(xn, yn)}Nn=1, general
form of an LMEM is

Y = Xβ + Zb + ϵ.

Y are N stacked response variables,
X and Z known design matrices,
β fixed effects,
b random effects,
ϵ residual errors,
where b ∼ N (0,ψθ), ϵ ∼ N (0,Λθ).
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Significance Testing with LMEMs

GLRTs based on LMEMS
Response variables Y for LMEM training: Performance
evaluation scores of meta-parameter variants of baseline and SOTA
systems.
GLRT: Train LMEM with fixed effect βc accounting for
competing systems on performance scores of baseline and SOTA
systems, and compare their likelihood ratio.
Pairing of systems on the sentence level: Incorporation of
random sentence effect bs allows incorporation of meta-parameter
variations and reduces residual variance.
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Significance Testing with LMEMs

The nested models setup [Pinheiro and Bates, 2000]

Restricted null hypothesis model not distinguishing between
systems:

m0 : Y = β + bs + ϵres ,

where β is fixed effect for common mean for both systems, bs is
random effect for sentence-specific deviation with variance σ2

s , and
residual error ϵres with variance σ2

res .
General model with different means for baseline and SOTA:

m1 : Y = β + βc · Ic + bs + ϵres ,

where indicator function Ic activates fixed effect βc for deviation of
competing SOTA model from the baseline mean β when data point
was obtained by a SOTA evaluation.
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Significance Testing with LMEMs

GLRTs in the nested models setup
Restricted model m0 is special case ("nested") of more general
model m1 since it restricts factor βc to zero.
Let ℓ0 be likelihood of restricted model m0, ℓ1 be likelihood of more
general model m1, intuition of GLRT is to reject the null hypothesis
if the test statistic of likelihood ratio

λ =
ℓo
ℓ1

yields values close to zero.
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Significance Testing with LMEMs

Analyzing significance conditional on data properties
Extend models m0 and m1 by a fixed effect βd modeling a test
data property d like segment length, readability, or word rarity.
Add interaction effect βc:d to assess expected system performance
for different levels of d .
Perform GLRT comparing

m′
1 : Y = β + βd · d + (βc + βc:d · d) · Ic + bs + ϵres

to null hypothesis model

m′
0 : Y = β + βd · d + bs + ϵres .
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Example: Interactive Machine Translation

Fine-Tuning Neural Machine Translation (NMT) from human
feedback [Kreutzer et al., 2020]

Baseline: NMT system pre-trained on large out-of-domain data.
SOTA: Fine-tuning on in-domain data annotated with human error
markings or error corrections.
Response variables for LMEM training: TER scores on test data.
[Snover et al., 2006]

Data properties: Sentence lengths, binned into short (< 15 words),
typical (15 − 55 words), very long (> 55 words).
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Example: Interactive Machine Translation

Meta-parameter Grid values

learning_rate 0.0001 0.0003 0.0005 0.003
random_seed 42 43 44
encoder_dropout 0 0.2 0.4 0.6
decoder_dropout 0 0.2 0.4 0.6
decoder_dropout_hidden 0 0.2 0.4 0.6

Meta-parameter grid of attention-based RNN for interactive NMT.
[Kreutzer et al., 2020]
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Significance Testing of Difference Baseline - SOTA

TER scores for fine-tuning on human error markings or human
post-edits compared to baseline, evaluated on test sentences of 3
length classes.

SOTA systems trained under three different random seeds, thus one
replication for each of three random seeds in LMEM input data.
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Significance Testing of Difference Baseline - SOTA

p-value effect size

baseline - marking 0.000332 1.24
baseline - post-edit 0.0000000358 1.28
marking - post-edit 0.0252 0.589

p-values and effect sizes (standardized mean difference) for
comparison of fine-tuning on human error markings or human
post-edits to baseline on very long test sentences.

p-values < 0.05, medium to very large effect sizes
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Significance Testing under Meta-Parameter Variation

Extended meta-parameter configuration space by grid search over
4× 4× 4× 4× 3 = 768 trained models for each of the fine-tuning runs.
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Significance Testing under Meta-Parameter Variation

Meta-parameters:
initial learning rate (learning_rate),
probability of zeroing out connections during training of encoder
(enc_dropout), decoder (dec_dropout), and hidden decoder layers
(dec_dropout_h),
seed of random number generator (random_seed).

p-values for all pairwise differences are above 0.05 across different
classes of sentence length.

Significance of result difference lost!
Investigate reasons ➡ reliability analysis!
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Summary: Significance Testing with LMEMs

Advantages of Model-Based Significance Testing with LMEMs
One-stop approach to test statistical significance of performance
differences between machine learning models:

Variance in evaluation scores due meta-parameter variation is
incorporated naturally into training data for LMEM.
No matching of evaluation metrics to significance tests
required [Dror et al., 2020] since test statistics is not based on evaluation
metrics, but on MLE parameters of LMEM [van der Vaart, 1998].
Further key advantage is analysis of significance of result
difference conditional on data properties.
Power of significance test is intimately related to reliability of
model under analysis - next chapter!
Further reading: [van der Vaart, 1998, Pinheiro and Bates, 2000, Davison, 2003].
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Alternative: Sampling-Based Significance Tests

Goal:
Applicability to arbitrary and arbitrarily complex evaluation metrics
(e.g., non-linear combinations of counts like F-score [Manning et al., 2008],
BLEU [Papineni et al., 2002], ROUGE [Lin and Hovy, 2003]).
No restriction to "mean of samples" metrics which is requirement in
parametric tests (t-test, Z -test).
More powerful than nonparametric tests (e.g. sign test).
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Alternative: Sampling-Based Significance Tests

Examples
Bootstrap resampling: [Efron and Tibshirani, 1993] Sample itself is a
representative “proxy” for the population, sampling distribution of
test statistic is estimated by repeatedly sampling (with replacement)
from the sample itself.
Permutation test: [Fisher, 1935] Principle of stratified shuffling
[Noreen, 1989] allows generation of null-hypothesis conditions by shuffling
(sampling without replacement) outputs between two systems at
strata that partition the data.

Stefan Riezler and Michael Hagmann 42 / 130



Bootstrap Test

Given test set outputs (A0,B0) = (ai , bi )
N
i=1, where ai is the output

of system A, and bi is the output of system B, on test instance i .
Compute score difference ∆S0 = S(A0)− S(B0) on test data.
For k = 1, . . . ,K :

Generate bootstrap dataset Sk = (Ak ,Bk) by sampling N examples
from (ai , bi )

N
i=1 with replacement.

Compute score difference ∆Sk = S(Ak)− S(Bk) on bootstrap data.
Compute ∆Sk = 1

K

PK
k=1 ∆Sk .

Set c = 0.
For k = 1, . . . ,K :

If |∆Sk −∆Sk | ≥ |∆S0|
c ++

p = c/K .
Reject null hypothesis if p is less than or equal to rejection level α.

Stefan Riezler and Michael Hagmann 43 / 130



Permutation Test

Given test set outputs (A0,B0) = (ai , bi )
N
i=1, where the first element

in the ordered pair (ai , bi ) is the output of system A, and the second
element is the output of system B, on test instance i .
Compute score difference ∆S0 = S(A0)− S(B0) on test data.
Set c = 0.
For r = 1, . . . ,R :

Compute shuffled outputs (Ar ,Br ) where for each i = 1, . . . ,N:

swap(ai , bi ) =

(
(ai , bi ) with probability 0.5,
(bi , ai ) with probability 0.5.

Compute score difference ∆Sr = S(Ar )− S(Br ) on shuffled data.
If |∆Sr | ≥ |∆S0|
c ++

p = c/R .
Reject null hypothesis if p is less than or equal to rejection level α.
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Problems with Bootstrap

Bootstrap test makes more Type I errors (i.e., rejecting H0 when it is
true) and more Type II errors (i.e., not rejecting H0 when it is false)
than the permutation test if bootstrap consistency is not given
(i.e., if data from which is resampled are not representative of
population). [Canty et al., 2006, Riezler and Maxwell, 2005, Berg-Kirkpatrick et al., 2012]

Designed for comparing a pair of selected systems on a single test
set, no easy incorporation of variability in meta-parameters or data!
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Problems with Permutation

Permutation test has great power (i.e., high probability of rejecting
H0 when it is false) for large samples [Hoeffding, 1952].
Stratified shuffling principle needs to be applicable, which is not
always the case.
Designed for comparing a pair of selected systems on a single test
set, no easy incorporation of variability in meta-parameters or data!
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Further Alternatives

Significance testing across multiple meta-parameter and data
settings

Bootstrap and permutation tests are designed for comparing a pair
of selected systems on a single test set - extensions apply this
principle to sampling w/ and w/o replacement from system outputs
under meta-parameter variations, but ignore variation of data
properties. [Clark et al., 2011, Sellam et al., 2021, Bouthillier et al., 2021].
Statistical significance test based on the stochastic order/dominance
of performance score distributions allow incorporation of
meta-parameter variation, but still ignore variation of data
properties. [Dror et al., 2019, Ulmer et al., 2022]
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