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Psychological Measurement Theory

Validity in psychological measurement theory
"A test is valid for measuring an attribute if (a) the attribute exists and
(b) variations in the attribute causally produce variation in the
measurement outcomes."
[Borsboom et al., 2004, Borsboom, 2005, Borsboom and Mellenbergh, 2007]

Measurement model explicates how the structure of theoretical
attributes relates to the structure of observations
Example: Measurement model for temperature stipulates how the level
of mercury in a thermometer systematically relates to temperature
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Example: Psychological Measurement of Developmental
Stages

Example: Psychological test of developmental stages by Jean Piaget
[Inhelder and Piaget, 1958]

Different positions in the attribute (e.g. children of age 3-5 versus
10-12) lead to different test outcomes
Observed test outcomes can be used to infer position of children in one
of four discrete stages of cognitive development
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Example: Measurement in the train-dev-test Paradigm

Machine learning models as measurement models
Example: Multiclass classification

Variation in attribute = variation of test pairs (x , y) where x are
inputs, y gold standard outputs
Measurement outcome = model prediction ŷ for input x
Causal relation = variation in feature values and labels correlates
invariantly across environments (here: test (re-)splits)
[Peters et al., 2016, Arjovsky et al., 2019]

Is accurate prediction across test sets all we need to claim validity?
No! Further criterion of absence of circularity from philosophy of
science. [Balzer and Brendel, 2019]
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Circularity in Machine Learning

Circular features
Indirect measurements: Target label is determined by indirect
measurement, but fundamental measurements needed to determine
this indirect measurement are part of input feature representation.
Circularity: Circular feature (= fundamental measurement) will lead
to an exact reconstruction of the known deterministic function (=
indirect measurement) by machine learning, but achieves nothing
else.
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The Circularity Problem

Why is circularity a problem?
Machine learning models trained on data including circular features
will yield nearly perfect predictions on input data including the
defining measurements, but they cannot be transferred to unseen
data where the defining features are not or only incompletely
available.
Circular features in machine learning models will nullify the
contribution of all features except those defining the target,
thus such models will not learn new predictive patterns that
involve features other than the known defining measurements.
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Circularity Test

Goal: A Circularity Test for Black-Box Models
Assume we know the functional definition of the target, but not the
training data of the machine learning model
Our data are model predictions on test data T = {(xm, ŷm)}Mm=1

Detect whether black-box model used circular features and remove
them from dataset.
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GAMs, Deviance, and Nullification

GAMs: Expressive and yet interpretable model class [Wood, 2017]

Decompose complex function into sum of non-linear feature shapes
fk(xk), e.g., regression splines [Hastie and Tibshirani, 1990]

Y n =

pX

k=1

fk(x
n
k ) +

X

i ̸=j

fij(x
n
i , x

n
j ) + ϵn, where ϵn ∼ N (0,σ2).

Deviance: D2(µ) ∈ [0, 1] measures proportion of log-likelihood of
model µ out of maximal data fit.
Nullification: Identifies circular features by non-null feature shapes,
based on identifiability and consistency of maximum likelihood
estimators for GAMs.
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Statistical Test for Circularity

Dataset T = {(xm, ŷm)}Mm=1 where xm ∈ Rp,
Candidate circular features C ⊆ P({1, . . . , p}),
Models M := {µc : c ∈ C} obtained by fitting a GAM based on
feature set c to data T .

Two-step test to detect circular features c∗

1 Deviance: c∗ = argmaxc∈C D2(µc) where D2(µc∗) is close to 1,
and in case the maximizer is not unique, the maximizer is chosen
whose associated GAM µc∗ has the smallest degrees of freedom.

2 Nullification: The feature shape of every feature
xj : j ∈ {1, . . . , p} \ c∗ added to the GAM µc∗ is nullified in the
resulting model.
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Example: Circularity in Patent Prior-Art Search

Condition Relevance Score

no citation 0
inventor citation 1
examiner citation 2
family patent 3

Data: Construction of gold standard relevance judgements from
citations of patents in other patents. [Graf and Azzopardi, 2008]

Model: Non-linear combination of features by MLP, trained for logistic
regression on binarized relevance ranks (level 1 for citations, 0 else).
Teacher MLP trained on 1,500 patent queries, resulting in 318,375
observations of query-document pairs.
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Example: Circularity in Patent Prior-Art Search

What if patent citations are included as features in ranking
model (e.g., KISS principle of [Magdy and Jones, 2010])?

Feature Meaning Range

(1) neural similarity score learned by neural network R
(2) tf-Idf cosine similarity of tf-Idf scores R
(3) inventor indicator for inventor citation {0, 1}
(4) examiner indicator for examiner citation {0, 1}
(5) family indicator for family patent {0, 1}
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Deviance of Student GAMs

Rank Included Features D2 Complexity

1 {inventor, examiner, family} 100% 5
2 {inventor, examiner, family, neural} 100% 6.33
3 {inventor, examiner, family, tf-Idf} 100% 7.95
4 {inventor, examiner, family, neural, tf-Idf} 100% 11.1
5 {examiner, family, neural, tf-Idf} 95% 22

Top five models visited during circularity search for IR training data.
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Nullification in Student GAMs
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Example: Circularity in Medical Data Science

Circularity in SOFA/Sepsis Score Prediction
Sepsis-3 consensus definition defines sepsis as a change in total
SOFA (sequential organ failure assessment) score of at least 2 points
consequent to an infection. [Singer et al., 2016, Seymour et al., 2016]

SOFA scoring system itself is defined for 6 organ systems whose
scores are defined by thresholds on measurable physiological
quantities like heart rate, creatinin, bilirubine, urine output etc.
[Vincent et al., 1996]

Recent overview examined 22 studies on machine learning for (early)
prediction of sepsis, with the exception of one, all studies define
ground-truth sepsis labels using the deterministic rules of the
consensus definition like Sepsis-3. [Moor et al., 2021]
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Circularity in Liver SOFA Datasets

Condition Liver SOFA Score

0 < bilirubin ≤ 1.2 0
1.2 < bilirubin ≤ 1.9 1
1.9 < bilirubin ≤ 5.9 2
5.9 < bilirubin ≤ 11.9 3

bilirubin > 11.9 4

Definition and reconstruction of liver SOFA score.
Stefan Riezler and Michael Hagmann
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Circularity in Liver SOFA Prediction
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Circularity in Medical Data Science

How likely is it that other datasets and machine learning models
exhibit a yet undetected circularity problem?

Critical candidates are machine learning applications in
measurement-based sciences like medicine that define the objects of
their research, e.g., diseases, by rigid measurement procedures
(e.g., on physiological features, images, or text data).
Circularity problems extend to a longitudinal design for
prognosis where feature measurements at a current point in time are
used to forecast disease status at future points in time.

Circularity will be introduced by the auto-correlation of the time
series, especially if data imputation methods like last-value carried
forward are used in dataset creation.
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Summary: Circularity

Circularity inhibits machine learning at its core
If circular features are included in data/models, nothing else but a
reconstruction of the known functional definition of the target
will be learned.
If circular features are not or only incompletely available,
reproducibility is lost in any case.
No insights into new predictive patterns, no transfer to data
labeled in other ways.

Remedy: Detect and remove circular features in data/models!
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