
Comparing Semantic Changes of
Anglicisms in German — using „CrOssinG“

University of Heidelberg,
Faculty of Modern Languages,
Department of Computational Linguistics

Our project’s goal was to analyze how much an anglicism’s meaning changes during its transition from English to German.

For this task, we built two vector space models based on the English and German Wikipedia by using dictionary data
extracted from dict.cc.

We applied our tool „CrOssInG“ on this data to analyze which anglicisms displayed a significant change in meaning.

Motivation

1

2

3

We used word2vec to create two vector space models on the English and German Wikipedia. Every word’s meaning could then be
represented by a word vector of the following form:

 katze 0.006136 -0.052587 0.012688 -0.01403 -0.046991 0.042845 -0.023529 -0.001199 . . .

 cat -0.067114 0.033746 0.020565 0.032246 0.113999 0.016741 -0.021005 0.043264 . . .

The next step was to acquire a suitable translation into English for every German word. dict.cc provided a dictionary in the
following format:

 German {Num./Gen.} Addition <Abbr.>/[com.] English <Abbr.>/[com.] word type

An example entry might look like this:

 platituedenhaft [alt.] [geh.] platitudinous adj

Having removed stop words, ambiguous translations and other low-priority words, we extracted this format for every respective
translation, and created a bijective mapping from a German word to its English translation.

From the previous steps, we established a mapping from each
German word v to an English translation: translation(v) = w.

Our next task was to find the transformation matrix T that
would map v to w as close as possible:

 Tv = w’ ≈ w.

From the difference between w’ and w (calculated by cosine
similarity), we could deduct how close an anglicism is to its
original meaning.

1

3

2

During the process described in , we created several
transformation matrices based on different linear regression
methods (ridge, elastic net and lasso) using the Python package
scikit-learn. S denotes the set of those matrices.

Given a set of false friends pairs F, the most accurate mapping
T* could then be found using the following formula:

Highest similarity pairs similarity

1 peeling - exfoliation 81.80%

2 body - onesie 77.97%

3 spray - spray 76.75%

4 aftershave - aftershave 76.59%

5 t-shirt - t-shirt 76.09%

Lowest similarity pairs similarity

1 city - city 46.83 %

2 team - team 47.65%

3 campus - campus 48.57%

4 in - in 48.87%

5 golden_goal - golden_goal 49.27%

Evaluation
3

Conclusion
Comparing different combinations of models and alpha values, we
found that an elastic net model with an alpha value of α = 0.1
performed best using our method of evaluation.

Whilst the top ten of highest similarities seem promising at first
glance, many of the results of the lowest-similarity top ten seem to
be beyond the usual amount of freak values and therefore let us
question our approach regarding the following points:

1. The vector data obtained from word2vec (small values between
0.1 and 0.01)

2. Similarly to 1., the performance of scikit-learn on that vector
data.

3. Calculating the precision of our transformation matrices by
evaluating false friends pairs. Evaluating on German and English
words with a similar meaning might have been more precise.

Results

Dennis Ulmer, Sebastian Spaar
! https://github.com/Eroica/crossing

TOMAS MIKOLOV, QUOC V. LE, ILYA SUTSKEVER: „Exploiting Similarities among Languages for Machine Translation“

