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Motivation

Anaphora- and Coreference-Resolution-Systems (ACRS)
are typically very specialized on a single phenomenon
and failing on others, especially when it comes to
domain adaptation.

Therefore we created a system, built around the
machine learning tool WEKA, to combine several single
ACR-Systems.

The goal was to test the ensemble learning approach in
order to obtain improvements in comparison to a single
system and on domain adaptation.

Our ressources:
– Training & Testing: Semeval2010 Task2
– Domain Adaptation: Sherlock Holmes
– MUC6 evaluation standard
– MMAX2 format

Our guidelines:
– Modularity
– Expandability
– Usability
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Motivation & Architecture

Feature Extractor

Extraction: The Coreference 
pairs and their features are 
extraced from the corpus.

Modularity: New features 
can be added easily.

Feature Dependent Performance Measurement

Predictions of coreferences, created by the ACR-Systems, are
checked against the gold standard.

An ARFF file for WEKA, containing the positive and negative
results of the evaluation, is created.

Machine Learning

WEKA: Classifier(s) are trained with an ARFF file
ACR-Systems: Predict anaphora and coreferences in test data
Classification: Classifier classifies predictions as trustworthy or untrustworthy
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A Positive list with trust-
worthy classifications is
created by the classifier.

It is compared to the
gold standard which is
extracted from the test
data.

Recall, precision and F-score are computed to evalute the Classifier(s)

Findings: Data
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Architecture of ELAC
-Split modular pipeline
-MMAX2 Input
-Easy Expandability
-Customizable via configuration
-Providing standalone tools
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Findings: Conclusion
Findings

Training:
– Performance of individual ACR-Systems with various features
– Based on 50% of Semeval2010 Task2 corpus
– MUC6 evaluation which causes problems for JavaRap
– BART is clearly dominating Conclusion

– Ensemble Learning better than the average of all ACR-Systems
– BART is an overall robust system (only if trained properly)
– Best results probably with completely complementary systems

Testing:
– Precision improved with an ensemble of classifiers
– Baseline’s F-score not reached
– JavaRap made too many bad decisions

Domain Adaptation:
– Sherlock Holmes novel from Tiger/Salsa corpus
– BART has achieved the best F-score
– Baseline not reached
– ACR-Systems provided too much wrong data
– Better precision than the average of all systems


