# Domain Adapted Word Sense Disambiguation

Stefan Gorzitze, Jonas Placzek, Tobias Kostyra

Department of Computational Linguistics

Heidelberg University, Germany

# I. Introduction/ Motivation

#### Word Sense Disambiguation:

- Distinguishing between the meanings of words in context.
- Used in many NLP applications (i.e. Machine translation, Q-A systems etc.).
- The problem: common WSD algorithms only produce satisfying results when used on the same domain they are trained on.

Goal: develop a WSD system with included domain adaptation.

#### > Two approaches (Figure 1):

- 1. Supervised, via machine learning, the main approach.
- 2. Unsupervised, via a graph structure from the UKB tool, to evaluate our results against.
- > The disambiguation task concentrated on nouns, verbs and adjectives.
- We used the coarse grained WordNet SuperSense classes (Figure 2).

Testing was done on three domains: the SemCor Corpus as base corpus, a collection of ritual texts and recipes.

> The disambiguation process is preceded by a preprocessing step to prepare the input texts for the algorithm.

# II. The supervised approach

#### General info:

- System "learns" to correctly label of senses by manually annotated data (from both source and target domain).
- Extracting of relevant features.
- Machine learning algorithm: Naive Bayes (Weka).

## Used training data:

- Source domain (huge data amount):
   SemCor corpus (~200.000 annotated words).
- Target domains (little data amount): self-annotated data for both domains (~130 sentences each).

#### Features (Figure 3):

- No syntantic features due to sentence structur of target domains (no parser applicable).
- Avoidance of too many features (feature overfitting).

|             | Used words   | Window size |  |  |
|-------------|--------------|-------------|--|--|
| lemmata     | nouns, verbs | w-2   w+2   |  |  |
| word types  | nouns, verbs | w-2   w+2   |  |  |
| word senses | nouns, verbs | w-2         |  |  |
| POS tags    | all words    | w-2   w+2   |  |  |

Figure 3: Overview of used features.

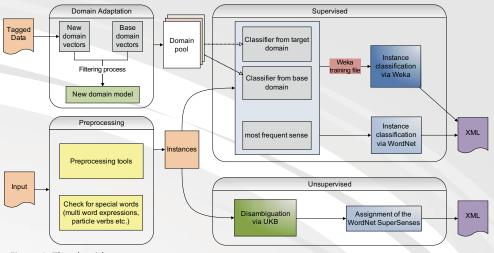



Figure 1: The algorithm.

| adj.all            | noun.possession    |
|--------------------|--------------------|
| adj.pert           | noun.process       |
| adj.ppl            | noun.quantity      |
| adv.all            | noun.relation      |
| noun.Tops          | noun.shape         |
| noun.act           | noun.state         |
| noun.animal        | noun.substance     |
| noun.artifact      | noun.time          |
| noun.attribute     | verb.body          |
| noun.body          | verb.change        |
| noun.cognition     | verb.cognition     |
| noun.communication | verb.communication |
| noun.event         | verb.competition   |
| noun.feeling       | verb.consumption   |
| noun.food          | verb.contact       |
| noun.group         | verb.creation      |
| noun.location      | verb.emotion       |
| noun.motive        | verb.motion        |
| noun.object        | verb.perception    |
| noun.other         | verb.possession    |
| noun.person        | verb.social        |
| noun.phenomenon    | verb.stative       |
| noun.plant         | verb.weather       |

Figure 2: All 46 WordNet SuperSenses.

| domain                   |        | supervised |      | unsupervised |      |      |     |
|--------------------------|--------|------------|------|--------------|------|------|-----|
|                          |        | noun       | verb | adj          | noun | verb | adj |
| all words                | base   | 81         | 77   | 99           | 78   | 75   | 99  |
|                          | ritual | 70         | 65   | 98           | 68   | 65   | 97  |
|                          | recipe | 92         | 66   | 100          | 89   | 68   | 100 |
| polysemous<br>words only | base   | 65         | 59   | 99           | 69   | 57   | 99  |
|                          | ritual | 58         | 58   | 97           | 47   | 35   | 98  |
|                          | recipe | 81         | 56   | 100          | 84   | 66   | 100 |

Figure 4: Evaluation results (F-measure).

## Domain Adaptation:

- Adaptation of trained instances of source domain for target domains.
- Exclusion of instances with similar feature vectors but different senses
- Jaccard coefficient for calculation of vector similarity.

# III. The unsupervised approach

- > Uses the UKB tool to disambiguate building a graph around the data of the contexts.
- Implemented to evaluate against the supervised approach.
- <sup>></sup> The algorithm wraps the preprocessed data and feeds it to the UKB tool for disambiguation.
- The processed data use SenselDs to get their SuperSenses directly from WordNet.
- > The SuperSenses get mapped on the input data and an xml file is created, containing all the disambiguated senses and their char positions in the input text.

# IV. Evaluation

- Evaluation was done using manually annotated data from the three test domains (Figure 4).
- Adjectives got best results, due to the fact that WordNet provides only three SuperSenses for Adjectives.
- > The results with monosemous words are remarkably better.
- An experiment to broaden the number of senses by using finer grained senses produced notably worse results.

### V. References

- La Group: UKB: Graph Based Word Sense Disambiguation and Similarity. Basque Country, http://ixa2.si.ehu.es/ukb.
  Daumé, H. III: Frustratingly Easy Domain Adaption.
- Daumé, H. III: Frustratingly Easy Domain Adaption. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, June 2007: 256–263.
- Reiter, N. et al.: Adapting Standard NLP Tools and Resources to the Processing of Ritual Descriptions. Proceedings of ECAI 2010 workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. Lisbon, August 2010: 39-46.
- Haas, M., Schamoni, H., Wittl, T., Zeller, B.: RECIPE. Software project, Heidelberg, winter term 2009/2010.