Ambiguity Management in Grammar Writing

Tracy Holloway King, Stefanie Dippet, Anette Frang,
Jonas Kuhf, John Maxwelt

Abstract

When lingusitically motivated grammars are implementedadarger scale, and applied to
real-life corpora, keeping track of ambiguity sources ees a difficult task. Yet it is of great
importance, since unintended ambiguities arising fromeurestricted rules or interactions have
to be distinguished from linguistically warranted ambtgs. In this paper we report on various
tools in the XLE grammar development platform which can bedu®r ambiguity management
in grammar writing. In particular, we look at packed repreaations of ambiguities that allow
the grammar writer to view sorted descriptions of ambigsdyrces. Also discussed are tools for
specifying desired tree structures and for cutting dowrstiletion space prior to parsing.

1 Introduction

Xerox PARC has developed the XLE system (Xerox LinguistiziEEmment), a platform for large-
scale LFG (Lexical-Functional Grammar) grammar develapm¥LE comprises interfaces to finite-
state preprocessing modules for tokenization and morgiaabanalysis, as well as an efficient parser
and generator for LFG grammars. Since 1995, the@®rAM (Parallel LFG Grammar Development)
project, a joint initiative of Xerox PARC, XRCE Grenoble,catine University of Stuttgart (IMS), has
investigated the potential of LFG for large-scale NLP aggilons. RRGRAM encompasses linguistic
research in LFG-based parallel grammar development féerdiit languages: English, French, and
German; recently, the University of Bergen as a new partiasr dtarted developing a Norwegian
grammar, and a Japanese grammar is being developed by Faj.Xe

LFG (Bresnan (1982, 2000)) is particularly well suited fagthlevel syntactic analysis in multilingual
NLP tasks. The LFG formalism assigns natural language seesgwo levels of linguistic representa-
tion — a constituent phrase structure (c-structure) andetional structure (f-structure) — which are
related in terms of a functional projection, or correspamgefunction ¢—projection). The c-structure
encodes constituency (dominance) and surface order @f@rce). The f-structure is an attribute-
value representation which encodes syntactic informatidéerms of morphosyntactic featuresum,
GEND, TENSE, etc.) as well as functional relations between predicatdgizeir arguments or adjuncts.
The two levels of representation are related via the coordgnce functiorp, which maps partial c-
structures to partial f-structures. Documentation andudision of the implemented English, French,
and German LFG grammars are given in Butt et al. (1999).

In this paper we focus on a specific, complex task in practieagje-scale LFG grammar develop-
ment — the management of ambiguities — and how it is suppasitedarious tools and underlying
processing techniques in the XLE system. In doing so, we dismuss how the LFG/XLE specific
tools are more generally applicable to the grammar writasikt regardless of theoretical framework
or platform.

INLTT/ISTL, Xerox PARC, 3333 Coyote Hill Rd, Palo Alto, CA 983 USA
{thking,maxwel} @parc.xerox.com

2Institut fir maschinelle Sprachverarbeitung, Univéris8tuttgart, AzenbergstraRe 12, 70174 Stuttgart, GERMAN
{dipper,kuh} @ims.uni-stuttgart.de

3Xerox Research Centre Europe, 6, Chemin de Maupertuis 038@4¢lan, FRANCE
anette.frank@xrce.xerox.com

The paper is organized as follows: Section 2 presents thégaihbproblem in large-scale grammar
development and how the processing complexity of ambigigitgpproached in the XLE system,
focussing in particular on the notion of ambiguity packisgction 3 presents some typical grammar
writing tasks that involve ambiguity management and how #re supported in the XLE system. We
introduce the main interfaces of the XLE system and firstgaresome basic facilities for viewing and
selecting analyses based on c-structure descriptionsiiose 4.1 and 4.2; in section 4.3 we describe
more advanced facilities and views, which allow the gramwnréter to select structures from a single,
packed f-structure. Sections 5 and 6 present additionateevor detecting ambiguity sources in
a grammar and for reducing the search space of possiblesasalgr grammar/analysis inspection.
Finally, section 7 provides a summary with some discussion.

2 Ambiguity management in grammar development

2.1 Ambiguity

Ambiguity is one of the main problems faced by large-scalmmatational grammars. Ambiguities
can arise through rule interactions, via alternative didin$ of lexical entries, or simply from linguis-
tically justified syntactic ambiguities. As opposed to hunraerpreters, computational grammars are
not yet able to correctly determine the contextually cdrogdntended syntactic analysis from a set
of alternative analyses. Thus, a computational grammachwbdvers a realistic fragment of natural
language will, for a given sentence, come up with a large rarrobpossible analyses, most of which
are not perceived by humans or are considered inapprofmigte given context.

There are several aspects of managing ambiguity in langprmgessing (see Carter (1997) and ref-
erences therein on tools for ambiguity management). (i)@dreing and generation algorithms have
to deal with an exponential number of ambiguous structuremiefficient way, avoiding combinato-
rial explosion; and (ii) some disambiguation strategy lweadopted, depending on the application of
the grammar (a particular strategy may be to preserve aitpigherever possible, e.g., in machine
translation; in other application contexts, one might warapply disambiguation strategies). These
two aspects have received a lot of attention in the liteeatlttere, we want to address a third aspect
that is independent of these two: while developing a linizaly motivated grammar, it is important
to keep track of the ambiguity sources. Unlike more shallppraaches which typically conflate the
tasks of parsing and disambiguation, a deep grammar asgligh® syntactically available readings
to a given string. When dealing with real-life sentenceghsgiicated methods of managing these
ambiguities are thus required.

2.2 Packing ambiguities

The parsing and generation algorithms realized in XLE asetdan insights from research into ef-
ficient processing algorithms for unification-based gramsngsee in particular Maxwell and Kaplan
(1989, 1993, 1996) and Shemtov (199%)One important facet of these efficient processing tech-
nigues is an algorithm for contexted constraint satisfagta method for processing ambiguities effi-
ciently in a chart-like “packed” representation.

A major source of computational complexity with higherdésyntactic grammars is the high potential

“The unification algorithm described in Maxwell and Kapla898) takes advantage of simple context-free equivalence
in the feature space. As a result, sentences parse in cotgdrtithe typical case, though still being exponential invioest
case.

for ambiguities, especially with large-coverage grammaéile disjunctive statements of linguistic
constraints allow for a transparent and modular specifinatf linguistic generalizations, the resolu-
tion of disjunctive feature constraint systems is expansivthe worst case exponential. Conjunctive
constraint systems, on the other hand, can be solved byasthndification algorithms which do not
present a computational problem.

In standard approaches to disjunctive constraint satisfgacdisjunctive formulas are therefore con-
verted to disjunctive normal form (DNF), as in (1). Conjumetconstraint solving is then applied
to each of the resulting conjunctive subformulas. Howeter,possibly exponential number of such
subformulas results in an overall worst-case exponentiadgss. Moreover, in conversion to DNF
individual facts are replicated in several distinct comjive subformulas. This means that they have
to be recomputed many times.

@ (anxAcC)
DNF Vv (aAxAd)

(avb)AxAa(cvd) = V(bAXAC
V(b AXAd)

Maxwell and Kaplan (1989) observe that, although the nunalbelisjunctions to process grows in
rough proportion to the number of words in a sentence, megtrtitions are local and independent of
each other. The general pattern is that disjunctions tlieg fiom distinct parts of the sentence do not
interact, as they are embedded within distinct parts of tteucture. If disjunctions are independent,
they conclude, it is not necessary to explore all combinatiaf disjuncts as they are rendered in DNF,
in order to determine the satisfiability of the entire cosisitr system.

On the basis of these observations, Maxwell and Kaplan (L188%ise an algorithm for contexted
constraint satisfaction — realized in the XLE parsing andegation algorithms — that reduces the
problem of disjunctive constraint solving to the computagilly much cheaper problem of conjunctive
contexted constraint solving. The disjunctive constraystem is converted to a contexted conjunctive
form (CF), a flat conjunction of implicational (contextedfs, where each fact (a, b,.x,) is labeled
with a propositional (context) variabje ¢ or its negation, as in (2)

(2 CF
@vb)AxA(cvd) = @(PE—aA(-p—oDbAXA@Q@—=Cc)A(-q—d)

based on the Lemma in (3):

() ¢1V ¢ is satisfiable
iff (p — ¢1) A (—p — ¢2) is satisfiable, wherg is a new propositional variable.

Context variable® and their negations are thus used to specifiy the requirethattor a disjunction
of facts¢; V ¢9 at least one of the disjuncts is true.

As can be seen in the above example, conversion to CF hasvhnatade that each fact appears only
once, and thus will be processed only once. The resultingdta is a flat conjunction of implicational
facts, which forms a boolean constraint system that canleedefficiently, based on mathematically
well-understood, general and simple principles (see Mé»amel Kaplan (1989) for details).

What is important for our concerns is that disjunctive caist processing allows for the represen-
tation of a set of ambiguous f-structures in a single, padkstdicture, a so-called f-structure chart,

where disjunctive facts are not compiled out and duplicaltiethe packed f-structure (chart) attribute-
values are indexed with their corresponding context véeglas displayed in Fig. .

3 bschart 15 =]

j"MaT‘g sees the girl with the telescope.”

RED “zee{l3:Maryl, [39:girll>"
UE] 3PRED "Mary’]

RED Tgirl”
E] 32 RED “with<[80:telescopel>”
= WU &60BJ BOPRED “telescope’]

ZZFDJUNCT {a:1 [B6iwithd}

= |
Figure 1: F-structure chart fdary sees the girl with the telescope.

In the given example, the ambiguity resides in the attachreerl of the PP as a VP- or NP-adjunct,
as seen graphically in the trees in Fig. 2.

P2 vai vees forROOTA34 W] [D 2 va ees or ROOT-1034
MM next. | Commands Views Mml next | Commands Views
x CS 1t ROOT 1034 CS 2t ROOT 1034
Saclj[finl:996 PERIOD:117 Sacljlfinl:996 PERIOD:117
SCfind:554 .:|11Ei S[F1n|]:994 ,:‘118
MP 1427 WPalllfind ;992 MNP $d27 VPalllfinl;g92
NPadl 1358 \."Pv.[f'iln_.].: .974 NPad,t 1358 WP [F{L] 1974
NF’zEr|D:353 V[Flﬂi 1462 NF'Z.liil o ;:'l.:';:l“:590 NF’ZEF|D:353 V[Fln]“ZdEZ .I*IIIFI'.Z.9EE
NFIME|:350 seels:El I :5;1/@ 1952 F‘F‘:‘E’O2 NF!HE|:350 seel 21 1 :5;4//\‘;‘;.;.-{:.957
Mary:l the|:38 NF‘zer|0:546 P :SES/\NP:T?l Marlg :1 the‘:38 NF‘ZET‘D;SQG F;;‘.:EOZ
M:543 wit?’l'v:65 D:E;/;;d.j:?EB N:|543 F:%E/\NFﬁ?i
girl 150 thE|:79 NFzErlﬂ 1642 i rl 150 mltL 165 D IE/ZO/EEIM 1763
MN:B33 t.hE|:79 NPzErln 1642
t,elesclupe:92 MN:632
¥ I»\I 1= telest:'ope 92
- |u =

Figure 2: Trees foMary sees the girl with the telescope.

While this ambiguity affects the entire c-to-f-structur@mpping down from the level of VP, it is cap-
tured by the single local disjunctive contexis andas in the f-structure chart displayed in Fig. 1.
Contexta; specifies the PP identified by f-structure ng@ggas an element of thebJuNcT set in the
main predicate’s f-structurés. In contextas, the PP is specified as an element of diegect’s (f39)
ADJUNCT set. All remaining f-structure constraints are conjoinethie TRUE context.

4) a — fe6 € (f23 ADIUNCT)
a9 — f66 € (f39 ADJUNCT)
TRUE — (f23 OBJ) = f39
TRUE — (f23 PRED) ='se€/(1suB) (toBYJ))’ ...

The local disjuncts are directly accessible through thamtext variables. That is, we can select one or

SThe f-structure in Fig. 1 shows only tirREDvalues and no other attributes. For a more complete f-streicsee Fig. 5.

4

the other reading from the chart by selecting (clicking)cisresponding context variable, implicitly
setting it to TRUE.

3 Grammar Writing Tasks

For the purposes of this paper we focus on two major tasksdfagegrammar writers when there
are multiple outputs of the parser. The first task is to chebkther a particular desired structure is
contained within the output. The second is to determine kituctures in the output are undesirable
overgeneration. Consider a sentence like (5).

(5) I'want him to leave.

With a relatively large-scale grammar, this sentence migive three analyses: one in whialant
takes three arguments (subject, object, and infinitive)tandn which it takes two arguments (subject
and object) and an adjunct (infinitive or prepositional glerae.g.) want the box on the shelf).

If, for example, the grammar writer has just added threesaent verbs of this type, it is necessary to
search through the set of output structures to make sur¢hinabrrect one is there. If there are only
a few solutions, this is a trivial task, but as their numberéases, searching through the solution set
can become extremely tedious.

Once the desired analysis is found within the solution &ettask is then to determine the source of
the other parses. Some may be legitimate, grammatical semlgs in the situation described for (5).

However, some may indicate overgeneration problems wélgthmmar which need to be eliminated

by the grammar writer. With a large number of solutions, gleiag through them one at a time can

become cumbersome. Having a way to group the solutions eausp the process. For example, if a
lexical item is accidentally entered twice in the lexicdrgdn vacuously double the number of parses
for any sentence with that lexical item. As such, being ablece this factor of two can speed up the
grammar debugging process.

In the remainder of this paper, we discuss various fadglitiethe XLE system that help the grammar
writer manage and view ambiguities in parsing results. TlénnXLE user interface is shown in
Fig. 3. XLE displays four windows: at the top left appears ¢h&tructure window, at the bottom left
the corresponding f-structure window. The right-hand sidtedows display the f-structure chart (on
the top) and the chart-choices window (on the bottom). Theseviews and their usage are discussed
in turn below.

4 Displays and Browsing Facilites of Ambiguous Structures

4.1 Manually Searching Through Treesand F-Structures

If there is a relatively small number of trees, then the mbsiaus way of examining all the parses
of a given sentence is to browse through the structures rignanae at a time. For example, the
grammar writer may simply want to know whether a given stforgns a well-formed VP, independent
of the structure of the rest of the sentence, something wtéchbe easily detected while rapidly
searching through the tree structures. Within XLE, thisetylh search is done by clicking on the
next button in the tree window. In addition to displaying the néxete, clicking thenext button

automatically displays the corresponding f-structurehim tstructure window. In case a single tree

5

N 3 valid rees for ROOT-800 I D¢ fschart I [=T 3
kill | prev | next | Comnands Wiews

s ROOT :800

kill | Commards Vieus

AT wart hin to lssus, "

a1l “want<[éiprol. [73:prol>">
BUBJ GPRED “pro’]

L H@;z “want.<L6sprol, [a?—xmmﬂb[?z:pm]wﬂ
SadjCFind:747 PERIOD:122

SLfinl:745 3123 OB 73FRED “pra’]
coP ez [99:1eavely)]
NP 1346 YPalllfin11743 I
: RED Fb:2 “todl89tleavel>]|
FRON: 345 YPULFindi725 gaBs Floie 99:1eaveDy)]
Ti0 VIFinli396 HPid6S UPiRF 1910 ROJUNCT RED Hﬁé‘?_éi.‘?éga‘e,ia"V“[% SUBJ tprol> >]]

want;dh PROM:d6d PARTinF 187 WPalllhasel:908

him:71 toi88 WPy Chasel1891
I

Kas2 [73:prols)

LBJ
- e FED Fkb:1 mprovy]

%1 valid F-structure for ROOT-800 P [%3 solulions:
kill | prev| next | Connands Wiews kill | prev solution | next solution | Connands Wiews
I\ look | F-structure #1 oii®

'T want him to leave,”

Y 2i1] (*swant PREDY="want<{f&:pro F?E:pru>’i

bil| F99;1eave # ("twant ADJUNCT}
(F99:1eave PRED)="leave{(f39:leave SUBJI>"
{f99:leave SUBJ PRED)="pro”

b:2 | Faasta # (“uant ADJUNCT
(£B8:to PRED)="to<df99:leave>”

PRED “want{l0prol. [B7:leavel>l71iprol”

0
GUBT 345
346

RED *pro”
NIM +, CASE rom. NUM sg. PERS 1. PRON-FORM I. PROM

s fB83to OBJ}=F99:leave

F39:leave PREDI="leave”

T1PRED “pro”
PBI d84PNIM +, CASE acc, GEMD masc. NUM sg. PERS 3. PRON- -

e B ot FRED)="want<fé:pro £39:leave’f73tpra”
a7 - 5 - {~twant HCOMP}=F99:leave

123 689 EE? E%i‘?;féﬁ””“” ¢~ zuant. HOOMP SUBII=F73:pro

122 891 Fres = - {F98:1eave PRED}="leave<(f93:leave SUBII>"

Aehcrp Soa[PNF-FORM to. PASSIVE —. VTYPE main i

395 68

725 87

743 910

745

747[TNS-ASP MOOD indicative. PERF ——. PROG -—. TENSE pres]
| BOOPRSSIVE —. STMT-TYPE declarative. WTYFE main

7= | >

Tl
JAl
\

Figure 3: XLE Windows

is associated with multiple f-structures, these can be etktwy clicking thenext button in the f-
structure window. Fig. 4 shows the second of three treeshfmisentencé want him to leave. The
f-structure corresponding to this particular tree is shawnvell (Fig. 5).

Once the grammar writer locates a particular tree, there awember of facilities for exploring how
the subtrees relate to the grammar specification, to theuétstre, and to alternative subtrees in the
chart. Clicking on a tree node with different buttons give®eé displays. First, the feature constraints
specified in the grammar for that category can be examinedorle the part of the f-structure cor-
responding to the category can be displayed; this is péatiguuseful in determining where a given
feature in the f-structure comes from. This is demonstrétgdrig. 6 which shows the f-structure
corresponding td in the sentencé want him to leave; 7 shows the grammar constraints on this f-
structure, namely that it not haves@ed(ifier) and not have an relative clause adjunct. Since these
two tools work on subtrees, they can be used to determineenihea tree the f-structure becomes
ungrammatical if the structure was intended to be well-fedrbut was not (or why it is unfortuitously
grammatical). Third, alternative subtrees in the charthie same category can be displayed (the fact
that there are alternative subtrees available in the chaigghalled by the dotted lines, as in the VPv
tree in Fig. 4). This last feature can be used when the treghte@rammar writer is looking for is not

in the set of grammatical trees; the grammar writer can lddkeasubtrees and from them determine
whether the desired tree is present and, if so, why it did mdase.

These facilities are valuable for a focused exploration wiildly ambiguous string. However, as the
trees and f-structures are viewed one at a time, even whagrdhanar writer knows what to look for,

it can become difficult to keep track of the differences betwvthe trees and whether, in fact, there
is a non-vacuous ambiguity being captured. Below we dishossthe process of searching through

¢ 3 valid trees for RODT:-800

wml rnext | Commands Views
I CS 23 RDDI.:.&.EIOO
SadJEF¥;ﬁ:747 PEéiaD:lEE
SCFinl:745 L2123
NP%346 WPalllFinl:7d3
FRD&:345 VPgEﬁ%Lqi?EE
I:0 U[Fin}{%;é“&P:A;E .“T;;lg}:Blo
wantid6 PROM:d6d PARTinf :87 YPalllhasel:908

him:71 to:gs WPy [hasel 891

¥[bhasze] 1889

leave:s7
L7 T I
Figure 4: Tree fot want himto leave.
_\{1 wvalid F-structure for ROOT:800 _ O] x|

killI prev | next | Commands Yiews
%, lock | F-structurs #1 oiix

"I want him to leave,"
FRED “want<[0prol. [87:leavel>[71iprol”

OPRED "pro”
FUB 49BNTH «, CASE non, MUM se. PERS 1. PRON-FORM I. PRON-TYPE pars

71PRED "pra”
PEJ :gg NIM +, CASE acc. GEMD masc, MUM sg. PERS 3. FROM-FORM he. PRON-TYPE pers

57 PRED “leave<[F1l:pral>”
gg gg? UBJ [7liprol
Wb S| FFUR to. PASSIVE -, VIVPE main
39 =
725 87
743 310
745
747[[N5-ASP MOOD indicative, PERF -—, PROG —. TENSE pres)
| B00PASSIVE -, STMT-TYPE declarative. VTYPE main
A= I

Figure 5: F-structure forwant himto leave.

analyses based on their tree-structures can be sped up tificaiion of parts of the constitutent
structure via the bracketing window.

4.2 Sorting by C-Structure Constraints: the Bracketing Window

If the grammar writer is looking for a specific analysis of atemce among many solutions, being
able to specify what parts of the tree look like can help imsednin locating the desired tree and
corresponding f-structure(s). XLE provides a sophistidabol which allows the grammar writer to
specify constituents, with or without specific labels, amsh+constituents. This tool is referred to
as the bracketing window. The bracketing window is acce$sed the tree window. It allows the
grammar writer to systematically narrow down the set ofcdtmes displayed, by imposing constraints
on a subset of c-structures to be selected from the chart.

In the bracketing window, the sentence is displayed witbradite tokenizations shown above one
another. Active buttons (#) appear as token delimitorsckiig on a pair of these buttons inserts
a pair of brackets that encloses the material in betweens ifigposes a filter on the trees to be

{1 valid F-structure for NP:346

kill I prey I nextl Commands Yiews

I lock | F—structure #1

OFRED “pro”

%32 MIM +. CASE rom. MUM sz, PERS 1. PROM-FORM I. PROM-TYPE pers

Figure 6: F-structure for

31 valid F-structure for NP:346

kill | prey | next | Commands Views
I lock | F-structure #1

RED “pro”

DJUNCT [—‘«DJLIHCT—TYF'E H“rel]]]

2aoBPEC Frrsts £1)

246 AMIM +. CASE mom. MUM =z, PERS 1. PROM-FORM I. PROM-TYPE pers

¥is =

Figure 7: F-structure forwith grammar constraints

selected from the chart: only those trees and solutions iolwthe material between brackets forms a
constituent are then displayed in XLE's tree and f-struetnimdows. Alternatively, shift clicking on

a pair of these buttons “debrackets” the enclosed materidy; those trees and solutions in which the
debracketed material does not form a constituent are gisglaThis is shown in Fig. 8 in whicthe
light on the tractor in the garage andon the tractor in the garage must form consituents. There is only
one valid tree corresponding to these requirements: thénomkich on the tractor is anADJUNCT of
light andin the garage is anADJUNCT of tractor.

J_‘ﬂ bracketing i
killl clear|
I
#j # osee # [the # light # [on # the # tractor # in # the # garage] 1 #
i
~ L=}

Figure 8: Bracket Window fol see the light on the tractor in the garage

Clicking on one of the inserted brackets produces a menueofaktegories of constituents that span
the bracketed material in the chart. These can be specifittddnally as being included (selected),
excluded, or undecided. If a category is specified to be dedy only those trees will be displayed
in which the constituent that spans the bracketed materiail ihe chosen category. Conversely, if a
category is excluded, XLE filters all trees in which this ¢atey spans the bracketed material from the

display. Clicking one of the show buttons displays the sésrin the chart which are labelled with

the respective category, to help the grammar writer speb#yappropriate category selections. This
is shown in Fig. 9 in which the part of speechtrdining is specified to be nominal, by requiring all

the noun related categories to be in, and not adjectivaleqyiring all the adjective related categories
to be out.

-'_'L] bracketing

ki11| clear'

the # [training] # manual

N_ =l

fﬂ catMenu
HPad,j

NPzera
Hmad

A
APLattr]
H

training

in s out s 7 show

in s out s 7 .§EEEJ
in s out s 7 show
* ot o 7 .§EEEJ
in * aut o 7 .§EEEJ
in s out s 7 show
in s out # 7 .beEJ
fpply |
- cancell

Figure 9: Bracket Window fothe training manual

C 0 ¢ % ¢ 9

A few bracketing constraints often considerably narrow dée search space, such that the browsing
method described above is applicable even with highly aothig sentences. Narrowing down the
search space by imposing c-structure constraints is ateo die first step before application of the
more sophisticated selection strategies to which we tuxh ne

The bracketing tool has proven particularly useful for esking tasks where the tree banker often
has a solid intuition as to what the desired tree should be&xguitbe bracketing window to guarantee

the correct constituency of the tree, especially when coetbwith specifying categories (e.g., noun
vs. adjective), greatly speeds up the treebanking prodassadditional advantage of the bracketing

window for treebanking is that tree bankers who are unfamiliith the grammar and even with the

LFG formalism can use it to quickly choose the correct sohufor a given sentence since all that is
required is a knowledge of constiuency. For similar reastiis type of tool should be useful for any

grammar which produces tree structures as part of its autput

4.3 Sorting by F-Structure Context Variables

Although searching through c-structure trees, with or autthe aid of the bracketing window, is ideal
for certain applications, for grammar testing it is oftercemsary to check the f-structure space since
the details of the LFG syntactic analyses are located hege {erb subcategorization information).
As mentioned in section 2.2, XLE provides a display of thekpdcf-structure representations used
in the parsing and generation algorithms. The logical cdntariables employed in the contexted
conjunctive form appear as choices in the display, labdldda:2, a:3, ... b:1, b:2, b:3, etc. This
type of display allows the grammar writer to view all of thetfuctures for a sentence at one time.
With some experience, the compact representations of tire snlution space are very useful to the
grammar writer, for determining both whether a desireddettire is present and whether there is any
unexpected overgeneration by the grammar. Since the chaimeng the different f-structures in the

displays are active, they allow quick access to individealdings based on two different indexing
criteria which are discussed in sections 4.3.1 and 4.3.Z2i\flhe grammar writer clicks on a choice,
the solution corresponding to that choice is displayed énttee and f-structure windows. A selection
is a fully specified choice of exactly one solution.

431 Packed F-Structure

The f-structure chart window indexes the packed solutigngeir constraints, so that each constraint
appears once in an f-structure annotated by all of the cheitere that constraint holds. This is best
seen in the f-structure chart in Fig. 1 above, repeated aslBigthe f-structure for the PRith the
telescope appears only once, although it can attach either high, ajmgeas an adjunct to the verb’s
f-structure &:1), or low, appearing in the f-structure gifrl (a:2).

3¢ Ischart =10

j"MaT‘g sees the girl with the telescope.”

RED “zee{l3:Maryl, [39:girll>"
UE] 3PRED "Mary’]

RED Tgirl”
E] 32 RED “with<[80:telescopel>”
= WU &60BJ BOPRED “telescope’]

ZZFDJUNCT {a:1 [B6iwithd}

= |
Figure 10: F-structure chart fddary sees the girl with the telescope.

In Fig. 11, the f-structure chart fdwant himto leave is seen. Thea:1/a:2 choice reflects the separate
argument frames oflant. Theb: 1/b:2 choice has a number of correlated effects on the structameds
of which are not shown in this “preds only” view, see below)bil, we have the nouteave acting

as the object of the prepositidn; in b:2, leave is an infinitival adjunct, with its subject ‘pro’ being
present only at the level of f-structure. The choice labetscalor-coded: one consistent selection of
choices is highlighted in red (e.qa;2, b:1), all other choice labels are bl§gThe selected reading
is simultaneously displayed in the non-packed tree andutstre windows discussed in section 4.1.)
Clicking on a non-selected choice will change the seleateding, with all dependent choices being
adjusted in a way that results in a consistent overall seledf choices.

F-structures contain a large amount of information, andnf@ny longer sentences this results in
structures, especially packed structures, which cannetibity displayed on the screen. To minimize
this problem, there are various ways to control how the destire is displayed. For example, the
“preds only” menu item suppresses all of the attributes gixerED, the governable attributes, and the
semantic attributes. This display is very useful to the greamwriter when searching for particular
predicate argument relations and when making a first estiamato whether two analyses are identical
or not. Another option is the “linear” menu item which chasdbe display into a line of surface
forms with corresponding f-structures. The linear disgkyery useful with large f-structures and
multiple dependent context choices since it gives the granwmiter natural and quick access to local
disjunctions, in that they are indexed on the individual dgoof the string. The first part of the linear
display forl want himto leave. is shown in Fig. 12.

®Besides the red buttons, which select a single solution, XIsB provides grey buttons, which only narrow down the
solution space without immediate selection of a singletgmiu

10

¢ fschart o] x]

kill [Comnands Views

S"I want him to leave,"

[— Haazg L [47—xcUMP;>[73:pm1'>]]
Ka:l "want<fBiprol. [73:prol>">

EUBI BPRED “pro’]

OBl 73PRED “pro’]

coP Facz [99:1eavely]

2 beep Fias:2 ~ta<i99:1eavel>)]
gaPBd Fie:e 199:1eave1)]

ko 470 fegp Lfcbitlaes Tleave<ras-suBIipro> "
[Kh:2 Tleawe

Ea:2 [73:prol?)
LB,
99

J
w RED [:[(b:i pro >]]

=] i
Figure 11: F-structure Chart Window fbrvant himto leave.

¢ tschart i [w]

kill | Commands Views
:"I want him to leave,”
pn

RED "pro”
BRANIM +. CASE mom. MUM =g. PERS 1. PROM-FORM I, PRON-TVPE pers

}

S,
= (€22 Twant<[6:pral, [47-HCOMPIY[73:pral”y
Kail “want<C6ipral, [73ipral>">
LEBJ [&:prol
B [73:pral
COP aiz [99:1eavel))
bi2 [88ito] }
bil [99:leavel

DJUNCT {

MS-ASP MOOD indicative. PERF —_, PROG -_. TEMSE pres)
47 PASSIVE —, STMT-TYPE declarative, VTYPE main

“hin "
RED “pro”
73ANIM +. CASE acc. GEMD masc. NUM sg. PERS 3. PROM-FORM he. PRON-T*

"to"(fh1lai23?

1= :] =

Figure 12: Linear Display foF want himto leave.

4.3.2 Choice Window

The choices displayed in the packed f-structure window Heeratively displayed in the f-structure

chart choices window. The choices window indexes the paskédions by the alternative choices
and displays them as a nested tree. The choices that beldhg same disjunction have the same
alphabetic string as a prefix. At the left of each disjunci®its context. Top level disjunctions are

given the True context. Embedded disjunctions are givectibice that they are embedded under.

The choices window, although not ideal for getting a geniexlfor the packed f-structure as a whole,
is extremely useful for seeing the different ambiguity segrand how they relate to one another. For
example, in Fig. 13 it is easy to see that one ambiguity dependhe subcategorization of the verb
want and that if transitivevant is chosen (choice:1), then there is an ambiguity as to the role of
leave, a choice which is not available with the ditransitive forfrn@nt (choicea:2). One particularly
interesting consequence of this display is that if two @istinres are vacuously different (e.g., the result
of having the same word entered twice in the lexicon), thelidoe blank lines after the choice labels;
when two or more blank lines appeatr, it is a good indicatiat fomething is seriously wrong with
the grammar with respect to the given sentence.

11

\\ 3 solutions =]
kill | prev solution | next solution | Commands Yieus
I ail | (" twant. PRED}="want<{F&ipro f73ipro>" ‘

1] £99:leave ¢ ("pwant ADJUNCT}
{f99:leave PRED)="leave<i{f99ileave SUBJI}>"
{f99:leave SUEJ PRED}="pro”

P12 | £33:t0 $ {“want ADJUNCT
{f88:to PRED}="to<f99:leave>”
(fB88:to OBI)=f99:leave
{f99:leave PRED)="leave”

True

EREl (" :uant PRED="want<f6ipro £99:leave>F73pra”
{"twant. KCOMPI=F99:leave

(" twant. ¥COMP SUBJT)=F73ipro

(f99:1leave PRED)="leave<i{f99ileave SUBJI:>"
{f959:leave SUBJ)=f73:ipro

=]
Figure 13: Choice Window forwant himto leave.

5 Print Ambiguity Sources

The above features allow the grammar writer to see the steicf a sentence in detail and to deter-
mine the type of ambiguity that is present. However, it il secessary to pin point the exact source
of the ambiguity, e.g., what rule in what file is causing thebayuity, especially if the grammar writer
needs to eliminate the ambiguity in question. XLE providdsaiure (print-ambiguity-sources) that
prints all of the local sources of ambiguity in the currenathThe output represents both f-structure
ambiguities and c-structure ambiguities. The f-strucamiguities will give a subtree identifier plus
the line number of the source of the constraints to help tlaengrar writer identify the ambiguity
source. Whenever a subtree is found that has a large numbegadfsolutions, it is possible to give
the subtree identifier to print-ambiguity-sources to find what ambiguities are being multiplied
together to produce the solutions.

(6) shows the result of print-ambiguity-sources for thetseeel want himto leave. For example, the
first line indicates that \BASE (the verb stem fawant) is two way ambiguous and points to the loca-
tion of the lexical entry for the verb (line 17893 of the filegeverb-lex.lfg); note that the “perhaps” in
(6) is because there is the possibility that the ambiguithésresult of functional uncertainty, which
cannot be detected by the tool.

(6) print-ambiguity-sources
V_BASE:47:1 adds a 2-way ambiguity, perhaps from line 178%ig-verb-lex.Ifg
PRONSFXBASE:73:1 adds a 2-way ambiguity, perhaps from line 1674ipeore-lex.lfg
VPv:621 is ambiguous because of subtrees 3& 5 & 6

6 Suppressing Unlikely Analyses

The previous sections described tools which XLE providesdeoting through large numbers of parse
results. However, XLE also provides a way to cut down theioaigsearch space in parsing, allowing
for potentially fewer parses to search through. This is doae speciasTorPPOINTfeature, which

is part of the Optimality Theory preference mechanism ipocated into XLE. It should be possible

to incorporate such a system into other parsing systeme #iig version of Optimality Theory is an

overlay on the grammar and not specific to LFG.

12

Frank et al. (1998, 2000) propose an extension of the cldsklEG projection architecture to in-
corporate a constraint ranking mechanism inspired by CgliiynTheory. A new projection, the—
projection, is used to specify violable constraints, whick used to determine a “winner” among
competing, alternative analyses. In the case of unwadasyatactic analyses, constraint ranking
can often effectively filter such analyses from the outpatistraint ranking can also be used to rank
competing analyses according to a hierarchy over preferand dispreference constraints. A consid-
erable number of ambiguities can be successfully filterechfthe set of possible analyses for a given
sentence by using this constraint ranking mechanism, imgited in the XLE system. However, in
some cases the “optimal” analyses determined in this wayod@arrespond to the actual preferred
reading of a given sentence, or else, a relatively largefgegoally) optimal analyses may subsist. If
the intended analysis does not surface as “optimal”, spemifiimality marks can still be deactivated
after parsing, which results in a correspondingly enlarg@ldtion space.

As an alternative to manual deactivation of specific prefeeeor dispreference marks, specabr
POINT marks can be inserted into the hierarchy of preference apdaference marks. If the hierarchy
includes one or more instances of gmoPPoOINTOptimality mark, XLE will process the input in mul-
tiple passes, using larger and larger versions of the grarmmsaibsequent reparsing phasesor
POINTs are useful for eliminating ungrammatical analyses whamgmatical analyses are present and
for speeding up the parser by only using expensive and rarstretions when no other analysis is
available’

Optimality marks are processed in right to left order, sd the firstsToPPOINTcoONsidered is the
rightmost. During the first pass, any constructions thatemsociated with marks to the left of the
STOPPOINTare not considered, i.e. not part of the grammar being udesl sdlution can be found
with this restricted grammar, XLE will terminate with thislation. Otherwise, a reparsing phase is
triggered, which will reprocess the input using the gramuoyato the nexsToPPOINTtO the left. For
instance, if a grammar had the ranking in (7), then XLE woulst fry analyses with either no marks
or only the Markl mark. It would not try the suboptimal constions involving Mark2 or Mark3.

If there were no valid analyses, then it would reparse théeser, including analyses with a Mark2
mark. If there were still no valid analyses, then it woulditrgluding analyses with a Mark3 mark.

(7) OPTIMALITYORDER Mark3 sTopPPOINTMark2 storPOINTMarkl.

If one of the marks to the left of aTOPPOINTIS a preference mark, then the suboptimal constructions
that are not tried are the ones that have fewer preferencksrfzain a competing analysis. Putting
a preference mark to the left ofstopPPoINTmMakes sense for multi-word expressions, for instance.
If the preference mark for multi-word expressions is to #fe ¢f asTorPPOINT then XLE will only
consider analyses that involve the individual componemntthe multi-word expression if there is
no valid analysis involving the multi-word expression. Jlé particularly useful for parsing texts
with large numbers of multiword technical terms. Reproicgsn multiple passes is expensive, so
STOPPOINS should be used sparingly. The ideal is to hawrarPpPoINTat a place that allows 80-
90% of the inputs to be processed successfully, and to putgtisality marks of computationally
expensive and syntactically marginal grammar rules to¢fieof asTOPPOINT With such settings,
one can obtain a substantial processing speed-up.

"The order in which the ranking of constraint marks is spetifias been reversed since Frank et al. (1998, 2000). It now
starts with the worst constraint to be violated, reflectimgarder assumed in theoretical work within Optimality Tityeo

13

7 Conclusion and Discussion

The ambiguity management tools described here are not eely during grammar development, but
also in tasks requiring disambiguation by a human, suchesb#anking or the design of evaluation
test suites (which can be seen as a special case of treegankivese tools are especially convenient
for such tasks since they allow non-expert users to locaeifip solutions among the output set more
straightforwardly.

When creating a treebank, the task is to save the correamiteorresponding f-structure analysis for
each sentence in the corpus. As treebanking often invobrag haturally occurring sentences, each
sentence can have a large number of parses (tens and everds)n@iven the number of parses and
the number of sentences to bank, having a way of efficentlyirgiin on the correct parse is vital to
the task. The tools described in this paper have been testatoorelatively small (hundreds instead
of thousands of sentence) treebanks created for this priojeEnglish, and for a parallel corpus in
French. The difficulties encountered in these tasks weteumntal in guiding the current state of
the tools. Currently, the tools are being used in a much targe banking project for German (Dipper
(2000)).

In this paper we reported on various tools in the XLE gramnevetbpment platform which can be

used for ambiguity management in grammar writing. In patic we looked at packed representa-
tions of ambiguities that allow the grammar writer to viewted descriptions of ambiguity sources,
as well as tools for specifying desired tree structures andutting down the solution space prior to
parsing. These tools allow the grammar writer to createelaiale linguistically motivated grammars
and apply them to real-life corpora, while keeping trackmabiguity sources. It is our hope that these
basic ideas behind these tools are fundamental enoughwte pseful to grammar writers using other
frameworks or platforms.

References

Bresnan, J., editor (1982)The Mental Representation of Grammatical Relations. MIT Press, Cam-
bridge, MA.

Bresnan, J. (2000).Lexical-Functional Syntax. Blackwell Publishers. To appear. Ms., Stanford
University.

Butt, M., King, T. H., Nifio, M.-E., and Segond, F. (1999 Grammar Writer's Cookbook. CSLI
Publications, Stanford, CA.

Carter, D. (1997). The TreeBanker: A tool for supervisedhing of parsed corpora. ACL Workshop:
Computational Environments for Grammar Development amgjlistic Engineering, Madrid.

Dipper, S. (2000). Grammar-based corpus annotation. Rezsat the LINC-2000 Workshop, Lux-
embourg.

Frank, A., King, T., Kuhn, J., and Maxwell, J. (1998). Optiityatheory style constraint ranking in
large-scale Ifg grammars. In Butt, M. and King, T., editd?mceedings of the LFG98 Conference,
University of Queensland, Brisbane, CSLI Online Publmadi Stanford, CAhtt p: // www
csli.stanford. edu/ publications/.

14

Frank, A., King, T. H., Kuhn, J., and Maxwell, J. (2000). Qpdility theory style constraint ranking in
large-scale LFG grammars. In Sells, P., ediformal and Empirical Issuesin Optimality Theoretic
Syntax. CSLI Publications, Stanford, CA. To appear.

Maxwell, J. and Kaplan, R. (1989). An overview of disjunetisonstraint satisfaction. Proceedings
of the International Workshop on Parsing Technologies, pages 18-27. also published as: A method
for disjunctive constraint satisfaction. in: Tomita, Mdje Current Issues in Parsing Technology,
Kluwer Academic Publishers, 1991).

Maxwell, J. and Kaplan, R. (1993). The interface betweermgdirand functional constraint&om-
putational Linguistics, 19(4):571-590.

Maxwell, J. and Kaplan, R. (1996). Unification-based parsbat automatically take advantage of
context freeness. Paper presented at#@96 Conference, Grenoble, France. Ms. Xerox PARC.

Shemtov, H. (1997)Ambiguity Management in Natural Language Generation. PhD thesis, Stanford
University.

15

