
Ambiguity Management in Grammar Writing
Tracy Holloway King1, Stefanie Dipper2, Anette Frank3,

Jonas Kuhn2, John Maxwell1

Abstract

When lingusitically motivated grammars are implemented ona larger scale, and applied to
real-life corpora, keeping track of ambiguity sources becomes a difficult task. Yet it is of great
importance, since unintended ambiguities arising from underrestricted rules or interactions have
to be distinguished from linguistically warranted ambiguities. In this paper we report on various
tools in the XLE grammar development platform which can be used for ambiguity management
in grammar writing. In particular, we look at packed representations of ambiguities that allow
the grammar writer to view sorted descriptions of ambiguitysources. Also discussed are tools for
specifying desired tree structures and for cutting down thesolution space prior to parsing.

1 Introduction

Xerox PARC has developed the XLE system (Xerox Linguistic Environment), a platform for large-
scale LFG (Lexical-Functional Grammar) grammar development. XLE comprises interfaces to finite-
state preprocessing modules for tokenization and morphological analysis, as well as an efficient parser
and generator for LFG grammars. Since 1995, the PARGRAM (Parallel LFG Grammar Development)
project, a joint initiative of Xerox PARC, XRCE Grenoble, and the University of Stuttgart (IMS), has
investigated the potential of LFG for large-scale NLP applications. PARGRAM encompasses linguistic
research in LFG-based parallel grammar development for different languages: English, French, and
German; recently, the University of Bergen as a new partner has started developing a Norwegian
grammar, and a Japanese grammar is being developed by Fuji Xerox.

LFG (Bresnan (1982, 2000)) is particularly well suited for high-level syntactic analysis in multilingual
NLP tasks. The LFG formalism assigns natural language sentences two levels of linguistic representa-
tion — a constituent phrase structure (c-structure) and a functional structure (f-structure) — which are
related in terms of a functional projection, or correspondence function (�–projection). The c-structure
encodes constituency (dominance) and surface order (precedence). The f-structure is an attribute-
value representation which encodes syntactic informationin terms of morphosyntactic features (NUM,
GEND, TENSE, etc.) as well as functional relations between predicates and their arguments or adjuncts.
The two levels of representation are related via the correspondence function�, which maps partial c-
structures to partial f-structures. Documentation and discussion of the implemented English, French,
and German LFG grammars are given in Butt et al. (1999).

In this paper we focus on a specific, complex task in practical, large-scale LFG grammar develop-
ment — the management of ambiguities — and how it is supportedvia various tools and underlying
processing techniques in the XLE system. In doing so, we alsodiscuss how the LFG/XLE specific
tools are more generally applicable to the grammar writing task, regardless of theoretical framework
or platform.

1NLTT/ISTL, Xerox PARC, 3333 Coyote Hill Rd, Palo Alto, CA 94304 USAfthking,maxwellg@parc.xerox.com
2Institut für maschinelle Sprachverarbeitung, Universität Stuttgart, Azenbergstraße 12, 70174 Stuttgart, GERMANYfdipper,kuhng@ims.uni-stuttgart.de
3Xerox Research Centre Europe, 6, Chemin de Maupertuis, 38240 Meylan, FRANCE

anette.frank@xrce.xerox.com

1



The paper is organized as follows: Section 2 presents the ambiguity problem in large-scale grammar
development and how the processing complexity of ambiguityis approached in the XLE system,
focussing in particular on the notion of ambiguity packing.Section 3 presents some typical grammar
writing tasks that involve ambiguity management and how they are supported in the XLE system. We
introduce the main interfaces of the XLE system and first present some basic facilities for viewing and
selecting analyses based on c-structure descriptions in sections 4.1 and 4.2; in section 4.3 we describe
more advanced facilities and views, which allow the grammarwriter to select structures from a single,
packed f-structure. Sections 5 and 6 present additional devices for detecting ambiguity sources in
a grammar and for reducing the search space of possible analyses for grammar/analysis inspection.
Finally, section 7 provides a summary with some discussion.

2 Ambiguity management in grammar development

2.1 Ambiguity

Ambiguity is one of the main problems faced by large-scale computational grammars. Ambiguities
can arise through rule interactions, via alternative definitions of lexical entries, or simply from linguis-
tically justified syntactic ambiguities. As opposed to human interpreters, computational grammars are
not yet able to correctly determine the contextually correct or intended syntactic analysis from a set
of alternative analyses. Thus, a computational grammar which covers a realistic fragment of natural
language will, for a given sentence, come up with a large number of possible analyses, most of which
are not perceived by humans or are considered inappropriatein the given context.

There are several aspects of managing ambiguity in languageprocessing (see Carter (1997) and ref-
erences therein on tools for ambiguity management). (i) Theparsing and generation algorithms have
to deal with an exponential number of ambiguous structures in an efficient way, avoiding combinato-
rial explosion; and (ii) some disambiguation strategy has to adopted, depending on the application of
the grammar (a particular strategy may be to preserve ambiguity wherever possible, e.g., in machine
translation; in other application contexts, one might wantto apply disambiguation strategies). These
two aspects have received a lot of attention in the literature. Here, we want to address a third aspect
that is independent of these two: while developing a linguistically motivated grammar, it is important
to keep track of the ambiguity sources. Unlike more shallow approaches which typically conflate the
tasks of parsing and disambiguation, a deep grammar assignsall the syntactically available readings
to a given string. When dealing with real-life sentences, sophisticated methods of managing these
ambiguities are thus required.

2.2 Packing ambiguities

The parsing and generation algorithms realized in XLE are based on insights from research into ef-
ficient processing algorithms for unification-based grammars (see in particular Maxwell and Kaplan
(1989, 1993, 1996) and Shemtov (1997)).4 One important facet of these efficient processing tech-
niques is an algorithm for contexted constraint satisfaction, a method for processing ambiguities effi-
ciently in a chart-like “packed” representation.

A major source of computational complexity with higher-level syntactic grammars is the high potential

4The unification algorithm described in Maxwell and Kaplan (1996) takes advantage of simple context-free equivalence
in the feature space. As a result, sentences parse in cubic time in the typical case, though still being exponential in theworst
case.

2



for ambiguities, especially with large-coverage grammars. While disjunctive statements of linguistic
constraints allow for a transparent and modular specification of linguistic generalizations, the resolu-
tion of disjunctive feature constraint systems is expensive, in the worst case exponential. Conjunctive
constraint systems, on the other hand, can be solved by standard unification algorithms which do not
present a computational problem.

In standard approaches to disjunctive constraint satisfaction, disjunctive formulas are therefore con-
verted to disjunctive normal form (DNF), as in (1). Conjunctive constraint solving is then applied
to each of the resulting conjunctive subformulas. However,the possibly exponential number of such
subformulas results in an overall worst-case exponential process. Moreover, in conversion to DNF
individual facts are replicated in several distinct conjunctive subformulas. This means that they have
to be recomputed many times.

(1) (a^ x ^ c)
DNF _ (a^ x ^ d)

(a_ b)^ x ^ (c_ d) ) _ (b^ x ^ c)_ (b^ x ^ d)

Maxwell and Kaplan (1989) observe that, although the numberof disjunctions to process grows in
rough proportion to the number of words in a sentence, most disjunctions are local and independent of
each other. The general pattern is that disjunctions that arise from distinct parts of the sentence do not
interact, as they are embedded within distinct parts of the f-structure. If disjunctions are independent,
they conclude, it is not necessary to explore all combinations of disjuncts as they are rendered in DNF,
in order to determine the satisfiability of the entire constraint system.

On the basis of these observations, Maxwell and Kaplan (1989) devise an algorithm for contexted
constraint satisfaction — realized in the XLE parsing and generation algorithms — that reduces the
problem of disjunctive constraint solving to the computationally much cheaper problem of conjunctive
contexted constraint solving. The disjunctive constraintsystem is converted to a contexted conjunctive
form (CF), a flat conjunction of implicational (contexted) facts, where each fact (a, b, x,: : :) is labeled
with a propositional (context) variablep, q or its negation, as in (2)

(2) CF
(a_ b)^ x ^ (c_ d) ) (p! a)^ (: p! b) ^ x ^ (q! c)^ (: q! d)

based on the Lemma in (3):

(3) �1 _ �2 is satisfiable
iff (p! �1) ^ (:p! �2) is satisfiable, wherep is a new propositional variable.

Context variablesp and their negations are thus used to specifiy the requirementthat for a disjunction
of facts�1 _ �2 at least one of the disjuncts is true.

As can be seen in the above example, conversion to CF has the advantage that each fact appears only
once, and thus will be processed only once. The resulting formula is a flat conjunction of implicational
facts, which forms a boolean constraint system that can be solved efficiently, based on mathematically
well-understood, general and simple principles (see Maxwell and Kaplan (1989) for details).

What is important for our concerns is that disjunctive constraint processing allows for the represen-
tation of a set of ambiguous f-structures in a single, packedf-structure, a so-called f-structure chart,

3



where disjunctive facts are not compiled out and duplicated. In the packed f-structure (chart) attribute-
values are indexed with their corresponding context variables, as displayed in Fig. 1.5

Figure 1: F-structure chart forMary sees the girl with the telescope.

In the given example, the ambiguity resides in the attachment level of the PP as a VP- or NP-adjunct,
as seen graphically in the trees in Fig. 2.

Figure 2: Trees forMary sees the girl with the telescope.

While this ambiguity affects the entire c-to-f-structure mapping down from the level of VP, it is cap-
tured by the single local disjunctive contextsa1 anda2 in the f-structure chart displayed in Fig. 1.
Contexta1 specifies the PP identified by f-structure nodef66 as an element of theADJUNCT set in the
main predicate’s f-structuref23. In contexta2, the PP is specified as an element of theOBJect’s (f39)
ADJUNCT set. All remaining f-structure constraints are conjoined in the TRUE context.

(4) a1 ! f66 2 (f23 ADJUNCT)a2 ! f66 2 (f39 ADJUNCT)
TRUE ! (f23 OBJ) = f39
TRUE ! (f23 PRED) =‘seeh("SUBJ) ("OBJ)i’ . . .

The local disjuncts are directly accessible through their context variables. That is, we can select one or

5The f-structure in Fig. 1 shows only thePREDvalues and no other attributes. For a more complete f-structure, see Fig. 5.

4



the other reading from the chart by selecting (clicking) itscorresponding context variable, implicitly
setting it to TRUE.

3 Grammar Writing Tasks

For the purposes of this paper we focus on two major tasks faced by grammar writers when there
are multiple outputs of the parser. The first task is to check whether a particular desired structure is
contained within the output. The second is to determine which structures in the output are undesirable
overgeneration. Consider a sentence like (5).

(5) I want him to leave.

With a relatively large-scale grammar, this sentence mighthave three analyses: one in whichwant
takes three arguments (subject, object, and infinitive) andtwo in which it takes two arguments (subject
and object) and an adjunct (infinitive or prepositional phrase, e.g.,I want the box on the shelf).

If, for example, the grammar writer has just added three-argument verbs of this type, it is necessary to
search through the set of output structures to make sure thatthe correct one is there. If there are only
a few solutions, this is a trivial task, but as their number increases, searching through the solution set
can become extremely tedious.

Once the desired analysis is found within the solution set, the task is then to determine the source of
the other parses. Some may be legitimate, grammatical analyses, as in the situation described for (5).
However, some may indicate overgeneration problems with the grammar which need to be eliminated
by the grammar writer. With a large number of solutions, searching through them one at a time can
become cumbersome. Having a way to group the solutions can speed up the process. For example, if a
lexical item is accidentally entered twice in the lexicon, it can vacuously double the number of parses
for any sentence with that lexical item. As such, being able to see this factor of two can speed up the
grammar debugging process.

In the remainder of this paper, we discuss various facilities in the XLE system that help the grammar
writer manage and view ambiguities in parsing results. The main XLE user interface is shown in
Fig. 3. XLE displays four windows: at the top left appears thec-structure window, at the bottom left
the corresponding f-structure window. The right-hand sidewindows display the f-structure chart (on
the top) and the chart-choices window (on the bottom). Thesetwo views and their usage are discussed
in turn below.

4 Displays and Browsing Facilites of Ambiguous Structures

4.1 Manually Searching Through Trees and F-Structures

If there is a relatively small number of trees, then the most obvious way of examining all the parses
of a given sentence is to browse through the structures manually, one at a time. For example, the
grammar writer may simply want to know whether a given stringforms a well-formed VP, independent
of the structure of the rest of the sentence, something whichcan be easily detected while rapidly
searching through the tree structures. Within XLE, this type of search is done by clicking on the
next button in the tree window. In addition to displaying the nexttree, clicking thenext button
automatically displays the corresponding f-structure in the f-structure window. In case a single tree

5



Figure 3: XLE Windows

is associated with multiple f-structures, these can be viewed by clicking thenext button in the f-
structure window. Fig. 4 shows the second of three trees for the sentenceI want him to leave. The
f-structure corresponding to this particular tree is shownas well (Fig. 5).

Once the grammar writer locates a particular tree, there area number of facilities for exploring how
the subtrees relate to the grammar specification, to the f-structure, and to alternative subtrees in the
chart. Clicking on a tree node with different buttons gives three displays. First, the feature constraints
specified in the grammar for that category can be examined. Second, the part of the f-structure cor-
responding to the category can be displayed; this is particularly useful in determining where a given
feature in the f-structure comes from. This is demonstratedby Fig. 6 which shows the f-structure
corresponding toI in the sentenceI want him to leave; 7 shows the grammar constraints on this f-
structure, namely that it not have aSPEC(ifier) and not have an relative clause adjunct. Since these
two tools work on subtrees, they can be used to determine where in a tree the f-structure becomes
ungrammatical if the structure was intended to be well-formed but was not (or why it is unfortuitously
grammatical). Third, alternative subtrees in the chart with the same category can be displayed (the fact
that there are alternative subtrees available in the chart is signalled by the dotted lines, as in the VPv
tree in Fig. 4). This last feature can be used when the tree that the grammar writer is looking for is not
in the set of grammatical trees; the grammar writer can look at the subtrees and from them determine
whether the desired tree is present and, if so, why it did not surface.

These facilities are valuable for a focused exploration of amildly ambiguous string. However, as the
trees and f-structures are viewed one at a time, even when thegrammar writer knows what to look for,
it can become difficult to keep track of the differences between the trees and whether, in fact, there
is a non-vacuous ambiguity being captured. Below we discusshow the process of searching through

6



Figure 4: Tree forI want him to leave.

Figure 5: F-structure forI want him to leave.

analyses based on their tree-structures can be sped up by specification of parts of the constitutent
structure via the bracketing window.

4.2 Sorting by C-Structure Constraints: the Bracketing Window

If the grammar writer is looking for a specific analysis of a sentence among many solutions, being
able to specify what parts of the tree look like can help immensely in locating the desired tree and
corresponding f-structure(s). XLE provides a sophisticated tool which allows the grammar writer to
specify constituents, with or without specific labels, and non-constituents. This tool is referred to
as the bracketing window. The bracketing window is accessedfrom the tree window. It allows the
grammar writer to systematically narrow down the set of structures displayed, by imposing constraints
on a subset of c-structures to be selected from the chart.

In the bracketing window, the sentence is displayed with alternate tokenizations shown above one
another. Active buttons (#) appear as token delimitors. Clicking on a pair of these buttons inserts
a pair of brackets that encloses the material in between. This imposes a filter on the trees to be

7



Figure 6: F-structure forI

Figure 7: F-structure forI with grammar constraints

selected from the chart: only those trees and solutions in which the material between brackets forms a
constituent are then displayed in XLE’s tree and f-structure windows. Alternatively, shift clicking on
a pair of these buttons “debrackets” the enclosed material;only those trees and solutions in which the
debracketed material does not form a constituent are displayed. This is shown in Fig. 8 in whichthe
light on the tractor in the garage andon the tractor in the garage must form consituents. There is only
one valid tree corresponding to these requirements: the onein which on the tractor is anADJUNCT of
light andin the garage is anADJUNCT of tractor.

Figure 8: Bracket Window forI see the light on the tractor in the garage

Clicking on one of the inserted brackets produces a menu of the categories of constituents that span
the bracketed material in the chart. These can be specified individually as being included (selected),
excluded, or undecided. If a category is specified to be included, only those trees will be displayed
in which the constituent that spans the bracketed material is of the chosen category. Conversely, if a
category is excluded, XLE filters all trees in which this category spans the bracketed material from the

8



display. Clicking one of the show buttons displays the subtrees in the chart which are labelled with
the respective category, to help the grammar writer specifythe appropriate category selections. This
is shown in Fig. 9 in which the part of speech oftraining is specified to be nominal, by requiring all
the noun related categories to be in, and not adjectival, by requiring all the adjective related categories
to be out.

Figure 9: Bracket Window forthe training manual

A few bracketing constraints often considerably narrow down the search space, such that the browsing
method described above is applicable even with highly ambiguous sentences. Narrowing down the
search space by imposing c-structure constraints is also often the first step before application of the
more sophisticated selection strategies to which we turn next.

The bracketing tool has proven particularly useful for treebanking tasks where the tree banker often
has a solid intuition as to what the desired tree should be. Using the bracketing window to guarantee
the correct constituency of the tree, especially when combined with specifying categories (e.g., noun
vs. adjective), greatly speeds up the treebanking process.An additional advantage of the bracketing
window for treebanking is that tree bankers who are unfamiliar with the grammar and even with the
LFG formalism can use it to quickly choose the correct solution for a given sentence since all that is
required is a knowledge of constiuency. For similar reasons, this type of tool should be useful for any
grammar which produces tree structures as part of its output.

4.3 Sorting by F-Structure Context Variables

Although searching through c-structure trees, with or without the aid of the bracketing window, is ideal
for certain applications, for grammar testing it is often necessary to check the f-structure space since
the details of the LFG syntactic analyses are located here (e.g., verb subcategorization information).
As mentioned in section 2.2, XLE provides a display of the packed f-structure representations used
in the parsing and generation algorithms. The logical context variables employed in the contexted
conjunctive form appear as choices in the display, labelleda:1, a:2, a:3, : : : b:1, b:2, b:3, etc. This
type of display allows the grammar writer to view all of the f-structures for a sentence at one time.
With some experience, the compact representations of the entire solution space are very useful to the
grammar writer, for determining both whether a desired f-structure is present and whether there is any
unexpected overgeneration by the grammar. Since the choices among the different f-structures in the

9



displays are active, they allow quick access to individual readings based on two different indexing
criteria which are discussed in sections 4.3.1 and 4.3.2. When the grammar writer clicks on a choice,
the solution corresponding to that choice is displayed in the tree and f-structure windows. A selection
is a fully specified choice of exactly one solution.

4.3.1 Packed F-Structure

The f-structure chart window indexes the packed solutions by their constraints, so that each constraint
appears once in an f-structure annotated by all of the choices where that constraint holds. This is best
seen in the f-structure chart in Fig. 1 above, repeated as Fig. 10: the f-structure for the PPwith the
telescope appears only once, although it can attach either high, appearing as an adjunct to the verb’s
f-structure (a:1), or low, appearing in the f-structure ofgirl (a:2).

Figure 10: F-structure chart forMary sees the girl with the telescope.

In Fig. 11, the f-structure chart forI want him to leave is seen. Thea:1/a:2 choice reflects the separate
argument frames ofwant. Theb:1/b:2 choice has a number of correlated effects on the structure (some
of which are not shown in this “preds only” view, see below): in b:1, we have the nounleave acting
as the object of the prepositionto; in b:2, leave is an infinitival adjunct, with its subject ‘pro’ being
present only at the level of f-structure. The choice labels are color-coded: one consistent selection of
choices is highlighted in red (e.g.,a:2, b:1), all other choice labels are blue.6 (The selected reading
is simultaneously displayed in the non-packed tree and f-structure windows discussed in section 4.1.)
Clicking on a non-selected choice will change the selected reading, with all dependent choices being
adjusted in a way that results in a consistent overall selection of choices.

F-structures contain a large amount of information, and formany longer sentences this results in
structures, especially packed structures, which cannot beeasily displayed on the screen. To minimize
this problem, there are various ways to control how the f-structure is displayed. For example, the
“preds only” menu item suppresses all of the attributes except PRED, the governable attributes, and the
semantic attributes. This display is very useful to the grammar writer when searching for particular
predicate argument relations and when making a first estimate as to whether two analyses are identical
or not. Another option is the “linear” menu item which changes the display into a line of surface
forms with corresponding f-structures. The linear displayis very useful with large f-structures and
multiple dependent context choices since it gives the grammar writer natural and quick access to local
disjunctions, in that they are indexed on the individual words of the string. The first part of the linear
display forI want him to leave. is shown in Fig. 12.

6Besides the red buttons, which select a single solution, XLEalso provides grey buttons, which only narrow down the
solution space without immediate selection of a single solution.

10



Figure 11: F-structure Chart Window forI want him to leave.

Figure 12: Linear Display forI want him to leave.

4.3.2 Choice Window

The choices displayed in the packed f-structure window are alternatively displayed in the f-structure
chart choices window. The choices window indexes the packedsolutions by the alternative choices
and displays them as a nested tree. The choices that belong tothe same disjunction have the same
alphabetic string as a prefix. At the left of each disjunctionis its context. Top level disjunctions are
given the True context. Embedded disjunctions are given thechoice that they are embedded under.

The choices window, although not ideal for getting a generalfeel for the packed f-structure as a whole,
is extremely useful for seeing the different ambiguity sources and how they relate to one another. For
example, in Fig. 13 it is easy to see that one ambiguity depends on the subcategorization of the verb
want and that if transitivewant is chosen (choicea:1), then there is an ambiguity as to the role of
leave, a choice which is not available with the ditransitive form of want (choicea:2). One particularly
interesting consequence of this display is that if two f-structures are vacuously different (e.g., the result
of having the same word entered twice in the lexicon), there will be blank lines after the choice labels;
when two or more blank lines appear, it is a good indication that something is seriously wrong with
the grammar with respect to the given sentence.

11



Figure 13: Choice Window forI want him to leave.

5 Print Ambiguity Sources

The above features allow the grammar writer to see the structure of a sentence in detail and to deter-
mine the type of ambiguity that is present. However, it is still necessary to pin point the exact source
of the ambiguity, e.g., what rule in what file is causing the ambiguity, especially if the grammar writer
needs to eliminate the ambiguity in question. XLE provides afeature (print-ambiguity-sources) that
prints all of the local sources of ambiguity in the current chart. The output represents both f-structure
ambiguities and c-structure ambiguities. The f-structureambiguities will give a subtree identifier plus
the line number of the source of the constraints to help the grammar writer identify the ambiguity
source. Whenever a subtree is found that has a large number oflocal solutions, it is possible to give
the subtree identifier to print-ambiguity-sources to find out what ambiguities are being multiplied
together to produce the solutions.

(6) shows the result of print-ambiguity-sources for the sentenceI want him to leave. For example, the
first line indicates that VBASE (the verb stem forwant) is two way ambiguous and points to the loca-
tion of the lexical entry for the verb (line 17893 of the file eng-verb-lex.lfg); note that the “perhaps” in
(6) is because there is the possibility that the ambiguity isthe result of functional uncertainty, which
cannot be detected by the tool.

(6) print-ambiguity-sources
V BASE:47:1 adds a 2-way ambiguity, perhaps from line 17893 ineng-verb-lex.lfg
PRONSFX BASE:73:1 adds a 2-way ambiguity, perhaps from line 1674 in eng-core-lex.lfg
VPv:621 is ambiguous because of subtrees 3 & 5 & 6

6 Suppressing Unlikely Analyses

The previous sections described tools which XLE provides for sorting through large numbers of parse
results. However, XLE also provides a way to cut down the original search space in parsing, allowing
for potentially fewer parses to search through. This is donevia a specialSTOPPOINTfeature, which
is part of the Optimality Theory preference mechanism incorporated into XLE. It should be possible
to incorporate such a system into other parsing systems since this version of Optimality Theory is an
overlay on the grammar and not specific to LFG.

12



Frank et al. (1998, 2000) propose an extension of the classical LFG projection architecture to in-
corporate a constraint ranking mechanism inspired by Optimality Theory. A new projection, theo–
projection, is used to specify violable constraints, whichare used to determine a “winner” among
competing, alternative analyses. In the case of unwarranted syntactic analyses, constraint ranking
can often effectively filter such analyses from the output; constraint ranking can also be used to rank
competing analyses according to a hierarchy over preference and dispreference constraints. A consid-
erable number of ambiguities can be successfully filtered from the set of possible analyses for a given
sentence by using this constraint ranking mechanism, implemented in the XLE system. However, in
some cases the “optimal” analyses determined in this way do not correspond to the actual preferred
reading of a given sentence, or else, a relatively large set of (equally) optimal analyses may subsist. If
the intended analysis does not surface as “optimal”, specific optimality marks can still be deactivated
after parsing, which results in a correspondingly enlargedsolution space.

As an alternative to manual deactivation of specific preference or dispreference marks, specialSTOP-
POINT marks can be inserted into the hierarchy of preference and dispreference marks. If the hierarchy
includes one or more instances of theSTOPPOINToptimality mark, XLE will process the input in mul-
tiple passes, using larger and larger versions of the grammar in subsequent reparsing phases.STOP-
POINTs are useful for eliminating ungrammatical analyses when grammatical analyses are present and
for speeding up the parser by only using expensive and rare constructions when no other analysis is
available.7

Optimality marks are processed in right to left order, so that the first STOPPOINTconsidered is the
rightmost. During the first pass, any constructions that areassociated with marks to the left of the
STOPPOINTare not considered, i.e. not part of the grammar being used. If a solution can be found
with this restricted grammar, XLE will terminate with this solution. Otherwise, a reparsing phase is
triggered, which will reprocess the input using the grammarup to the nextSTOPPOINTto the left. For
instance, if a grammar had the ranking in (7), then XLE would first try analyses with either no marks
or only the Mark1 mark. It would not try the suboptimal constructions involving Mark2 or Mark3.
If there were no valid analyses, then it would reparse the sentence, including analyses with a Mark2
mark. If there were still no valid analyses, then it would tryincluding analyses with a Mark3 mark.

(7) OPTIMALITYORDER Mark3 STOPPOINTMark2 STOPPOINTMark1.

If one of the marks to the left of aSTOPPOINTis a preference mark, then the suboptimal constructions
that are not tried are the ones that have fewer preference marks than a competing analysis. Putting
a preference mark to the left of aSTOPPOINTmakes sense for multi-word expressions, for instance.
If the preference mark for multi-word expressions is to the left of a STOPPOINT, then XLE will only
consider analyses that involve the individual components of the multi-word expression if there is
no valid analysis involving the multi-word expression. This is particularly useful for parsing texts
with large numbers of multiword technical terms. Reprocessing in multiple passes is expensive, so
STOPPOINTs should be used sparingly. The ideal is to have aSTOPPOINTat a place that allows 80-
90% of the inputs to be processed successfully, and to put theoptimality marks of computationally
expensive and syntactically marginal grammar rules to the left of a STOPPOINT. With such settings,
one can obtain a substantial processing speed-up.

7The order in which the ranking of constraint marks is specified has been reversed since Frank et al. (1998, 2000). It now
starts with the worst constraint to be violated, reflecting the order assumed in theoretical work within Optimality Theory.

13



7 Conclusion and Discussion

The ambiguity management tools described here are not only used during grammar development, but
also in tasks requiring disambiguation by a human, such as treebanking or the design of evaluation
test suites (which can be seen as a special case of treebanking). These tools are especially convenient
for such tasks since they allow non-expert users to locate specific solutions among the output set more
straightforwardly.

When creating a treebank, the task is to save the correct treeand corresponding f-structure analysis for
each sentence in the corpus. As treebanking often involves long, naturally occurring sentences, each
sentence can have a large number of parses (tens and even hundreds). Given the number of parses and
the number of sentences to bank, having a way of efficently zeroing in on the correct parse is vital to
the task. The tools described in this paper have been tested on two relatively small (hundreds instead
of thousands of sentence) treebanks created for this project for English, and for a parallel corpus in
French. The difficulties encountered in these tasks were instrumental in guiding the current state of
the tools. Currently, the tools are being used in a much larger tree banking project for German (Dipper
(2000)).

In this paper we reported on various tools in the XLE grammar development platform which can be
used for ambiguity management in grammar writing. In particular, we looked at packed representa-
tions of ambiguities that allow the grammar writer to view sorted descriptions of ambiguity sources,
as well as tools for specifying desired tree structures and for cutting down the solution space prior to
parsing. These tools allow the grammar writer to create large-scale linguistically motivated grammars
and apply them to real-life corpora, while keeping track of ambiguity sources. It is our hope that these
basic ideas behind these tools are fundamental enough to prove useful to grammar writers using other
frameworks or platforms.

References

Bresnan, J., editor (1982).The Mental Representation of Grammatical Relations. MIT Press, Cam-
bridge, MA.

Bresnan, J. (2000).Lexical-Functional Syntax. Blackwell Publishers. To appear. Ms., Stanford
University.

Butt, M., King, T. H., Niño, M.-E., and Segond, F. (1999).A Grammar Writer’s Cookbook. CSLI
Publications, Stanford, CA.

Carter, D. (1997). The TreeBanker: A tool for supervised training of parsed corpora. ACL Workshop:
Computational Environments for Grammar Development and Linguistic Engineering, Madrid.

Dipper, S. (2000). Grammar-based corpus annotation. Presented at the LINC-2000 Workshop, Lux-
embourg.

Frank, A., King, T., Kuhn, J., and Maxwell, J. (1998). Optimality theory style constraint ranking in
large-scale lfg grammars. In Butt, M. and King, T., editors,Proceedings of the LFG98 Conference,
University of Queensland, Brisbane, CSLI Online Publications, Stanford, CA.http://www-
csli.stanford.edu/publications/.

14



Frank, A., King, T. H., Kuhn, J., and Maxwell, J. (2000). Optimality theory style constraint ranking in
large-scale LFG grammars. In Sells, P., editor,Formal and Empirical Issues in Optimality Theoretic
Syntax. CSLI Publications, Stanford, CA. To appear.

Maxwell, J. and Kaplan, R. (1989). An overview of disjunctive constraint satisfaction. InProceedings
of the International Workshop on Parsing Technologies, pages 18–27. also published as: A method
for disjunctive constraint satisfaction. in: Tomita, M. (ed): Current Issues in Parsing Technology,
Kluwer Academic Publishers, 1991).

Maxwell, J. and Kaplan, R. (1993). The interface between phrasal and functional constraints.Com-
putational Linguistics, 19(4):571–590.

Maxwell, J. and Kaplan, R. (1996). Unification-based parsers that automatically take advantage of
context freeness. Paper presented at theLFG96 Conference, Grenoble, France. Ms. Xerox PARC.

Shemtov, H. (1997).Ambiguity Management in Natural Language Generation. PhD thesis, Stanford
University.

15


