Linear Logic Based Transfer and Structural

Misalignment
Dick Crouch Anette Frank Josef van Genabith
Xerox PARC DFKI Dublin City University
USA Germany Eire

crouch@parc.xerox.com frank@dfki.de josef@compapp.dcu.ie

Abstract

[van Genabith et al., 1998] described an approach to ambiguity pre-
serving machine translation, where transfer takes place on the glue
language meaning constructors of [Dalrymple et al., 1996]. Unfortu-
nately, it did not deal with structural misalignment problems, such
as embedded head switching, in a fully satisfactory way. This paper
proposes the use of a fragment of linear logic as a transfer formalism,
and shows how it provides a more general and satisfactory solution to
the difficulties encountered by [van Genabith et al., 1998].

1 Introduction

In machine translation, ambiguities in the source language often carry across
to the target language. These include syntactic ambiguities, such as some
prepositional phrase attachments, (John saw the man with a telescope | Jean
a vu I’homme avec un téléscope) or semantic ambiguities such as quantifier
scope (Every student answered a question | Jeder Student beantwortete eine
Frage). Rather than mechanically trying to pick a single intended interpre-
tation of the source utterance, more accurate translation is likely if the full
range of ambiguity can be preserved, leaving it to the human interpreter to
resolve the ambiguity in the target. In cases like the above, a single sen-
tence preserves all the ambiguities; in others, ambiguity preservation may
necessitate generating a (hopefully small) range of alternatives.

Proposals for ambiguity preserving translation typically involve trans-
ferring an underspecified semantic representation of the source sentence to
an underspecified representation of the target, and from it generating tar-
get sentences, e.g. [Alshawi et al., 1991, Emele and Dorna 1998]. A variant

of this approach was proposed by [van Genabith et al., 1998] (henceforth
GFD), where transfer takes place on lexical meaning constructors of the
kind used in glue semantics [Dalrymple et al., 1996]. As GFD point out,
these lexical meaning constructors provide a form of underspecified semantic
representation, allowing one to determine when transfer preserves semantic
ambiguity. Transfer at the level of glue constructors also has other advan-
tages. It allows for a highly lexicalized, reversible, and semi-automatable
definition of transfer rules by comparing lexical entries from two mono-
lingual lexicons. Since meaning constructors actually provide an encoding
of the syntax-semantics interface, generation of target sentences is more
direct than it would be from a purely semantic representation.

Precisely because glue meaning constructors encode the syntax-semantics
interface, transfer at this level faces problems of structural misalignment, fa-
miliar from purely syntax-based approaches to transfer [Kaplan et al. 1989].
One of the most notorious cases of this is (embedded) head switching, two
treatments of which are discussed by GFD, neither of them fully satisfactory.

This paper provides a more satisfactory account of structural misalign-
ment. As with GFD the source sentence is parsed, and a set of instan-
tiated lexical meaning constructors obtained, to which transfer rules are
applied. However, the result of application is not a set of target meaning
constructors. Instead it is a set of transfer constructors; a linear logic deriva-
tion consumes these to produce a set of target meaning constructors, from
which the target sentence is generated. The resource-sensitive nature of
the transfer derivation allows problematic cases of structural misalignment
to be dealt with locally and lexically. Moreover, transfer derivations are
structurally similar to glue derivations: techniques for efficient glue deriva-
tion, e.g. [Gupta and Lamping 1998], can be exported directly to transfer
derivations.

2 Glue Semantics and Transfer

2.1 Glue Semantics

Glue semantics embodies a notion of ‘interpretation as deduction’ closely
related to the ‘parsing as deduction’ paradigm of categorial grammar. A
glue logic is used to deductively piece together the meanings of words and
phrases in a (syntactically analysed) sentence, to assemble the meaning of
the sentence as a whole. The meaning logic, used to represent the meanings
of words and phrases, is quite distinct from the glue logic used to assemble
those meanings.

Following [Dalrymple et al., 1999a], we use a minor extension of the
implication-only fragment of propositional linear logic as the glue logic, and
a ‘vanilla’ logic of generalised quantifiers as the meaning language. We also
adopt their ‘Curry-Howard’ formulation of glue semantics, where meaning
language expressions are treated as terms labelling glue logic formulas. This
replaces the older notation of [Dalrymple et al., 1996], with its uninterpreted
meaning assignment predicate ~». This has the distinct advantages of (i)
completely separating the glue and meaning logics, and (ii) removing the
need to use higher-order unification in glue derivations.

Although glue semantics is not necessarily restricted to Lexical Func-
tional Grammar [Kaplan and Bresnan, 1982], we will employ LFG as our
syntactic base. We illustrate glue semantics by means of the simple exam-
ple “Hans cooks.” Assume the following two lexical entries

cooks Vv 1 PRED = cook(1SUBJ)
cook : (1SUBJ)y — 1o

Hans NP 1 PRED = Hans
hans T4

The 1 meta-variables refer to the nodes in f(unctional)-structure onto which
the lexical items project in a given parse. The glue constructors, shown
on the second line of each entry, refer to semantic (o) projections of these
f-structure nodes: these correspond to resources that consume and produce
meanings. The constructor for “Hans” pairs the meaning term hans with
the resource 1,. The constructor for the intransitive verb “cooks” pairs the
one-place meaning predicate cook with the implication (1 SUBJ), — 7,.
The implication says that the meaning of the verb’s subject, (1sUBJ), must
be consumed in order to produce the meaning of the clause headed by the
verb, 1,.

Assume a grammar that, with this lexicon, derives the following f-structure
for the example sentence, where f and g are arbitrary labels used to name the
f-structure nodes. In doing so, the parse instantiates the T meta-variables in
the glue constructors to give the instantiated constructors shown alongside:

PRED cook (1SUBJ) cook : gy —o f,
SUBJ g¢: [PRED Hans] hans : ¢,

Here, f, and g, correspond to f-structure nodes, but denote semantic re-
sources.

The instantiated meaning constructors form the premises to a glue deriva-
tion. The goal of a glue derivation is to consume all the lexically obtained

premises to prove that there is a single semantic resource corresponding to
the outermost f-structure node producing a meaning.

Ignoring the meaning terms for the moment, in our example there are
two lexical premises, g, and g, —o f,, and we need to prove f,. A simple
derivation suffices:

9o —° fo 9o
fo

The Curry-Howard isomorphism links the natural deduction rule of impli-
cation elimination (—o ¢ or modus ponens) with the functional application
of the proof/meaning terms of the two premises. (Implication introduction
gives rise to A-abstraction.) The derivation above consequently automati-
cally constructs the meaning term cook(hans) for the sentence, as follows

—o¢

cook : g, —o f5 hans: g,

cook(hans) : f»

—0¢

This is, of course, a very simple illustrative example. However, in all more
complex cases a propositional linear logic derivation builds the scaffolding
on which meaning terms are combined by means of functional application
or A-abstraction, as dictated by the proof rules used.

In many cases, though not in the example above, distinct glue deriva-
tions, constructing distinct meaning terms, can be obtained from a single
set of glue premises. These multiple derivations account for non-syntactic
ambiguities like quantifier scope, as we will see later.

2.2 Generation from Instantiated Constructors

Starting just with the instantiated meaning constructors and the lexicon,
it is possible to reconstruct the f-structure of our example sentence. Using
the meaning terms as indices into the lexicon, we can retrieve the entries
for “Hans” and “cooks”. Comparing the instantiated and uninstantiated
constructors

cook : g, —o [, cook : (1SUBJ)y; — 1o

we can see that node ¢ is the sUBJ of node f. Moreover, by looking at the
feature equations in the entry for “cooks”, namely

1 PRED = cook(1SUBJ)

we can determine what the PRED of f is. Likewise, by matching the instanti-
ated constructors hans : g, against the uninstantiated entry for “Hans”, we
can determine the PRED of f’s subject (i.e. g). This gives us enough infor-
mation to reconstruct the original f-structure. And from this, we generate
the original sentence.

2.3 Basic Transfer on Glue Constructors
Suppose we have a German lexicon including the following two entries

kocht v 1 PRED = kochen(1sUBJ) kochen : (1SUBJ), —0 1,

Hans ~p 7 PRED = Hans hans 1,

and a grammar that derives the following f-structure for the sentence “Hans
kocht” (Hans cooks), with instantiated meaning constructors shown along-
side:

PRED kochen (1suBJ) kochen : gy —o fs
SUBJ g¢: [PRED Hans] hans : g,

By the previous section, given the instantiated constructors and the German
lexicon, we could generate the German f-structure and hence the German
sentence.

Starting from the previously mentioned instantiated source (English)
constructors — cook : g, — f, and hans: g, — the following transfer rules
yield the required instantiated target (German) constructors

VG,F cook:G —o F < kochen:G —o F
VG hans : G & hans: G

from which generation of the target sentence can proceed.

GFD make a number of points about this transfer scheme. First, the
transfer rules are in many cases derivable from a simple comparison of paired
lexical entries, and much of this can be done automatically. Second, neither
the instantiated constructors nor the transfer rules make reference to f-
structure attributes such as SuBJ or 0BJ. Information about these attributes
is only obtained by matching instantiated constructors against mono-lingual
lexical entries. GFD exploit this to deal with argument switching, as in Das
Photo ist Hans mifSlungen — Hans a raté la photo (Hans messed up/ruined
the photo), where grammatical roles get switched. Third, in cases where
the source and target constructors are isomorphic, the range of possible
glue derivations is preserved, thus preserving semantic ambiguity. This is
illustrated by showing how scope ambiguities can be preserved in transfer.

3 Head Switching
Head switching is exemplified by the English — German translation pair:
Hans kocht gerne < Hans likes cooking

The German attitudinal adjunct gerne is translated in English as a control
construction involving the verb like. Syntactically like is the head of the En-
glish sentence (the sentence is the maximal projection of like) whereas gerne
is an adverbial subconstituent of the German sentence. These differences
are manifest in the corresponding f-structures:

prep kochen(fs)
fi:|suB1 fy: [PRED hans]
apan {fs: [PrED gerne]}

suBs fy: [PRED hans]
prED cOOK(fo)
suBJ fo: [PRED hans]

prep like(fs, f1)
|

XcoMP fy :

Note that in translation from, say, the German to the English f-structure,
the translation of the embedded adjunct f-structure f3 turns out to be em-
bedding the translation of the rest of the source f-structure f; in target.
Transfer on f-structure representations has to involve a complex inside-out
folding operation. Worse still is where a head switching case is embedded
inside another structure as in

Ede vermutet daff Hans gerne kocht < Ede assumes that Hans likes cooking

PRED assume(fQ, f5>

prED vermuten(fs, f3) suss o [PRED ede]

SUBJ fQZ[PRED ede]

fr: prED kochen(fy) fi: PRED h.ke<f4a f3)
suBJ f1: [PRED hans]

comp f3: |suBs fy: [PRED hans] comp fx: o fi:

apaN {f5: [PRED gerne]} xcomp f3: SUBJ J4:

PrRED COOK(f4)

Consider again the translation from German into English (the other direc-
tion is analogous). Here vermuten expects an f-structure fs as its comple-
ment and so would its translation assume. Now, during translation we have
a head switching operation in the complement between f5 and f3 (the trans-
lation of the embedded source f5 turns out to be embedding in target) and
assume which expects f3 is offered f5, resulting in a disconnected f-structure.

3.1 Head-Switched Meaning Constructors

The following are instantiated meaning constructors for the German sen-
tence (o subscripts omitted to avoid clutter):

ede: fo
vermuten : fo —o (f3 —o f1)
hans: f4

kochen: f4 —o f3
AP, x. gerne(x, P(z)) : (fs —o f3) —o (f4 —o f3)

These lead to the following glue derivation

(f1 o f3) = (fs — f3) fa—o f3
fa —o (f3 - fl) fo fi—o f3 fa
fs—ofi f3

vermuten(ede, gerne(hans, kochen(hans))) : fi

with the final meaning term shown.

The instantiated English constructors for “Ede”, “Hans” and “cooking”
differ only from the German constructors in their meaning terms. But
note the differences between the constructors for likes—gerne and assumes—
vermutet:

AP, z.like(z, P(x)) : (fs —o f3) —o (f1 —o f5)
AP, z.gerne(z, P(z)) : (fs —o f3) — (f4 — f3)

assume : fo —o (fs — f1)
vermuten : fo —o (é —o f1)

The node f5 in the English constructors replaces the underlined occurrences
of f3 in the German constructors.

Since the gerne—likes translation clearly needs to introduce an extra level
of structure, we might envisage a purely lexical transfer rule

VG,F. AP,z.gerne(z,P(z)) :(G —o F) —o (G — F)
< AP, x.like(x, P(z)) :(G — F) —o (G —o New)

where G and F range over matched structures, and New denotes the addi-
tional node introduced by the English control construction.

The problem with this is that a similar, purely lexical transfer rule for
vermuten—assume would most naturally be

VG,H,F. vermuten :G —o (H —o F)
& assume :G —o (H — F)

In the absence of an embedded head switching, this transfer rule works well.
But in the case where the complement of vermuten induces head switching
on transfer, we need to replace the underlined occurrence of H by the newly
introduced head switched node. How to do this solely on the basis of local,
purely lexical transfer is described in the next section.

4 Linear Logic Transfer Constructors

To summarize the embedded head switching problem from the last section:
translating “gerne” to “likes” involves wrapping an extra layer of structure,
f5, around f3. The constructor that was originally expecting to consume f3,
obtained by translating “vermutet”’ to “assumes”’, has to be told to consume
f5 instead of f3. We would like this change to be communicated while only
using local, purely lexical transfer rules.

Another way of describing what happens is that the gerne-likes transfer
associates a new ‘topmost’ structure with f3. In the German sentence, f3
is its own topmost structure, which we represent by the assertion T'(f3, f3).
The gerne-likes transfer updates this assertion with T'(f3, f5). The meaning
constructor for “assumes’ needs to consume the topmost structure associ-
ated with f3, whatever that structure happens to be.

The association of a topmost structure with a node does not take place
within glue meaning constructors — the association simply does not make
any sense there. Instead, we will make these associations within linear logic
based transfer constructors. In order to keep the transfer logic distinct from
the glue logic, we will use —o, and ®; to refer to the connectives of the
transfer logic.

The basic transfer architecture is this. A set of lexically defined transfer
rules map instantiated source meaning constructors onto transfer construc-
tors. The transfer constructors are premises to a transfer derivation. By
analogy to glue derivations, the goal of a transfer derivation is to prove
a single assertion about the topmost structure associated with outermost
source f-structure node. A consequence of deriving this will be to produce
a set of instantiated target meaning constructors, from which generation of
the target sentence can proceed.

4.1 A Transfer Derivation

Section 4.3 describes the transfer rules mapping source meaning constructors
onto transfer constructors. In this section, we merely state what the transfer

constructors are for our German-English embedded head switching example,
and show how the transfer derivation proceeds.

Recall the German source meaning constructors (meaning terms slightly
simplified, and numbered for ease of reference):

ede: fo
hans: f4
kochen: f4 —o f3

vermuten : fo —o f3 —o fi

gerne: (f1 —o f3) —o (fa —o f3)

From the source meaning constructors and the transfer mapping rules we
obtain the following transfer constructors:

T(f2, f2) ®; ede: fy
T(f4, f4) ®, hans: f4
VX. [T(fs,X) - T(f5. f3)] ®7 cook: X —o f3
VX, Y. [T(f2, X) =7 (T(f3,Y) —o7 T(f1, f1))]
®; assume : X —o (Y —o fy)
5. VXY, [(T(fs,X) —or T(f3,Y)) —or (T(f4,X) —or T(f3,new))]
®; like: (X YY) —o (X —o new)

ANl

1.
2.
3.
4.

Each transfer constructor is a conjunction of two formulas: a transfer for-
mula that consumes and produces topmost node assertions, and a glue for-
mula giving a target meaning constructor. For example, transfer constructor
(1) says that fy is its own topmost node, and produces the meaning con-
structor ede : fy. Transfer constructor (3) consumes an assertion about the
topmost node of f; to produce an assertion that f3 is its own topmost node.
It also produces the meaning constructor cook : X —o f3, where X is what-
ever topmost node was associated with fs. Constructor (5) is the crucial
one, but is best understood after looking at the transfer derivation. Note
how, in all cases, the transfer formula replicates exactly the structure of the
target glue formula.

The transfer derivation from premises 1-5 proceeds as follows (meaning
terms in glue constructors omitted, and glue constructors in smaller font).
First combine premises (3) and (5)

3 T(fs,X) —orT(f3,f3) @ X—of
5 (T(fs,X) —o7 T(f3,Y)) —or (T(f1,X) —o7 T(f3,new))
®r (X —0Y) —0 (X —0 new)

> T(f47X) —Or T(fg,new) ®r X —0 f3 ®; (X —0 f3) —0 (X —0 new)

This associates with f3 a new topmost node, new, provided that we can find
the topmost node of f4. The value new is instantiated in one of the meaning
constructors. Premise (2) produces fy as its own topmost node, allowing us
to conclude:

T(f4,X) —0, T(f3,’fl€’w) ®r X —0 f3 @7 (X —0 f3) —0 (X —0 new)
2 T(fss f1) @rha

> T(fs,new) ©: f1—0 fs @ (f1 =0 f3) —0 (f1 —O new) - f1

That is, new is now asserted to be the topmost node of f3. This assertion
combines with premise (4), corresponding to the word assumes, (and premise
1). Assumes consumes whatever the topmost node of f3 is: in this case new
rather than f3. Hence

T(f3,new) @, fs —0 f3 @ (f1 —0 f3) =0 (f4 —0 new) @ f1
1 T(fQ,fQ) ®r fo
T(f2, X) —or (T(f3,Y) —or T(f1,f1)) @ X =0 (¥ —0 f1)

> T(f1,f1)

®r fa =0 f3 @+ (fa —0 f3) =0 (fa —O new) ®- fa ®r f2 ®r f2 —O (new —O f1)

This consumes all the transfer constructors, results in a single assertion
that fq is its own topmost structure, and produces the desired set of target
meaning constructors. No other derivation consuming all the premises and
producing a single T'(f1,_) assertion is possible. Note how the last step of
the derivation instantiates the variable Y to the value new in the meaning
constructor for assumes, communicating the changes brought about by the
head switch in the first step of the derivation.

4.2 Multiple Head Switching

This approach generalizes straightforwardly to cases of multiple head switch-
ing, e.g. “Hans schliesslich kocht gerne” where the adverb schliesslich is
analogous to gerne, and translates into the English control verb ends up.
The sentence can translate either as Hans ends up liking cooking or as Hans
likes ending up cooking. This ambiguity corresponds to an adverb scope
ambiguity in German, and is reflected in transfer by the availability of two
transfer derivations.
From the German source constructors (meaning terms simplified)

1 hans: fo

2 kochen : fo—o f1

3 gerne: (f2 o f1) = (f2 = f1)
4 schliesslich : (fa —o f1) —o (f2 —o f1)

10

it is evident that the two adverbials (3) and (4) are of the same type, and
can permute in either order around the kochen constructor (2). Assuming
similar transfer rules for schliesslich and gerne, the transfer constructors will
be (meaning constructors omitted)

1 T(fa, f2)
2 T(f2,X) —or T(f1, f1)
3 (T(f2, X) = T(f1,Y)) —or (T(f2, X) —o7 T(f1,newr))
4 (T(f2,X) —or T(f1,Y)) —or (T(f2,X) —o7 T(f1,news))
It is likewise evident that the transfer constructors (3) and (4) can permute
in either order around (2). If (3) and (2) are combined first (the ends up
liking translation) the top of f; is first updated to new;, and then by (4)
to news. If (4) and (2) are combined first (the likes ending up translation),
the top of f; is first updated to newy and then to new;.

This is a case where ambiguity preservation necessitates the generation
of two target sentences. Because transfer derivations mirror ambiguities in
the glue derivations, we succeed in detecting the two sentences required.

4.3 Deriving Transfer Rules

Obtaining transfer rules from aligned monolingual lexicons proceeds along
the same lines as for GFD. The hard part is to recognise the parallel semantic
resources in the source and target constructors. In many cases this can be
done either through recognition of parallel f-structure attributes in source
and target, or balancing up occurrences of distinct resources on either side.
Hard cases, or where it is clear that there is not complete parallelism (as
in head switching) can be passed to human rule writers. As an example, in
comparing the entries

vermuten : (1SUBJ) —o (TXCOMP) —o 1
assume : (tsuBJ) —o (txCOMP) —0 *

it is easy to identify 1, (1 suBJ) and (T Xcowmp) as parallel resources in
source and target. The source side of the transfer rule is given by the source
meaning constructor with variables in place of the parallel resources. The
resulting transfer constructor is obtained by making two copies of the target
constructor, again with variables in place of parallel resources. We strip the
meaning term off the first copy to form the basis of the transfer formula,
giving as an intermediate stage

VF,G,H wvermuten: G —o (H — F)
= [G — (H — F)] ®; assume: G —o (H —o F)

11

We now identify the rightmost consequent variable in the transfer formula, in
this case F'. We replace this by the predication T'(F, F'). All other variables
are associated a unique topmost variables, e.g. T'(G, X), and the variables
in the transfer formula replaced by these predications. Variables in the
meaning constructors are replaced by their associated topmost variables.
The associated topmost variables are universally quantified with scope over
the whole transfer constructor. Thus we finally obtain the transfer rule:

VF,G,H wvermuten: G —o (H —o F)
= VX,Y. [T(G,X) - (T(H,Y) o T(F,F))]
®; assume: X —o (Y — F)

This way of constructing transfer rules ensures that transfer formulas exactly
mirror target glue formulas. As a result, transfer derivations mirror glue
derivations

4.4 Quantifiers

One exception to this exact correspondence between transfer and glue for-
mulas occurs in the case of quantifier meanings. A quantified pronoun like
“everyone” illustrates the standard glue treatment of quantifiers, and is
given a meaning constructor

everyone: (t, 0 8) —o S

where S is a variable that can range over atomic semantic resources (the
scope of the quantifier). The formula (1, — §) — § is just a type raised
version of the atomic formula 1,. The transfer formula in the constructed
rule is taken from the lower-type formula. Thus, for example

VG jeder: (G —o S) —o S
= T(G,G) ®; everyone: (G —o8') -8

Assuming a similar transfer rule for “etwas” (something), the transfer con-
structors obtained from the sentence “Jeder sah etwas” (everyone saw some-
thing) would be

1 T(g,9) everyone:(g —o S') —o 8
2 T(h,h) something:(h —o S) —0 §
3 T(9,X) = (T(h,Y) = T(f,[)) seex oy —of

Here, there is just one transfer derivation, instantiating X to g and Y to h,
despite the possibility of two distinct target glue derivations

12

4.5 The Nature of Transfer Derivations

As previously noted, transfer constructors parallel target glue constructors,
so that transfer derivations parallel target glue derivations. This has a num-
ber of consequences. First, the existence of a transfer derivation guarantees
the existence of a target glue derivation; we can be sure that we translate
only into semantically interpretable sentences.

Second, techniques developed for efficient glue derivation (such as the
skeleton-modifier approach of [Gupta and Lamping 1998]) can be applied
directly to transfer derivations; there is sharing of technology.

Third, as observed in connection with multiple head-switching, different
transfer derivations can lead to distinct sets of target constructors. This
arises in cases where there is no one target sentence that captures the full
range of meanings open to the source sentence; ambiguity preservation ne-
cessitates the generation of multiple target sentences. Given the close con-
nection between glue and transfer derivations, we can have some confidence
that the correct ambiguities are being preserved.

However, in some cases it is formally possible to have multiple transfer
derivations all leading to the same set of target constructors. This parallels
what often happens in glue derivations where, e.g., distinct ways of scoping
existentially quantified NPs all lead to logically equivalent meanings. (Note,
though, that the type-lowered transfer constructors for quantified NPs ac-
tually eliminate spurious transfer derivations arising from quantifier scope
ambiguities). Techniques for efficiently detecting and removing such equiva-
lent glue derivations can fortunately also be applied to transfer derivations.

5 Conclusions

This paper presented a resource-sensitive approach to transfer. A source
sentence is parsed, and a set of instantiated lexical meaning constructors is
obtained. Transfer rules rewrite the source meaning constructors to a set of
transfer constructors. A linear logic derivation consumes the transfer con-
structors to produce a set of instantiated target meaning constructors, from
which a target sentence can be generated. The resource-sensitive nature of
the transfer derivation allows problematic cases of structural misalignment
to be dealt with smoothly and locally. In most cases, the transfer rules can
be derived semi-automatically from aligned mono-lingual source and target
lexicons. Cases where ambiguity preservation can only be achieved by mul-
tiple target translations are readily accommodated. Techniques developed
for efficient linear logic derivations in the context of glue semantics apply

13

directly to efficient transfer derivations.

Using linear logic for transfer is also suggested by [Fujinami 1999], but
not applied to structural mismatch. The treatment of head-switching bears
some relation to unpublished work of Martin Emele’s, though it is not clear
that his use of ‘internal’ and ‘external’ variables extends to cases of multiple
head-switching. Although applied to transfer at the level of glue language
meaning constructors, we would hope that our linear logic based transfer
scheme could be extended to deal with structural mismatches at other levels
of representation.

Finally the resource sensitive nature of the transfer derivations allows
for the possibility that some target lexical glue constructors get consumed
in transfer. This might apply, for example, in translating the two word
English expression “commit suicide” into the French verb “se suicider”: the
transfer constructor for commit—se suicider can be set up so as to consume
the results of transferring the noun “suicide”. Examples such as this also
often lead to a specificity ordering over transfer rules. It is an interesting
question whether this kind of specificity ordering can receive a direct and
explicit encoding in a linear logic based transfer scheme.

References

[Alshawi et al., 1991] Alshawi, H.; Carter, D.; Gambéack, B.; and Rayner, M. 1991. Translation by quasi logical
form transfer. In Proceedings 29th Annual Meeting of the Association for Computational Linguistics (ACL’91).
161-168.

[Dalrymple et al., 1996] Dalrymple, M.; Lamping, J.; Pereira, F.C.N; and Saraswat, V. 1996. Quantification,
anaphora, and intensionality. Journal of Logic, Language and Information 6(3) 219-273. Reprinted in Dal-
rymple, M, editor 1999, Semantics and Syntax in Lexical Functional Grammar. MIT Press.

[Dalrymple et al., 1999a] Dalrymple, M.; Gupta, V.; Lamping, J.; and Saraswat, V. 1999a. Relating resource-
based semantics to categorial semantics. In Dalrymple, M, editor 1999, Semantics and Syntaz in Lexical
Functional Grammar. MIT Press. 261-280.

[Emele and Dorna 1998] M.C. Emele and M. Dorna. Ambiguity preserving machine translation using packed
representations. In Proceedings of COLING-ACL’98, Montréal, Canada. pp. 365-371, 1998.

[Fujinami 1999] T. Fujinami. A Decidable Logic for Speech Translation. Dagstuhl Workshop on Linear Logic
and its Applications, August 1999.

[van Genabith et al., 1998] Genabith, J. van; Frank, A.; and M., Dorna 1998. Transfer constructors. In Butt,
M. and King, T. H., editors 1998, Proceedings LFG’98, Brisbane, Australia. CSLI Publications, http://www-
csli.stanford.edu/publications/. 190-205.

[Gupta and Lamping 1998] V. Gupta and J. Lamping. Efficient Linear Logic Meaning Assembly. In Proceedings
of COLING-ACL’98, Montréal, Québec, Canada. pp. 464-470, 1998.

[Kaplan and Bresnan, 1982] Kaplan, R.M. and Bresnan, J. 1982. Lexical functional grammar. In Bresnan, J.,
editor 1982, The mental representation of grammatical relations. MIT Press, Cambridge Mass. 173-281.

[Kaplan et al. 1989] R. Kaplan, K. Netter, J. Wedekind, and A. Zaenen. Translation by Structural Correspon-
dences. In Proceedings of 4th EACL), pages 272—-281, Manchester, UK, 1989.

[Kaplan and Wedekind 1993] R. Kaplan and J. Wedekind. Restriction and Correspondence-based Translation.
In Proceedings of 6th EACL, pages 193-202, Utrecht, The Netherlands, 1993.

14

