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1. INTRODUCTION

In this contribution we address two important concerns: automatic annota-
tion of treebanks and CFGs extracted from such treebanks with LFG f(eature)-
structures (Kaplan and Bresnan 1982; Bresnan 2001; Dalrymple 2001).

Treebanks which encode higher-level functional or basic predicate—
argument structure, in addition to pure phrase structure information, are re-
quired as training resources for probabilistic unification grammars and data-
driven parsing approaches, (e.g. Bod and Kaplan 1998). Manual construction
of treebanks with feature structure annotations is very labour and cost inten-
sive. So is the development of new or the scaling-up of existing unification
grammars which can be used to analyse large text corpora. What is more, even
if a large-coverage unification grammar is available, typically, for each input
string it would generate hundreds or thousands of candidate (constituent and
feature structure) analyses from which a highly trained expert has to select. Al-
though proposals have been made for filtering and ranking parsing ambiguities
(e.g. Charniak 1993; Abney 1997; Frank et al. 2000), to date none is guaran-
teed to uniquely determine the best analysis. In order not to compromise the
quality of the corpus under construction, a linguistic expert is required to find
the best among a large number of candidate analyses.

Given this situation, is there a way to automate, or bootstrap, the construc-
tion of grammars and treebanks with feature structure annotations reusing ex-
isting resources?

In a number of papers van Genabith et al. (1999a,b,c) presented a new cor-
pus based method. Their basic idea is the following: take an existing treebank,
read off the CFG following (Charniak 1996), manually annotate the extracted
CFG rules with f-structure annotations and provide macros for the lexical en-
tries. Then deterministically “rematch” the structure of the original treebank
trees (not the strings) with the annotated rules. During this rematching process,
the f-structure annotations are resolved, and an f-structure is produced. The
entire process is deterministic if the feature structure annotations are, and to a
considerable extent, costly manual inspection of candidate analyses is avoided.
The method is an improvement but still involves a large labour intensive com-
ponent, namely manual annotation of the extracted grammar rules.

Treebank grammars (CFGs extracted from treebanks) are large and grow
with the size of the treebank (Charniak 1996; Krotov et al. 1998). They fea-
ture rather flat rules, many of which share and/or repeat significant portions of
their right-hand sides (RHS). This causes problems for manual rule annotation
approaches such as (van Genabith et al. 1999a,b,c). Manual rule annotation is
labour intensive, error prone, repetitive and risks missing generalisations.

In this paper we show how f-structure annotation of both grammar rules and
treebank trees can (to a large extent) be automated.
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The basic idea is simple: functional annotations define systematic corre-
spondences between constituent and higher level feature structure representa-
tions. These can be captured in general annotation principles, which are ap-
plied either to grammar rules extracted from a treebank or directly to treebank
trees.

The observation that constituent and higher-level feature structure rep-
resentations stand in a systematic relationship informs theoretical work in
LFG (Kaplan and Bresnan 1982) and HPSG (Pollard and Sag 1994). In LFG
c(onstituent)-structure and f-structure are independent levels of representation
which are related in terms of a correspondence function ¢. The correspon-
dence follows linguistically determined principles which are partly universal,
and partly language specific (Bresnan 2001; Dalrymple 2001).

What is new in our approach is that (i) we employ partial and underspecified
annotation principles in a principle-based c- to f-structure interface for the LFG
architecture; (ii) we use these to automate functional structure assignment to
flat and “noisy” treebank trees and CFGs extracted from them; and (iii) we
reuse existing linguistic resources. In contrast to more theoretically informed
work in LFG and HPSG, treebanks do not tend to follow highly abstract and
general X-bar architectural design principles. The challenge in our approach is
to develop grammars and annotation principles for real text.

The potential benefits of automation are considerable: substantial reduction
in development effort, hence savings in time and cost for treebank annotation
and grammar development; the ability to tackle larger fragments in a shorter
time, a considerable amount of flexibility for switching between different tree-
bank annotation schemes, and a natural approach to robustness. Our methods
can also be viewed as a new corpus- and data-driven approach to grammar de-
velopment, an approach that as much as possible recycles existing resources.

In our work to date we have developed two related but interestingly differ-
ent methods. Both methods define annotation principles as correspondences
between partial and underspecified c- and f-structure configurations. In one
approach (Sadler et al. 2000) we read off a CFG treebank grammar following
the method of Charniak (1996) and then compile regular expression based an-
notation principles over the extracted grammar. In the companion approach
(Frank 2000) we operate on treebank trees encoded as flat term representations
and annotate them with f-structures.

Both methods are partial and robust in the following further sense: they
yield partial, unconnected f-structures in the case of missing annotation prin-
ciples. In the case of conflicting feature assignments (Frank 2000) admits par-
tially unresolved f-structures to achieve further robustness.

We describe two experiments, one for each method. For the first experi-
ment we developed a regular expression based annotation principle interpreter
which operates on grammar rules with order independent and monotonic inter-
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pretation of annotation principles. For the second experiment we employed an
existing term rewriting system (Kay 1999; Frank 1999), which we use to apply
annotation principles to flat, term-based representations of treebank trees. The
term rewriting system allows us to exploit both order dependent, cascaded and
order independent formulations of annotation principles. In our first experi-
ment we used the first 100 trees of the AP treebank (Leech and Garside 1991),
in the second, 166 trees of the Susanne treebank (Sampson 1993).

The paper is structured as follows: in Section 2 we motivate and describe
our annotation methods in more detail. In Section 3 we report on our two
experiments. For each experiment we explain the design, describe the data and
evaluate the results. In Section 4 we compare the two methods and outline
ongoing research. Section 5 concludes.

2. METHODS FOR AUTOMATIC F-STRUCTURE ANNOTATION

In LFG the correspondence between c- (constituent) and f- (functional)
structure is defined in terms of functional annotations of the RHS categories
in CFG rules and lexical information.

S
= ‘SELL{(TsuBJ)(10BYJ))’
PRED ‘APCOM’
NP for| NUM SsG
(T suBy=1 PERS 3
| ;.| PRED ‘SHARES’
APCOM ] NUM  PL
— PAST
‘ ‘ PASSIVE
sold shares
PS rules define f—structure via functional descriptions
NP VP \% NP
S— VP —
(tsuBg) =) 1= t=4 (toBy) =l
APCOM: N (1 PRED) = ‘APcoM’  sold: V (1 PRED) = “SELL{(1SUBJ)(10OBJ))’
(T NUM) = sG (T TENSE) = PAST
(T PERS) =3 (1 PASSIVE) = -

The c-structure/f-structure correspondence follows universal and language
specific principles. In our work, we define annotation principles as involving
partial and underspecified phrase structure configurations and apply them to
CFG rules or tree fragments that meet the relevant partial configuration. To
illustrate the idea: a head principle assigns 1 = | to the X daughter in all XP
— ... X... configurations, irrespective of the surrounding categorial context.
For the example at hand, the challenge in our approach is to provide annotation
principles that identify heads in the flat treebank tree and rule configurations
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which deviate significantly from X-bar design principles. Annotation prin-
ciples capture generalisations and can be used to automatically annotate PS
configurations with functional structures in a highly general and economical
way. Both our annotation methods are built on this insight: in the first, annota-
tion principles are applied to CFG rules extracted from treebanks while in the
second annotation principles are applied directly to flat term representations of
treebank trees and tree fragments.

2.1 Regular expression based f-structure annotation of
extracted CFGs

In this method, described in (Sadler et al. 2000), we extract a CFG from the
treebank following (Charniak 1996) and develop a set of regular expression
based annotation principles. The principles are applied to the extracted CFG
to produce an annotated CFG. Annotated rules are then rematched against the
original treebank trees and f-structures are produced from the annotations.

Annotation Principle Interpreter.  Our CFG rule annotation principles are
of the form L>R@A. A is a set of attribute-value structure annotations (rule deco-
rations). L and R are regular expressions (under)specifying LHSs and RHSs of
CFG rules in terms of categorial and configurational constraints. The regular
expressions provided include Kleene and positive Kleene “*, +”, optionality
“( )7, disjunction “]” and a limited form of complement “~. Operators are
prefix and “{ }” is used to indicate grouping. “*” without argument denotes
any string.

Given a grammar rule of the form M->Ds (expanding a mother category
M into a sequence of daughter categories Ds) and a regular expression based
annotation principle L>R@A, if the LHS L of the principle matches M and the
RHS R matches Ds, then M->Ds is annotated with A. A single grammar rule can
match multiple principles and a single principle may match a given grammar
rule in more than one way. The annotations resulting from all possible matches
are collected and the grammar rule is annotated accordingly.

More formally, let the denotation [E]| of a regular expression E be the set of
strings denoted by E. Given a CFG rule M->Ds and a set of annotation principles
AP of the form L>R@A, M->Ds is annotated with the set of feature structure
annotations F:

M->Ds@F iff F= {A|3P € AP with P =L>R@A and M € [L] and Ds € [R]}
Annotation is monotonic and order independent.
Partial and Underspecified Annotation Principles. In our Prolog im-

plementation, CFG grammar rules extracted from the treebank are represented
as
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C:F -> C1:F1, ... , Cn:Fn.

where syntactic categories C and (optional) logical variables F representing
feature-structure information are paired C:F. Regular expression based anno-
tation principles can underspecify the LHS and RHS of grammar rules. To
give a simple example, the following annotation principle? states that infini-
tival phrases infp following the final vO in vp rules are open complements
(xcomp) controlled by the subject of the final vO:

vp > * v0:VO *{"v0} infp:l *
@ [ VO:xcomp = I, VO:subj = lI:subj ].

The next principle states that in non-conjunctive contexts? vO sequences,
possibly separated by adverbials adv, form open complement sequences where
the subject of the preceding vO controls that of the following:

vp > *{"conj} vO:V1l (adv) v0:V2 *{Tconj}
@ [ Vli:xcomp = V2, Vl1:subj = V2:subj ].

Note that the principle applies twice to a ...v0:V1, v0:V2, v0:V3 ...
RHS rule configuration with [ V1:xcomp = V2, V1:subj = V2:subj,
V2:xcomp = V3, V2:subj = V3:subj ] as the resulting annotation. Fi-
nally observe that the formalism supports the statement of generalisations over
LHSs of CFG rules:

{fn:X]infp:X|tgp:X|si:X|vp:X}
> *{7{v0|conj}} vO:VO *{"conj}
@[X=V0]-

This principle states that for a variety of constructions including verbal (vp)
and infinitival (infp) phrases in non-conjunctive contexts the initial vO is the
head of the clause.

Example output (automatically annotated grammar rules from the AP frag-
ment) is shown below:?

vp:A -> v0:B,v0:C,v0:D,np:E,fa:F
@ [A=B,D:obj=E,C:xcomp=D,C:subj=D:subj,
B:xcomp=C,B:subj=C:subj,A:vp_adjunct:1=F].

vp:A -> v0:B,v0:C,v0:D,rp:E,pp:F
@ [(D:obl=F;D:vp_adjunct:1=F),A=B,D:part=E,
C:xcomp=D,C:subj=D:subj ,B:xcomp=C,
B:subj=C:subj]-

vp:A -> vp:B,pnct:_,vp:C,pnct:_,conj:D,vp:E
@ [A:conj:3=C,A=D,A:conj:2=B,A:conj:1=E]).

vp:A -> vp:B,conj:C,vp:D,pp:E,fa:F
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@ [(D:obl=E;D:vp_adjunct:1=E),A=C,A:conj:2=B,
A:conj:1=D,A:vp_adjunct:1=F]).

In the first and in the second rule the leftmost vO is identified as the head of
the construction. In v0,Vv0 sequences the second vO provides an open comple-
ment xcomp to the first with the subject of the second controlled by the subject
of the first. The np in the first rule is analysed as the object of the rightmost
v0, while the pp in the second rule is either an adjunct or an oblique argument
to the vp. The last two example rules show coordinate structures. Note that in
the final rule the pp is analysed as oblique or as an adjunct to the rightmost vp.
Here our current annotation principles miss a possible attachment of the pp to
the mother vp.

Automatic annotation is completed with macros for the preterminal tags
contributing lexical information, e.g.:

nnl(Word):A @ [A:pred=Word, A:num=sg, A:pers=3rd].

The annotation principles together with the lexical macros constitute a
principle-based c-structure/f-structure interface architecture for LFG.

2.2 F-structure annotation of treebank trees using flat
tree descriptions

This method, described in (Frank 2000), builds on a pure correspondence
view of the LFG architecture, where the mapping from c- to f-structure is en-
coded by the projection function ¢. Annotation principles define @-projection
constraints which associate partial c-structures with their corresponding par-
tial f-structures. Application of annotation principles to flat set-based encod-
ings of treebank trees directly induces the f-structure, allowing us to skip the
(re)matching process for f-structure composition. What is more, the principles
can apply to non-local tree fragments, as opposed to local CFG rules.

‘RISE((1SuBJ))’
PRED ‘TEMPERATURE’

NP:n2 )
for| NUM  PL

SUBJ

Temperatures ~ V:n4 PERS 3
‘ TENSE PAST
rose PASSIVE
@-correspondence: f-structure:
®nl)=f, @n2)=f, (f. suBj=f,, (f, PRED)= "temperature’

@n3)="1; @nd)="~, @nl)=q@n3)=q¢nd) (f,;PRED="rise’

Modular projection principles for f-structure annotation of tree fragments.
To illustrate the key idea of partial f-structure annotation principles, below
we display the representation of a complex NP. This complex configuration
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can be broken down into modular, piece-wise correspondences of partial c-
and f-structures, abstracting away from irrelevant material in the surrounding
context.

Det:n2 PRED “SOLID’{(1sUBJ))’
‘ ‘ fq: PRED ‘SURFACE’
the A:n6  surface fg:|suBJ [ NUM sG
‘ PERS 3

solid

The functional contribution of the prenominal determiner the is independent
of the presence of AP or PP, and is captured by the partial correspondence
constraints stated on the right hand side.

%
onl)=f, @nl)=q@n2)

: . fo CTHE?
Det:n2 N:n4 ¢ [sPEC ‘THE'] ®n2)= f.  spec(f,, the)

‘ 2

the

An AP daughter of NP is analysed as an ADJUNCT of the nominal head,
unless the N head is omitted. This generalisation is captured below.

NP:n1 _ -
m L @nl)=f, adjunctx(f,, f,)

AP3 ... Nind ®n3) = f,

Projection principles for head categories and lexical nodes (here for nominal
categories) are straightforward:

NP:n1 ey =1, N:n4 _
\n A» Ilﬁ[ ] @nd)=", \n \» f, :[PRED LEX] (p(n;l)f— f4
N:n4 77 @inl) = @nd) Lex pred(f,, LEX)

Similar correspondences are defined for the remaining c-structure frag-
ments. These correspondences all apply to the complex NP structure above,
conspiring to define the @-projection and f-structure in a modular, declarative
way. By abstracting away from immaterial c-structure context, the principles
generalise over specific tree configurations, and therefore apply to fragments
of unseen trees.

In the correspondence-based approach annotation principles can apply to
non-local tree fragments. This allows us to associate partial f-structures
with complex c-structure fragments. For example, by specifying non-local
c-structure fragments in binary branching VPs, we capture tense and ac-
tive/passive distinctions of the verbal complex in a natural way. This is il-
lustrated for the characteristic construction indicative of present perfect tense.
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VP:nl

/\
VHZ:n2 .. VP:n3 VTYPE MAIN
PERF +

has VBN:n4 VP:h5 — » PROG -
TENSE PRESPERF

been VVN:n6 PASSIVE +

(seen)

"

—h —h —h —h
N

o ow

The idea of modular annotation principles is much in the spirit of projection
principles as proposed by (Dalrymple 2001) and (Bresnan 2001), and provides
a principle-based c- to f-structure interface in the LFG architecture.*

A term rewriting system for f-structure annotation. To define and
process annotation principles we make use of an existing term rewriting sys-
tem, originally designed for transfer-based Machine Translation (Kay 1999;
Frank 1999).

The system takes as input an unordered set of n-ary terms p,q, r ..., and
an ordered set of rewrite rules p; ...p; = Gk ...q.° If the LHS terms p;
...p; match the input, the matching terms are eliminated from the input set,
and the terms qx ...Q are added to the output set. A rule applies to each in-
stantiation of the LHS terms in the input. Besides terms p that are to be elimi-
nated from the input, the LHS may state positive +p and negative -p terms. A
rule with positive term +p only applies if p matches some term in the input but
positive terms are not eliminated from the input set. A rule with negative term
-p only applies if p does not match any term in the input. The order in which
the rules are stated is crucial: Each rule applies to the current input set, and
yields an output set. The output set of a rule constitutes the input set for the
next rule.

A flat, term-based representation of the LFG architecture We encode the
LFG projection architecture in a term representation language as follows:

immediate dominance:  arc(MNode, MLabel, DNode, DLabel)

immediate precedence:  prec(CsNode_x, CsNode.y)

lexical insertion: lex(TerminalNode, Lex)

@-correspondence: phi(CsNode, FsNode), equal (FsNode_x, FsNode_y)
f-structure attributes: attr(FsNode_x, FsNode.y), attr(FsNode, Value)

With this, the traditional representation

‘RISE((TSuBJ))’
PRED ‘TEMPERATURE’
for| NUM  PL
PERS 3
TENSE PAST
PASSIVE

NP‘:nZ |

Temperatures  V:n4

rose

SUBJ
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is translated into the following set of terms:

arc(nl,s,n2,np), arc(nl,s,n3,vp), arc(n3,vp,n4,v), prec(n2,n3),
lex(n2,Temperatures), lex(n4,rose),

phi(ni, f,), phi(n2,f,), phi(n3,f;), phi(n4,f,),

equal(f,,f3), equal(f,,f,),

pred(f,,rise), subj(f,,f,), pred(f,,temp.), num(f,,pl), tense(f,,past),..

Automatic annotation of flat tree descriptions with f-structures.

Initialisation  Starting from the c-structure term representation, we induce a
1-1 @-correspondence from c-structure nodes to empty f-structure nodes.®

sn1” 4

+arc(-,-,CsNode,-) ==> phi(CsNode,FsNode). N:n4 \kn5//"‘\il;\\\\4 .

T Y T

Mary  sleeps

Partial and underspecified annotation principles associate partial c-
structure configurations with their corresponding partial f-structures, and fur-
ther restrict the trivial 1-1 @-correspondence via the predicate equal (Fx,Fy).
The rule below defines the VVP-external NP as the suBJ of f,, the f-structure
projected from the S node. The predicate prec_x(B,C) is defined (by use of
macros) as a finitely constrained transitive closure over the precedence relation
prec. It can be used to underspecify precedence constraints holding between
nodes ny and ny, allowing for an arbitrary or else a restricted sequence of inter-
vening categories.

s eaiegan) | Sm e Tfe ]

=
NP:n2 ... VP:n3 fa:[] NP:n2 ... VP:nS\fs: [

+arc(A,s,B,np), +phi(A,FA), +phi(B,FB),
+arc(A,s,C,vp), +precx(B,C) ==> subj(FA,FB).

The following rule applies to the output resulting from the previous rule
application. The predicate equal (Fx,Fy) restricts the @-function to map the
VP and S nodes to identical nodes in f-structure.

J— | |
S:inl L [suBa o[ ]] Sl L :[suBy fo:[ ]
a4 = equal(f,,f;)
NP:n2 ... VP:n3 for[] NP:n2 ... VP:ng\ o

+arc(A,s,C,vp), +phi(A,FA), +phi(C,FC) ==> equal (FA,FC).
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Formal restrictions Apart from initialisation we restrict phi predicates to
only occur in LHSs of rules as positive constraints. Given the input spec-
ification of a 1-1 @-projection, this guarantees that the functional property
of the @-correspondence is preserved. equal predicates only restrict the ¢-
correspondence, while preserving its functional property.

Order independence in a cascaded rewrite system Although annotation
rules operate in a cascaded, order dependent way, order independence can be
obtained by requiring that no annotation rule refers to f-structure information
introduced by other rules, and no rule consumes (or adds) any c-structure in-
formation referred to by other rules. These constraints ensure that annotation
rules have access to the full initial input structure, and no more than this, and
thereby guarantee order independence of annotation, irrespective of the order
in which the rules are stated and applied. The effect of order independence
can be observed by inverting the application order of the subject and head-
projection rules above: while the intermediate term set will be different, the
final output set will be identical.

There is a trade-off between order dependence and independence. Con-
straining rules to c-structure information only can require complex rule con-
straints to prevent application of conflicting annotation rules to the same tree
fragment, thereby avoiding inconsistencies. Moreover, reference to f-structure
information can be used to generalise annotation rules. If several PS configu-
rations are indicative of e.g. a subject function, or passive voice, such diverse
configurations can be captured by referring to the more abstract f-structure in-
formation to further guide f-structure construction. The order of annotation
rules must then ensure that the required f-structure information is introduced
by previous annotation rules.

An annotation grammar consists, just like an ordinary LFG grammar, of
different types of annotation rules: lexical, morphosyntactic, and phrasal.

Lexical and morphosyntactic rules Morphosyntactic rules introduce mor-
phological (and some semantic) information encoded in lexical category labels
into the f-structure space. The example given below illustrates how highly
specific category distinctions in treebank encodings can be neutralised: once
NUMber is encoded in f-structure, based on the nnl vs. nn2 distinction, this
categorial distinction can be neutralised by mapping both lexical category la-
bels to the generalised label nn (see van Genabith et al. 1999b for a similar
approach). Such generalisations are essential for compact definition of anno-
tation principles. For example, below the instantiation of the PRED-value of
nouns is captured in a single lexical rule which applies to all “generalised”
nn-daughters.
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arc(A,ML,B,nn1) ==> num(B,sg), ntype(B,common), arc(A,ML,B,nn).
arc(A,ML,B,nn2) ==> num(B,pl), ntype(B,common), arc(A,ML,B,nn).

+arc(A,n,B,nn), +lex(B,Lex) ==> equal(A,B), pred(B,Lex), pers(B,’3”).

Tense information as well as the active/passive distinction can be captured
by stating constraints on the partial c-structure context of verbs, as illustrated
below for present perfect tense in a flat VP, as it is assigned in the Susanne
corpus. For binary branching VPs (as assigned in the Penn-11 Treebank,
cf. Marcus et al 1994), we can define complex tense information in similar
ways, by extending annotation rules to non-local tree fragments (see above
and Frank 2000).

+arc(A,vp,B,vhz) % have-aux

—arc(A,vp,D,vbn) % no been-aux ! vp PEEZ *
. .. PR -
+ 0
arc(A,vp,C,vvn) % main verb participle vhz  wn TENSE PRESPERE

==> perf(A,+), prog(A,-), ) (have) (seen) | Passive
tense(A,presperf), passive(A,-).

+arc(A,vp,B,vhz), % have-aux

+arc(A,vp,C,vbn), % been-aux vp \ PERF +

+arc(A,vp,D,vvn), % main verb part. vmn iiﬁ; ;RESPERF

==> perf(A,+), prog(A,-), (have) (been) (seen) | PASSIVE +
tense(A,presperf), passive(A,+).

Partial phrasal rules and underspecification Annotation principles are de-
signed to apply to modular, partial c-structure configurations, to define their
corresponding functional projections. Even though treebanks do not tend to
follow classical X-bar syntax, specific types of tree branches correspond to
functional dependencies in f-structure. Annotation principles apply, in the
general case, to single tree branches, with some contextual constraints, and
generalise to unseen tree configurations. Below, that-clauses (category f) are
associated with a function comP in f-structure by referring to a single branch
(arc) in c-structure, abstracting away from irrelevant co-occurrences in the
c-structure context.

The example also illustrates the effect of underspecification. That-clauses
can appear in different syntactic contexts. By referring to an underspecified
(variable) mother node label ML, we generalise over various possible mother
labels (e.g. (in)finite, modal, nominal or adjective phrases).

+arc(A,ML,B,f), +comp_form(B,that) = comp(A,B).

Finer categorial restrictions can be captured by defining classes of category
labels in disjunctive templates.” Below, the disjunctive template np_cat(XL)
defines a class of category labels (n, d, m). The template is called (by logical



FROM TREEBANK RESOURCES TO LFG F-STRUCTURES 379

“and” &&) in the annotation rule for PPs (p) to define this restricted class of
alternative NP-types as complements (i.e., 0BJ) of prepositions.

template definition:  np_cat(XL) :: { XL == n } ==> 0; % n: nominal phrase
{ XL ==d } ==> 0; % d: determiner phrase
{ XL ==m } ==> 0. % m: number phrase

annotation rule: +arc(A,p,B,NPL) ==> obj(A,B) && np_cat(NPL).

Grammatical function assignment In languages like English, grammatical
function assignment relies heavily on c-structure configurations, while still not
being fully deterministic. In case marking languages, morphological marking
will be used to constrain grammatical function assignment. Below we give an
example for the assignment of 0BJvs. 0BJ2 functions for transitive and ditran-
sitive verbs in English, which is determined by surface order. Long-distance
phenomena are captured by path expressions (see Frank 2000 for further de-
tails).

+arc(A,vp,C,np), +arc(A,vp,D,np), +precx(C,D) ==> obj2(A,D).% 0oBJ2 ditrans
+arc(A,vp,C,np), +arc(A,vp,D,np), +precx(C,D) ==> obj(A,C). % oBJ ditrans
+arc(A,vp,C,np), -arc(A,vp,D,np), {D \== C} ==> obj(A,C).8 % oBJ trans

Subcategorisation assignment  We induce subcategorisation frames (the se-
mantic forms) by collecting grammatical functions assigned by annotation
rules into the predicate’s semantic form, following the method of (van Gen-
abith et al. 1999a).

Obviously, pure c-structure information does not allow us to distinguish be-
tween NP, PP, and infinitival arguments vs. adjuncts. Similarly, lacking lexical
information, raising and control constructions can only be represented as in-
volving anaphoric control. In (Frank 2000) we show how to extend this model
by integration of lexical subcategorisation information, combined with strate-
gies for OT-based ambiguity ranking and filtering (cf. Frank et al. (2000)).

Partial annotation and robustness Our f-structure annotation method em-
bodies an important aspect of robustness. In the case of missing annotation
principles the system does not fail, but partial trees are left without f-structure
annotation. We obtain (typically large) partial, unconnected f-structures.

Moving treebanks Our framework can also be used to adjust particular tree-
bank encodings, by “moving” treebanks to a different structural encoding,
thereby facilitating principle-based f-structure induction. In our treatment of
the Susanne corpus, we defined a set of c-structure rewriting rules to transform
the encoding of coordination and flat modal VP structures into more standard
PS analyses, which lend themselves to principle-driven f-structure annotation.
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3. TwoO EXPERIMENTS
3.1 Experiment |

Experiment Design. Our first experiment involves the first 100 trees
of the AP treebank (Leech and Garside 1991). We refer to this subsection
as AP01. We preprocess the treebank using the structure preserving gram-
mar compaction method reported in (van Genabith et al. 1999b) preserving as
much categorial fine-grainedness as is required to guide annotation. From this
we extract a treebank grammar following (Charniak 1996). We develop a set
of feature structure annotation principles. The regular expression based inter-
preter described in Section 2.1 compiles the principles over the rules extracted
from the APO1 treebank fragment. The results obtained are compared against
a manually annotated “gold standard” reference grammar and precision and
recall measures are reported.®

Data. The AP treebank annotation schema employs 183 lexical tag types
and 53 phrasal category types, with tree structure encoded in terms of labelled
bracketing. The corpus is “skeletally parsed”, that is, it contains some unla-
belled brackets. We remove these in an automatic pre-editing step. The sen-
tences in the APO1 fragment range from 4 to 50 leaf tokens (including punc-
tuation symbols). The APO1 section of the corpus attests 94 of the 183 lexical
tag types and 25 of the 53 phrasal tag types. The large number of highly dis-
criminating lexical and phrasal categories results in a large number of flat and
often very specific rules. To facilitate annotation we use the structure preserv-
ing grammar compaction method presented in (van Genabith et al. 1999b) to
compact the grammar into a more general one that still preserves important
categorial information to drive automatic annotation. Compaction works by
generalising tags, i.e. collapsing tags (and categories) into supertags. This re-
duces the number of CFG rule types in the fragment from 511 to 330. AP0O1
and the compacted AP01C are summarised in Table 1 below:

T1 sentences average phrasal lexical CFG rule
length types types types

APO1 100 20 25 94 511
AP01¢ 100 20 12 28 330
Manually Annotated Reference Grammar. In order to evaluate Experi-

ment |, we manually constructed a “gold standard” reference grammar follow-
ing (van Genabith et al.1999a,b,c). The grammar features 1143 annotations,
on average 3.46 annotations per rule.

Automatic Annotation and Evaluation. For the experiment we con-
structed 119 annotation principles, this against 330 CFG rules resulting in a
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template/rule ratio of 0.36. We expect the ratio to skew substantially in favour
of templates as we proceed to larger fragments (see Section 4). Automatic
annotation generates 1029 annotations, on average 3.12 annotations per rule.
Experiment | is evaluated in terms of precision and recall measures:

# generated annotations also in reference
# generated annotations

precision =

# reference annotations also generated
# reference annotations

recall =

The results are summarised in Table 2:

T2 Experiment |
precision 93.38
recall 91.58

The numbers are conservative: precision and recall are computed automat-
ically for a first pass encoding of annotation principles as regular expressions.
The results are encouraging and indicate that automatic annotation is more of-
ten partial than incorrect.

3.2 Experiment 11

Our method for f-structure annotation of trees in Section 2.2 is evaluated in
Experiment I, this time based on the Susanne corpus (Sampson 1993).

Data The Susanne treebank encodes labelled bracketed structures with sur-
face form and lemmatised lexical entries. Functional category labels (subj, obj)
and traces indicating control or long-distance dependencies are eliminated in
preprocessing, to guarantee a non-biased evaluation with conventional PS trees
as input. In preprocessing we also collapse overspecific phrasal categories.

Some decisions on PS assignment in the Susanne corpus are debatable. We
defined a set of c-structure rewriting rules that transform the encoding of coor-
dination and flat modal VP structures to more standard PS analyses.

Experiment Design  We chose two sections of the Susanne corpus, JO1 and
J02 (text type J: learned writing). On these, we ran an experiment in 3 steps:
First, we develop f-structure annotation principles for the first 66 sentences
of JO1. These generate fully connected f-structures for 50 out of the 66 sen-
tences. In step 2 we apply the resulting annotation grammar AG1 to the first 50
(unseen) sentences of J02 (J02-1), and measure the annotation results. Gram-
mar AGL1 is then upgraded to AG2, to fully cover these additional 50 sentences.
We record the number of principles added or modified. In step 3, the annota-
tion grammar AG2 is applied to the remaining 46 (unseen) sentences of the
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second part of J02 (J02-2). Again, we measure the results. In this experiment
we applied an order dependent annotation scheme that consumes c-structure
terms while building up the f-structure (cf. Frank 2000). We established a nat-
ural order for the different types of annotation principles discussed in Section
2.2.

Evaluation and Results Table 3 provides basic data of the treebank sub-
sections: the number of sentences and average sentence length; the number
of phrasal and lexical categories and the number of distinct PS rules and PS
branches encoded by the corpus trees. Note that the percentage of new (un-
seen) PS rules in J02-1 and J02-2 is considerably higher than for new (unseen)
tree branches. This is not surprising, and supports our annotation scheme,
where annotation involves underspecified, partial trees (often single branches;
cf. discussion in Section 4).

Table3 sent. av. length phrasal cat lexical cat PS rules tree branches
Jo1 66 34.27 32 73 430 281

J02-1 50 21.68  25(3new) 64 (8new) 249 (60.34% new) 172 (20.93% new)
J02-2 46 24.8 24 (4new) 57 (3new) 212 (45.28% new) 163 (15.95% new)

The results of automatic f-structure annotation are summarised in Table 4.
We measured correctness of f-structure assignment modulo the argument/ad-
junct distinction for PPs and infinitival VPs, and the missing assignment of
control/raising equations. Also, attachment or labelling mistakes in the tree-
bank are not counted as annotation mistakes if the resulting f-structure is pre-
dicted from the given tree.

AG1 features 118 non-lexical (phrasal) annotation principles and assigns
correct f-structures to 48% of the unseen section J02-1. As expected, the up-
grade from AG1 to AG2 required little effort: it involves 28 new and 5 modified
rules and required approximately one person-day of work. AG2 applied to the
unseen section J02-2 yields 76.09% of correct f-structures.

Table4 correct fs partial fs  tag rules lexical rules phrasal rules all rules
# % # %

J01 w/ AG1 50 75.76 16 2424 41 132 118 291

J02-1w/AG1 24 48 26 52 41 132 118 291

J02-1w/AG2 49 98 1 2% 41+4 132+4 (2 mod) 118+20 (3 mod) 291+28

J02-2w/AG2 35 76.09 11 2391 45 136 138 319

Although small scale, we consider these results promising. Our experiment
yields 76% correctly assigned complete and fully connected f-structures when
applied to unseen trees, on the basis of a stepwise extended annotation gram-
mar, developed for about 100 sentences. The increase of coverage when mov-
ing from AG1 to AG2 is considerable. Upgrading to larger fragments takes
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little effort due to the generalisation capacity of partial annotation principles.
The latter is confirmed by the increasing percentage of correct f-structure as-
signments to unseen trees, and the fact that partial f-structure assignments gen-
erally consist of large pieces of partial f-structures.

4. DiscussiON AND CURRENT RESEARCH

We have presented two companion automatic f-structure annotation meth-
ods (Sadler et al. 2000; Frank 2000) for treebanks and grammars. Both meth-
ods and the experiments show considerable overlap and several interesting dif-
ferences.

Annotation principles can apply to extracted PS rules or to PS tree fragments
encoded as flat term representations. Our second method can be specialised
to PS rules by restricting trees to depth one. The first method generates an
annotated grammar, which can be used to rematch treebank trees to induce f-
structures or serve as a basis for developing a stand-alone LFG resource. In the
second approach an f-structure is built during the annotation process. In order
to parse free text, this method can be applied to the output of (P)CFG parsing.
The same architecture can be implemented using the principles designed in the
first approach. Our second approach can be modified to annotate (non-local)
tree fragments with f-descriptions for the rematching scenario applied in the
first method. Both methods use compaction techniques for generalising over-
specific categorisation. In the first experiment the structure of treebank entries
remains unchanged, while in the second certain structures are transformed to
conventional PS analyses to support principle-based annotation. For our first
method, we implemented an order independent and monotonic annotation prin-
ciple interpreter. For the second, a more general term rewriting system was
used. The term rewriting system allows us to define order dependent, cascaded
processing of annotation principles. Alternatively, the term rewriting system
can implement order independent annotation. Order independence can some-
times ease maintenance of annotation principles, but requires more complex
and verbose constraints in order to avoid inconsistent annotations. By con-
trast, order dependent cascaded rewriting allows for a compact representation
of annotation principles. The extra power of an order dependent system can
be useful in category generalisation and subcategorisation induction during the
annotation process. Experiment | uses a manually constructed “gold standard”
reference grammar for evaluation, experiment Il is evaluated with respect to
how it performs on unseen, extended treebank fragments.

Robustness is an inherent property of the approaches presented here. It re-
sides in a number of levels: First, our principles are partial and underspecified
and will match new, as yet unseen configurations. Second, the principles are
conditional. If a certain context (a regular expression or a constraint set) is
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met, a principle applies. Even if only few principles apply, the system will not
fail but deliver partial annotations. Third, the constraint solver employed in
our second method can cope with conflicting information. A constraint solver
of this type can also be imported into the processing of rules annotated by our
first method.

Both approaches factor out information spread over many CFG grammar
rules into a smaller number of modular and general principles. To a first ap-
proximation, the reason why our principles allow a compact representation of
grammatical knowledge is the following: by and large the annotation principles
capture statements about single mother-daughter relationships in CFG rules or
local trees of depth one. This means that the principles are essentially about
single branches in local configurations. Given a treebank (grammar) with n
distinct categories the worst case number of distinct branches is n2. Contrast
this with the worst case number of possible grammar rules:

#Xx—y,) = n?
#H(X = Y1Y,) = n3
#X—Yy...¥Ym) = n™

Clearly, given a grammar with n categories and a RHS rule length of at most
m, the worst case number of different grammar rules

m
znz+1 > n2
i=1

for m > 2 is much higher than the worst case number n? of distinct branches.

In recent research we have scaled an automatic f-structure annotation ap-
proach evolved from the methods presented here to the complete Penn-I11 tree-
bank resource (Cahill et al. 2002a, 2002b) to generate f-structures for 49,000
trees and 1 million words.

In order to develop stand-alone LFG grammars we need semantic forms
(subcategorisation lists) to enforce subcategorisation requirements. We are cur-
rently exploring a number of ways of semi-automatically compiling these from
machine readable dictionaries and the f-structure annotated corpus resources
produced.

We expect that our approach can also feed into grammar development ef-
forts. To be sure, because treebank grammars are large and flat, automati-
cally annotated treebank grammars are less maintainable than the more com-
pact, linguistically designed grammars which follow X-bar design principles.
However, as pointed out above, our approaches allow for a novel grammar de-
sign and processing architecture: given a treebank, a probabilistic context-free
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grammar compiled from the treebank parses new text. For each input string, the
(possibly n-) best parse trees are passed on to the annotation interpreters which
annotate or rewrite the parse trees and induce f-structures. This and other prob-
abilistic parsing architectures are developed in (Cahill et al. 2002b) and applied
to parse the WSJ section of the Penn-Il treebank into proto-f-structures. We
consider this a promising new approach to partially automate large-coverage,
corpus-based unification grammar development.

Current research also investigates further applications of flat, term-based
tree structure conversion to induce grammars for alternative formalisms from
existing treebanks. (Frank 2001) describes a treebank conversion method, ap-
plied to the German NEGRA corpus (Brants et al. 1997) to extract an LTAG
grammar of German. The same method and corpus was used in (Becker and
Frank 2002) to extract a stochastic topological grammar of German, to be used
for integrated shallow and deep parsing.'® (Liakata and Pulman 2002) present
a method based on flat, term-based tree representations that closely resembles
the original approach in (Frank 2000), in order to annotate Penn-11 treebank
trees with Quasi-Logical Forms information while (Cahill et al. 2003) show
how simple Quasi-Logical Forms can be generated from f-structures produced
for the Penn-I11 trees in (Cahill et al. 2002a, 2002b).

5. SUMMARY

We have presented two companion automatic f-structure annotation meth-
ods (Sadler et al. 2000; Frank 2000) for treebanks and grammars. The ap-
proaches make use of a corpus-based strategy that takes disambiguated tree
structures as input, and annotate using (linguistically motivated) annotation
principles. The principles are used to automatically enrich treebanks or ex-
tracted treebank grammars with higher-level functional information not present
in the original corpora. Automatic annotation holds considerable potential in
curtailing f-structure bank development costs and opens up the possibility of
tackling large fragments. The work reported here is proof of concept. (Cahill et
al. 2002a, 2002b) have further developed automatic f-structure annotation tech-
nology based on the methods described here and successfully scaled it to the
Penn-11 treebank resource. Here, we have presented a grammar development
and treebank annotation methodology which is data-driven, semi-automatic,
reuses existing resources and covers real text. We found the LFG framework
very conducive to our experiments. We do believe, however, that the methods
can be generalised, and we intend to apply them in an HPSG scenario and we
and other researchers have applied similar technology to automatic semantic
representation based annotation (Liakata and Pulman 2002; Cahill et al. 2003).

Our approach encourages work in the best linguistic tradition as (i) it is
concerned with real language and (ii) enforces generalisations in the form of
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annotation principles. Our methods factor out information spread over many
CFG rules into a small number of modular and general principles. What is
new in our approach is that (i) the principles state partial and underspecified
correspondences between c- and f-structure configurations and (ii) they are
applied to flat and noisy treebank representations that do not follow general X-
bar design principles. Our experiments show how theoretical work and ideas
on principles can translate into grammar development for real texts. In this
sense our approach may contribute to bridge the often-perceived gap between
theoretically motivated views of grammar as a set of principles vs. grammars
for “real” text.
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Notes

1. For expository purposes, these are slightly simplified principles from our annotation grammar.

2. The annotation principles have to take into consideration that, in many cases, the representation of
coordination in treebank rules is overly flat.

3. The annotation process itself is fast: in our experiments the interpreter annotates about 40 treebank
CFG rules per second (Sparc 400Mhz).

4. Itis also closely related to the principle-based grammar architecture of HPSG, cf. related work by
(Neumann and Flickinger 1999) and (Neumann, this volume).

5. There are obligatory (=) and optional (?=) rewrite rules.
6. n, refers to the tree’s root node.

7. Disjunctive templates encode alternative rewrite rules, and can be unioned (by logical “and” &&) with
annotation rules. While this does still involve disjunctive processing, the rules can be stated in a generalised,
compact way.

8. We require B and C to be distinct variables through inequality constraints (in curly brackets).

9. Templates, grammars and f-structures generated are available at: http:// ww. conpapp. dcu. i e/
~away/ Treebank/ t reebank. htm .

10. In this work, we developed a simple rewriting system modeled after the term rewriting system of
Kay(1999).
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Appendix:

Example of an Automatically

F-Structure (Susanne Corpus)

PRED * wi | | <[~1-XCOMP:probe] >[~1-XCOMP-SUBJ:observation] "
[PRED ' probe<[-1-XCOMP-SUBJ:observation] , [-1-XCOMP-OBJ:atmosphere] >'
[PRED ' at nospher &
o8y SPEC [SPEC-TYPEdef, SPEC-FORM he]
PERS 3, NTYPE conmon, NUM sg
PRED ' observati orf
[PRED * of <[-15-OBJ:emission] >’
PRED " eni ssi on
ISPEC |:SPEC*TVPEdE' , SPEC-FORM he]
. [PRED ' radi o'
-9|PERS 3, NTYPE common, NUM sg
PRED * of <[-16-OBJ:planef] >’
PRED ' pl anet’
[SPEC  [SPEC-FORM, SPEC-TYPEi ndef, NUM sg]
PRED ° have<[-7-SUBJpro] , [-7-OBJ:atmosphere] >’
SUBJ laoguner RED ' atnosphere
o8) SPEC  [SPEC-FORMn, SPEC-TYPEi ndef, NUM sg]
laDIuncT PRED ' ext ensi ve
3 nsuner ADIUNC] {—12[ATYPE attr, ADEGREE posinvg}
PERS 3, NTYPE common, NUM sg
PRED * pr o'
SUBY [PRONfTYPEeI, PRON-FORMhi ch}
ITOPI C [-7-SUBJ:pro]
-7|PASSI VE -, PROG -, PERF -, VTYPE nmin,
oo _16 PERS 3, NTYPE common, NUM sg
_15 PERS 3, NTYPE common, NUM sg
PERS 3, NTYPE common, NUM pl
[PRED ' t o<[-17-OBJ:extent] >’
PRED ' extent’
SPEC  [SPEC-FORM, SPEC-TYPE ndef, NUM sg]
[PRED ' t han<[-3-OBJ:pro] >'
|[ADJUNCT-TYPEconpari son
PRED  'pro’
RED ' use<[-8-SUBJ:pro] , [-8-OBJilength] >’
PRED  'length’
MOD RED ' wave'
-10[PERS 3, NTYPE common, NUM sg|
ADIUNCT ¢ | jo8J N
INCT (=] /ADJ UNCT INCT RED " short’
A0 AD0 {*11 IATYPE attr, ADEGREE conparati vi
PERS 3, NTYPE common, NUM pl
PRED ' pr o'
[SUB) [PRON—TYPEnaph‘ PRON-FORMul J
-8|PROG +, PASSIVE -, PERF -, VTYPE nmin, ADJUNCT-TYPEer bal
-3 PRON-TYPElemon, NUM pl, PRON-FORMhose
‘great’
[-4|ATYPE attr, ADEGREE conparati vi
17 PERS 3, NTYPE common, NUM sg
PASSI VE -, PROG -, PERF -, VTYPE main
SUBJ  [-1-XCOMP-SUBJ:0bservation]
PERF +, PASSIVE -, PROG -, VTYPE nodal
_ips  (-zshall )
PRED * shal | <[-2-XCOMP:give] >[~1-XCOMP-SUBJ:observation] "
PRED ' gi ve<[-1-XCOMP-SUBJ:observation] [-2-XCOMP-OBJ:information] ~ >'
[PRED  information
PRED ' about <[-5-OBJ:characteristic] >
RED ' characteristic
SPEC  [SPEC-TYPEdef, SPEC-FORMhe]
PRED ' of <[-14-OBJ:surface] ~ >'
PRED  'surface’
SPEC  [SPEC-TYPEdef, SPEC-FORMhe]
ADONCT { |
(e:V} lADouNCT lADIUNCT RED * sol i d
-13|ATYPE attr, ADEGREE positiv
_14 PERS 3, NTYPE conmon, NUM sg
X -5 IPERS 3, NTYPE common, NUM pl
RED ' unobt ai nabl &
ADIUNCT {-19[PRED " ot her wi se'J}
-6|ATYPE attr, ADEGREE positive
IPERS 3, NTYPE common, NUM sg
SUBJ  [-1-XCOMP-SUBJ:observation]
RED ' i n<[-18-OBJ:case] >
. [PRED ' case’
(0BJ  |SPEC [SPEC-TYPEquant, SPEC-FORMong]
18 PERS 3, NTYPE common, NUM pl
PASSI VE -, PROG -, PERF -, VTYPE main
SUBJ  [-1-XCOMP-SUBJ:0bservation]
-2|PERF +, PASSIVE -, PROG -, VTYPE nodal
—20|CONJ-FORMINd, STMT-TYPEdecl arati ve

Figure 21.A.1.

TENSE present, ADJUNCT-TYPE el

389

Generated

F-structure for: “Observations of the radio emission of a planet which has an

extensive atmosphere will probe the atmosphere to a greater extent than those using shorter
wave lengths and should in some cases give otherwise unobtainable information about the char-
acteristics of the solid surface.”




