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Abstract

We present a baseline system for model-
ing textual entailment that combines deep
syntactic analysis with structured lexi-
cal meaning descriptions in the FrameNet
paradigm. Textual entailment is approx-
imated by degrees of structural and se-
mantic overlap of text and hypothesis,
which we measure in amatch graph. The
encoded measures of similarity are pro-
cessed in a machine learning setting.1

1 Introduction

In this paper, we present a baseline system to ap-
proach the textual entailment task as presented in the
PASCAL RTE Challenge. This task faces us with
the problem of modeling deep text understanding
and inference for complex examples in unrestricted
domains. Similar to previous work (Dagan et al.,
2005) we explore semantically informedapproxi-
mationsof textual entailment. As shown by (Bos
and Markert, 2005), fine-grained semantic analysis
and reasoning models can yield high precision, but
are severely restricted in recall. The architecture we
present is open for extension to deeper methods.

We assess the utility of approximating entail-
ment in terms of structural and semantic overlap of
text and hypothesis, combining wide-coverage LFG

1This work has been carried out in the project SALSA,
funded by the German Science Foundation DFG, Title PI 154/9-
2. We thank Katrin Erk and Sebastian Pado for providing and
supporting the Fred and Rosy systems and Alexander Koller for
his contributions and for implementing the FEFViewer.

parsing withframe semantics, to project a coarse-
grained lexical semantic representation with seman-
tic roles. We compute various measures of overlap
and train a machine learning model for entailment.

In Section 2, we describe the linguistic resources
and our system architecture. In Section 3, we
present our approach for modeling similarity of text
and hypothesis in amatch graph. In Section 4, we
report on our machine learning experiments, the re-
sults in the RTE task, and provide some error anal-
ysis, including discussion of typical examples that
show the strength and weaknesses of our approach.
We conclude with a discussion of perspectives.

2 Base Components and Architecture

2.1 Basic Analysis Components

Our primary linguistic analysis components are the
probabilistic LFG grammar for English developed
at Parc (Riezler et al., 2002), and a combination
of systems developed in the SALSA project: two
probabilistic systems for frame and role annotation,
Fred and Rosy (Erk and Pado, 2006) and a rule-
based system for frame assignment, calledDetour
(to FrameNet)(Burchardt et al., 2005), which uses
WordNet to address coverage problems in the cur-
rent FrameNet data. In addition we use the Word
Sense Disambiguation system (Banerjee and Peder-
sen., 2003) and mappings from WordNet to SUMO
(Niles and Pease, 2003) to assign WordNet synsets
and SUMO ontological classes to main predicates.

2.2 Frame Semantics

Frame Semantics (Baker et al., 1998) models the
lexical meaning of predicates and their argument



Role Example
SELLER BMW boughtRover fromBritish Aerospace.
BUYER Rover was boughtby BMW, which financed

[. . . ] the new Range Rover.
GOODS BMW, which acquiredRover in 1994, is now

dismantling the company.
MONEY BMW’s purchaseof Rover for$1.2 billion was

a good move.

Figure 1: Frame COMMERCE GOODS-TRANSFER.

structure in terms offramesandroles. A framede-
scribes a conceptual structure or prototypical situa-
tion together with a set ofsemantic rolesthat iden-
tify participants involved in the situation. FrameNet
currently contains more than 600 frames with al-
most 9000 lexicalizations (word-frame pairs). Fig-
ure 1 displays examples involving the frame COM-
MERCE GOODS-TRANSFER.

Frame-semantic analysis is especially interesting
for the task of recognizing textual entailment if we
aim at robust and high-quality measures for seman-
tic overlap. Frames provide normalisations for di-
verse surface realizations (lexicalisation, verb vs.
nominalisation, etc.), including variations in argu-
ment structure realisation (cf. Fig. 1). Thus, we can
determinesemantic similarity based on lexical se-
mantic meaning, combined with measuringsimilar-
ity of argument structureat a high level of abstrac-
tion. Moreover, the coarse-grained frame structures
make it possible to assess the core meaning of a sen-
tence (“what is it about?”) in a shallow analysis,
separated from the pitfalls of deep, structural analy-
sis of scope, modality, etc.,which must be treated by
other components, or can be selectively introduced,
as will be illustrated for the case of modality.

2.3 Enriched Frame Semantic Representations

As displayed in Figure 2, LFG-based syntactic anal-
ysis (i.e., f-structure) is integrated with frames and
roles assigned by Fred, Detour and Rosy, as well as
WordNet synsets and SUMO concepts, to yield an f-
structure with frame-semantic projection (Frank and
Erk, 2004), including conceptual class assignments.
The integration and semantics projection is defined
using the XLE rewrite system of (Crouch, 2005).

Additional rules introduce frames and concept
classes based onnamed entitiesrecognized in LFG
parsing (companies, political offices etc.), as well

LFG
f-structure

Fred/Detour/Rosy
frames & roles

WordNet/
SUMO

F-structure with
semantics projection

Rule-based frame assignment and normalisations:
NEs, extra-thematic roles; modality; co-reference

FEF: Frame Exchange Format

Figure 2: Architecture of linguistic analysis

asextrathematic semantic roles(TIME , LOCATION,
REASON, etc.) for corresponding adjunct types in f-
structure. We also collect possibleantecedent refer-
entsfor pronominals, as a heuristic device to estab-
lish co-referential links. Finally, we identify various
types ofmodal contexts, such as negation, modals,
conditionals or future tense that allow to detect text-
hypothesis pairs that preclude entailment.

The result structures are converted to aFrame Ex-
change Format (FEF), a flat predicate representation
comprising syntactic and semantic analysis. Table 1
displays the FEF for (1). The parts printed in bold
show information from different levels for the pred-
icate manufacturer: f-structure node f(5), seman-
tics projection to node s(61) which is labled with
the frame MANUFACTURING (with roles PRODUCT

and MANUFACTURER) plus a projection to ontolog-
ical information (s(71)), WordNet synset and SUMO
super-class in this case. A FEFViewer (Figure 3)
displays the major syntactic and semantic graph
structures.

(1) Mercedes-Benz is a German car manufacturer.

Figure 3: FEFView for example (1).



normalized f-structure
with syn-sem projections

frames, roles and ontological
info (WordNet/SUMO)

xcomp(f(0),f(5)).
tense(f(0),pres).
stmt type(f(0),declarative).
pred(f(0),be).
mood(f(0),indicative).
dsubj(f(0),f(1)).
pred(f(1),’Mercedes-
Benz’).
num(f(1),sg).
subj(f(5),f(1)).
pred(f(5),manufacturer).
num(f(5),sg).
mod(f(5),f(11)).
det type(f(5),indef).
adjunct(f(5),f(7)).
pred(f(7),’German’).
atype(f(7),attributive).
adjuncttype(f(7),nominal).
adegree(f(7),positive).
pred(f(11),car).
num(f(11),sg).

sslink(f(1),s(67)).
sslink(f(5),s(61)).
sslink(f(7),s(66)).
sslink(f(11),s(60)).

frame(s(60),’Vehicle’).
vehicle(s(60),s(60)).
descriptor(s(60),s(66)).
rel(s(66),’German’).

frame(s(61),’Manufacturing’).
product(s(61),s(60)).
manufacturer(s(61),s(67)).
rel(s(67),’Mercedes-
Benz’).

ont(s(60),s(72)).
ont(s(66),s(73)).
ont(s(61),s(71)).

wn syn(s(71),’manufacturer#1’).
sumo sub(s(71),’Corporation’).
milo sub(s(71),’Corporation’).

wn syn(s(72),’car#n#1’).
sumosub(s(72),’Transp˜Device’).
milo sub(s(72),’Transp˜Device’).

wn syn(s(73),’german#a#1’).
sumoinst(s(73),’Nation’).
milo syn(s(73),’Germany’).

Table 1: FEF for example (1).

2.4 Overall RTE Architecture

Our RTE system architecture comprises the folow-
ing steps: We compute LFG f-structures with ex-
tended frame semantics projections for text and hy-
pothesis pairs. We identify their structural and se-
mantic similarities and represent them in amatch
graph. From text, hypothesis, and match graph we
extract features that characterize their syntactic and
semantic properties, as well as various relational
properties that can be considered relevant for estab-
lishing or rejecting entailment. These features are
fed into a Machine Learning system for training on
the development set and testing on the test set.

3 Computing Semantic Overlap

We approximate textual entailment by statistical pre-
diction on the basis of measurements for structural
and semantic overlap between text and hypothesis.

3.1 Matching Text and Hypothesis

In a graph matching process we compute the over-
lap of the f-structures with semantics projection
(i.e. graphs) for text and hypothesis which we record

in a match graph. The latter consists of matched
predicatesandfeaturesfrom both input graphs. We
distinguish various (sub)types of matches, in order
to selectively extract features for the learning phase.

Node (predicate) matching. Node matching rules
match nodes foridentical syntactic predicates and
frames. We also allow matches for predicates that
are semantically related on the basis ofWordNet.
To prevent overgeneration, WordNet-based match-
ing is restricted to predicates that are related by an
edge in the match graph. Further, the respective
synsets have to be closely related in terms of Word-
Net path distance (<3). Using (heuristically de-
fined) antecedent sets for pronouns, we allow special
types of predicate matches for pronouns and non-
pronominal predicates in text and hypothesis.

In addition, we allow matches between frame
nodes that are known to be related byFrameNet
frame relations, such asinheritance, or those that
are considered related by the Detour system, mea-
suringframe distanceon the basis of WordNet.

Feature (edge) matching. Feature matches are re-
stricted to features that connect matching nodes, or
those that take identical atomic values. The lin-
guistic nature of these edges ranges from morpho-
syntactic features in LFG f-structure, such asNUM ,
PERS, over grammatical functions ((deep) subject,
(deep) object, adjunct, oblique, complement, etc.),
to frame semantic roles in the semantic projection.

Modality contexts Besides finding matches for
similar nodes and edges, some rules are intended to
detectsemantic differencein terms of incompatible
modality types. We normalise the different modal
contexts to five basic types: conditional, subjunc-
tive, diamond, box and negation. An example of in-
compatible modalities is the pair:A pet must have
rabies protection confirmed by a blood test– A case
of rabies was confirmed.

3.2 Feature Extraction

The features we extract from the text, hypothesis and
match graphs to induce a machine learning model
for textual entailment can be classified according
to their (i) nature in terms of level of representa-
tion (lexical, syntactic, semantic), (ii)degree of con-
nectednessin matching, (iii)source(text, hypothesis



1. No. of predicate matches relative to hypothesis.
2. No. of frame (Fred, Detour) matches relative to hypoth-

esis.
3. No. of roles (Rosy) matches relative to hypothesis.
4. Match graph size relative to hypothesis, including syn-

tactic, semantic, and ontological information.

Table 2: Feature Set for Submitted Test Runs

All tasks IE IR QA SUM
run1 0.59 0.50 0.60 0.55 0.73
run2 0.58 0.49 0.59 0.57 0.67

Table 3: RTE 2006 results: Accuracy.

or match graph), and (iv)proportional relation(hy-
pothesis/text, match-graph/hypothesis ratio, etc.).

Lexical features count the number of lexical
items, syntactic features record the number of LFG
predicate matches, including pronominal and co-
referential matches in the match graph, andsyntac-
tic features. Semantic features distinguish between
those frames and roles that were assigned by the
Fred, Detour and Rosy systems, and those that were
successfully interfaced with LFG analyses.2 We fur-
ther distinguish semantic node matches of different
types as discussed above (e.g. identical or semanti-
cally related frames, modal properties). Finally, we
compute the number and size of connected clusters
in the match graph, as well as the relative size in re-
lation to the size of the hypothesis graph.

4 Experiments and Results

4.1 Training and Classification

Feature selection. We experimented with various
learners and the attribute selection module of Weka
(Witten and Frank, 2005). A general observation
was that many learners (evaluators) select features
that seem intuitively important. However, also unin-
tuitive features, such as the frequency of predicates
in the hypothesis graph, showed up as high-valued
features, which could be due to idiosyncrasies in the
development set. We chose to submit a run that is
based on a small and intuitively plausible feature set
which led to constant results on a number of classi-
fiers. The feature set is listed in Table 2.

2A number of frames and roles could not be ported from
Fred and Detour onto the f-structure due to mismatches in lem-
matisation/tokenisation and fragmentary or failed parses.

Results. We submitted two runs for different clas-
sifiers from Weka, using the feature set from Table 2.
For run1, we used a simple conjunctive rule classi-
fier. It generated a single rule measuring predicate
and frame matches relative to the hypothesis:

(predsm relto h ≤ 0.485294) and
(framesm relto h≤ 0.954546)
⇒ rte entails = 0

For run 2, we used theLogitBoost3 classifier from
Weka’s meta classifers which used all features, ex-
cept for role assignments, in its iteration steps. The
official RTE results are listed in Table 3.

4.2 Discussion of Results and Error Analysis

The conjunctive rule used in run1 imposes a medium
and high threshold, respectively, on predicate and
frame matches, as criteria for rejection. So, the
system accepts high degrees of semantic similarity
based on frames, joint with medium degree overlap
at the syntactic predicate level to model entailment.

This is in accordance with the view that frame se-
mantics models “aboutness”, on the basis of coarse-
grained conceptual meaning, as opposed to veridi-
cality as it is modeled by truth-conditional seman-
tics. This is further confirmed by the results for the
different RTE tasks (Table 3): we obtain higher ac-
curacy for SUM (and IR), as opposed to QA and IE,
which (in the RTE setting) need deeper modeling in
terms of veridicality. Run 2, which uses the more
“informative” feature set of Table 2 performs only
slighly worse than run 1, and better on QA.

True positives. Table 4 lists examples of true posi-
tives. Entailment is triggered by high semantic over-
lap between hypothesis and match graph in terms
of matching predicates, frames, and f-structure.
Ex. 602 is an example where frames establishes a
semantic match for predicates without a syntactic
match: the verbpurchaseand the nominalpurchase
are both assigned the frame COMMERCE BUY.

On the other hand, missing or non-matching
frame assignments can be compensated via Word-
Net relatedness: in ex. 103,die is matched with
pass awayalthough the latter has not been assigned
a frame. Active-passive diathesis such assoldier

3LogitBoost performsadditive logistic regressionusing the
classifierDecisionStump.



True positives:
103 T:Everest summiter David Hiddleston has passed away in an avalanche of Mt. Tasman.

H: A person died in an avalanche.
129 T:In one of the latest attacks, a US soldier on patrol was killedby a single shot from a sniper in northern Baghdad, the

military said yesterday.
H: A sniper killed a U.S. soldier on patrol in Baghdad with a single shot.

602 T:The system of government purchases of food under the U.N. Oil-for-Food Program was alleged to have many abuses.
H: A government purchases food.

626 T:An earthquake has hit the east coast of Hokkaido, Japan, witha magnitude of 7.0 Mw.
H: An earthquake occurred on the east coast of Hokkaido, Japan.

True negatives:
233 T:The goal of preservingindigenousculturecan hardly be achieved by a handful of researchers and curators at museums

of ethnology and folk culture.
H: Indigenousfolk art is preserved.

322 T:Even today, within the deepest recesses of our mind, lies a primordial fear thatwill not allow us to enter the sea without
thinking about the possibility of being attackedby a shark.

H: A sharkattackeda human being.

Table 4: Examples from RTE 2006.

was killedandkilled a soldierin ex. 129 is resolved
on the f-structure level where we normalize to deep
subject and object. As seen in ex. 626 and 129, good
results are not only obtained for short hypotheses.

True negatives. 27% of justified rejections in-
volve mismatches of modality, while only 11.9% of
all sentences contain modal contexts. Our match-
ing algorithm for construction of the match graph
includes a heuristics that rejects predicate (and fea-
ture) matches if the predicates (features) are em-
bedded in inconsistent modal contexts. Thus, mis-
matching modalites are reflected in two ways: by
(distinct) modality features in text and hypothesis,
and in terms of reduced size of the match graph.
Ex. 233 and 322 are true negatives where predicate
matches of the underlined predicates are blocked.

Error analysis for base components. LFG pars-
ing yielded 99% coverage for the test set. 24% of
the sentencepairs involved a fragmentary parse. For
these, we rely on non-LFG-integrated frame and role
assignments by Fred, Rosy and Detour. To assess
the impact of losses in syntactic analysis, enriched
semantic representations and the resulting overlap
measures, we restricted the test set to pairs without
fragmentary parses, which yielded an improvement
of 1-3% for various learners and feature sets.

Overall, the system assigned 14326 frames and
13325 roles, including 3199 frames and 1736 roles
added by default rules. In average, 8,9 frames per
sentence and 1.1 role per frame. We identified losses

in the interface that projects frames and roles to
the LFG (10% for frames, 38,9% for roles) that
are due to failed or partial parses, but also to re-
maining differences in tokenisation and lemmatisa-
tion. Losses in porting frame and role assignments
to LFG are compensated by the fall-back to non-
assigned frames and roles, though they do have an
impact on the computation of the overlap features,
such as connectedness and size of the match graph.

Sparse features. From a machine learning view,
the size of the development corpus is very small.
Phenomena (features) that do not occur in the ma-
jority of sentence pairs are neglected by the ma-
chine learning systems. Currently, we have high-
frequency features that measuresimilarity (e.g.
predicate and frame overlap), but only few and low-
frequency features that identifydissmimilarity, such
as mismatching modalities. Therefore, the learners
have a tendency to reject too little: 29,5% false pos-
itives as opposed to 12,75% false negatives.

False positives and negatives. False positives of-
ten involve non-matching main predicates that are
in fact semantically dissimilar within larger match
graphs. In line with the above observation of sparse
features for dissimilarity, we see potential for im-
provement by including additional measures for se-
mantic distance between non-matching nodes in oth-
erwise connected match graphs.

A related problem we observed for nodes in the
match graph that are closely connected e.g in the



hypothesis, but come from far distant parts of the
text graph, as in ex.198:4.4 million people wereex-
ecuted in Singapore– Some 420 people have been
hanged in Singapore[. . . ]. That gives the country of
4.4 million people the highest execution rate.. For
such configurations, we could establish a new type
of weightededge match that reflects the relative dis-
tance of the node pairs in the text and hypothesis
graphs, measured in terms of f-structure or frame
structure path distance. This, we hope, could help
the learner to establish further criteria for rejection.

Inferences on partial structures. Our architec-
ture is open for extension to deeper methods. We
have started to integrateinferenceson partial struc-
tures in order to bridge partial non-matching text and
hypothesis graphs: e.g.,joins(x1, y1) in the text
graph supports the hypothesismember of(x2, y2),
for matching node pairs (x1/x2, y1/y2). In the graph
matching process, inferences of this type introduce
special types of matches, which can be exploited by
the learner directly, or indirectly, through the ensu-
ing extension of the match graph. However, due to
the small, manually crafted rule set, this feature was
not yet effective. The next step is thus to identify and
integrate suitable, large-scale resources for infer-
ences, both lexical and based on world-knowledge.

5 Conclusions and Perspectives

We presented a baseline system for textual entail-
ment that is based on “informed” features for struc-
tural and semantic overlap between text and hypoth-
esis. The system’s performance is on a par with the
best systems in last year’s RTE Challenge. We con-
sider this to demonstrate the usefulness of a frame-
based approach to textual entailment – combined
with deep syntactic analysis and further components
that complement aspects of semantic modelling not
covered in frame semantics.

We identified various possibilities for further im-
provement. The current bias towards positive en-
tailment judgments can be compensated by intro-
ducing morenegativefeatures that measure thedis-
tance– semantic or constructional – between ma-
terial involved in partial match graphs. More gen-
erally, starting from the determination ofstructural
and semantic overlap, or similarity, we can now im-
prove the modelling ofdissimilarity. The detection

of incompatible modalitieshas proved rather effec-
tive, but can be further extended tolexically induced
modalities (e.g.possibility of, alleged, promise).

The usage of an integrated syntactic-semantic-
ontological representation supports the integration
of selected deeper and fine-grained methods for se-
mantic analysis, in terms of measures for similarity,
dissimilarity, or inferences on partial structures.
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