Assessing Interpretable, Attribute-related Meaning Representations for Adjective-Noun Phrases in a Similarity Prediction Task

> Matthias Hartung Anette Frank Computational Linguistics Department Heidelberg University

> > GEMS 2011 Edinburgh, July 31

Motivation: "Use Cases" of Distributional Models

Distributional Similarity

- distributional models provide graded *similarity* judgements for word or phrase pairs
- sources of similarity are usually disregarded
- desirable goal: predict degree of similarity and its source

Example:

elderly lady vs. old woman

- high degree of similarity
- ▶ primary source of similarity: shared feature AGE

Distributional Models in Categorial Prediction Tasks

Example: Attribute Selection

- What are the attributes of a concept that are highlighted in an adjective-noun phrase ?
- well-known problem in formal semantics:
 - short hair \rightarrow LENGTH
 - short discussion \rightarrow DURATION
 - *short flight* \rightarrow DISTANCE or DURATION
- Hartung & Frank (2010): formulate attribute selection as a compositional process in distributional framework

Attribute Selection: Previous Work

Pattern-based VSM: Hartung & Frank (2010)

	COLOR	DIRECT.	DURAT.	SHAPE	SIZE	SMELL	SPEED	TASTE	TEMP.	WEIGHT
enormous	1	1	0	1	45	0	4	0	0	21
ball	14	38	2	20	26	0	45	0	0	20
enormous $ imes$ ball	14	38	0	20	1170	0	180	0	0	420
enormous + ball	15	39	2	21	71	0	49	0	0	41

 vector component values: raw corpus frequencies obtained from lexico-syntactic patterns such as

(A1) <u>ATTR</u> of DT? NN is|was <u>JJ</u>

- (N2) DT ATTR of DT? RB? JJ? NN
- restriction to 10 manually selected attribute nouns
- sparsity of patterns; to be alleviated by integration of LDA topic models

Focus of Today's Talk

Is a distributional model tailored to attribute selection effective in similarity prediction ?

Approach:

- construct attribute-related meaning representations (AMRs) for adjectives and nouns in a distributional model (incorporating LDA topic models)
- comparison against *latent* VSM of Mitchell & Lapata (2010; henceforth: M&L) on similarity judgement data

Outline

Introduction

Topic Models for AMRs

LDA in Lexical Semantics Attribute Modeling by C-LDA "Injecting" C-LDA into the VSM Framework

Experiments and Evaluation

Similarity Prediction based on AMRs Experimental Settings Analysis of Results

Conclusions and Outlook

Using LDA for Lexical Semantics

LDA in Document Modeling

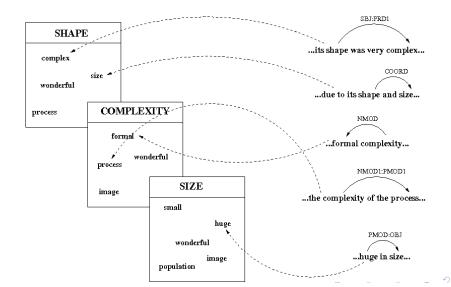
- hidden variable model for document modeling
- decompose document collection into *topics* that capture their *latent semantics* in a more abstract way than BOWs

Porting LDA to Attribute Semantics

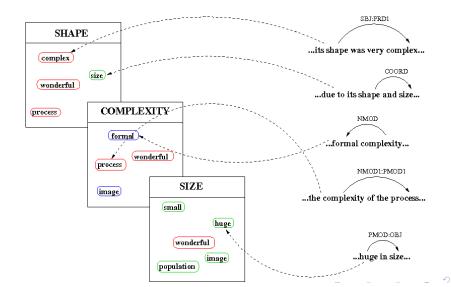
- build "pseudo-documents" as distributional profiles of attribute meaning
- resulting topics are highly "attribute-specific"
- similar approaches in other areas of lexical semantics:
 - semantic relation learning (Ritter et al., 2010)
 - selectional preference modeling (Ó Séaghdha, 2010)

word sense disambiguation (Li et al., 2010)

Attribute Modeling by Controled LDA (C-LDA) Constructing "Pseudo-Documents":



Attribute Modeling by Controled LDA (C-LDA) Constructing "Pseudo-Documents":



C-LDA: Generative Process

1 For each topic $k \in \{1, ..., K\}$: 2 Generate $\beta_k \sim Dir_V(\eta)$ 3 For each document d: 4 Generate $\theta_d \sim Dir(\alpha)$ 5 For each n in $\{1, ..., N_d\}$: 6 Generate $z_{d,n} \sim Mult(\theta_d)$ with $z_{d,n} \in \{1, ..., K\}$ 7 Generate $w_{d,n} \sim Mult(\beta_{z_{d,n}})$ with $w_{d,n} \in \{1, ..., V\}$

(Blei et al., 2003)

Integrating Attribute Models into the VSM Framework (I)

C-LDA-A: Attributes as Meaning Dimensions

	COLOR	DIRECT.	DURAT.	SHAPE	SIZE	SMELL	SPEED	TASTE	TEMP.	WEIGHT
hot	18	3	1	4	1	14	1	5	174	3
meal	3	5	119	10	11	5	4	103	3	33
hot $ imes$ meal	0.05	0.02	0.12	0.04	0.01	0.07	0.00	0.51	0.52	0.10
hot + meal	21	8	120	14	11	19	5	108	177	36

Table: VSM with C-LDA probabilities (scaled by 10³)

Setting Vector Component Values:

$$egin{aligned} v_{\langle w, a
angle} &= P(w|a) pprox P(w|d_a) = \sum_t P(w|t) P(t|d_a) \end{aligned}$$

Integrating Attribute Models into the VSM Framework (II)

C-LDA-T: Topics as Meaning Dimensions

	TOPIC 1	TOPIC 2	TOPIC 3	TOPIC 4	TOPIC 5	TOPIC 6	TOPIC 7	TOPIC 8	TOPIC 9	TOPIC 10
hot	27	4	1	14	3	14	0	9	34	3
meal	62	10	82	11	12	8	4	14	77	33
hot $ imes$ meal	1.67	0.04	0.08	0.15	0.04	0.11	0.00	0.13	2.62	0.10
hot + meal	89	14	83	25	15	22	4	23	111	36

Table: VSM with C-LDA probabilities (scaled by 10^3)

Setting Vector Component Values:

$$v_{\langle w,t\rangle} = P(w|t)$$

Integrating Attribute Models into the VSM Framework (III)

Vector Composition Operators:

- vector multiplication (×)
- vector addition (+)

(Mitchell & Lapata, 2010)

"Composition Surrogates":

- ADJ-only: take adjective vector instead of composition
- N-only: take noun vector instead of composition

(Hartung & Frank, 2010)

Taking Stock...

Introduction

Topic Models for AMRs

LDA in Lexical Semantics Attribute Modeling by C-LDA "Injecting" C-LDA into the VSM Framework

Experiments and Evaluation

Similarity Prediction based on AMRs Experimental Settings Analysis of Results

Conclusions and Outlook

Models for Similarity Prediction

Attribute-specific Models:

- C-LDA-A: attributes as interpreted dimensions
- C-LDA-T: attribute-related topics as dimensions

Latent Model:

► M&L: 5w+5w context windows, 2000 most frequent context words as dimensions (Mitchell & Lapata, 2010)

Experimental Settings (I)

Training Data for C-LDA Models:

- Complete Attribute Set: 262 attribute nouns linked to at least one adjective by the attribute relation in WordNet
- "Attribute Oracle": 33 attribute nouns linked to one of the adjectives occurring in the M&L test set

Testing Data:

- Complete Test Set: all 108 pairs of adj-noun phrases contained in the M&L benchmark data
- Filtered Test Set: 43 pairs of adj-noun phrases from M&L where both adjectives bear an attribute meaning according to WordNet

Experimental Settings (II)

Evaluation Procedure:

- 1. compute *cosine similarity* between the composed vectors representing the adjective-noun phrases in each test pair
- 2. measure *correlation* between model scores and human judgements in terms of Spearman's ρ ; treat each human rating as an individual data point

Experimental Results (I)

Complete Test Set:

	-	+		×		ADJ-only		only
	avg	best	avg	best	avg	best	avg	best
C-LDA-A	0.19	0.25	0.15	0.20	0.17	0.23	0.11	0.23
T-PDT-2 attrs	0.19	0.24	0.28	0.31	0.20	0.24	0.18	0.24
<u> </u>	0.21		0.34		0.19		0.27	
د-LDA-A	0.23	0.27	0.21	0.24	0.27	0.29	0.17	0.22
ິສະ C-LDA-T	0.21	0.28	0.14	0.23	0.22	0.27	0.10	0.21
™ M&L	0.21		0.34		0.19		0.27	

- M&L_× performs best in both training scenarios
- C-LDA models generally benefit from confined training data (except for C-LDA-T_×)
- individual adjective and noun vectors produced by M&L and the C-LDA models show diametrically opposed performance

Experimental Results (II)

Filtered Test Set (Attribute-related Pairs only):

		+		×		ADJ-only		only
	avg	best	avg	best	avg	best	avg	best
C-LD ر	DA-A 0.22	0.31	0.12	0.30	0.18	0.30	0.17	0.28
262 21-7 attrs	A-T 0.25	0.30	0.26	0.35	0.24	0.29	0.19	0.23
<u> </u>	M&L 0.38		0.40		0.24		0.43	
o C-LD م	0.29 A-A	0.32	0.31	0.36	0.34	0.38	0.09	0.18
11-7 at 33	A-T 0.26	0.36	0.14	0.30	0.28	0.38	0.03	0.18
1 0	M&L 0.38		0.40		0.24		0.43	

- improvements of C-LDA models on restricted test set: C-LDA is informative for attribute-related test instances
- relative improvements of M&L are even higher than those of C-LDA in some configurations
- adjective/noun twist is corroborated

Differences between Adjective and Noun Vectors

	26	52 attrs		33 attrs			۰,
	avg	σ		avg	σ		
C-LDA-A (JJ)	1.20	0.48	1	0.83	0.27	1	-
C-LDA-A (NN)	1.66	0.72	· ·	1.23	0.46	~	
C-LDA-T (JJ)	0.92	0.04	1	0.50	0.04		-
C-LDA-T (NN)	1.10	0.06	· ·	0.60	0.02	~	
M&L (JJ)	2.74	0.91	x	2.74	0.91	~	
M&L (NN)	2.96	0.33	^	2.96	0.33	^	1

Table: Avg. entropy of adj. and noun vectors

- hypothesis: information in adjective and noun vectors mirrors their relative performance
- ► low entropy ≡ high information, and vice versa

- hypothesis confirmed for C-LDA only
- M&L: diametric pattern, but considerable proportion of relatively uninformative adjective vectors (cf. σ=0.91)

System Predictions: Most Similar/Dissimilar Pairs

	C-LDA-A; +		M&L ×	
	long period – short time	0.95	important part – significant role	0.66
	hot weather – cold air	0.95	certain circumstance – particular case	0.60
+Sim	different kind – various form	0.91	right hand – left arm	0.56
	better job – good place	0.89	long period – short time	0.55
	different part – various form	0.88	old person – elderly lady	0.54
	small house – old person	0.07	hot weather – elderly lady	0.00
	left arm – elderly woman	0.06	national government – cold air	0.00
-Sim	hot weather – further evidence	0.06	black hair – right hand	0.00
	dark eye – left arm	0.05	hot weather – further evidence	0.00
	national government – cold air	0.03	better job – economic problem	0.00

Table: Similarity scores predicted by C-LDA-A (optimal) and M&L; 33 attrs

- large majority of pairs in +Sim_{C-LDA-A} and +Sim_{M&L} represent matching attributes
- both models cannot deal with antonymous attribute values
- C-LDA-A utilizes larger range on the similarity scale

System Predictions: Most Similar/Dissimilar Pairs

	C-LDA-A; +		M&L ×	
	long period – short time	0.95	important part – significant role	0.66
	hot weather – cold air	0.95	certain circumstance – particular case	0.60
+Sim	different kind – various form	0.91	right hand – left arm	0.56
	better job – good place	0.89	long period – short time	0.55
	different part – various form	0.88	old person – elderly lady	0.54
	small house – old person	0.07	hot weather – elderly lady	0.00
	left arm – elderly woman	0.06	national government – cold air	0.00
-Sim	hot weather - further evidence	0.06	black hair – right hand	0.00
	dark eye – left arm	0.05	hot weather – further evidence	0.00
	national government – cold air	0.03	better job – economic problem	0.00

Table: Similarity scores predicted by C-LDA-A (optimal) and M&L; 33 attrs

- large majority of pairs in +Sim_{C-LDA-A} and +Sim_{M&L} represent matching attributes
- both models cannot deal with antonymous attribute values

C-LDA-A utilizes larger range on the similarity scale

System Predictions: Most Similar/Dissimilar Pairs

	C-LDA-A; +		M&L ×	
	long period – short time	0.95	important part – significant role	0.66
	hot weather – cold air	0.95	certain circumstance – particular case	0.60
+Sim	different kind – various form	0.91	right hand – left arm	0.56
	better job – good place	0.89	long period – short time	0.55
	different part – various form	0.88	old person – elderly lady	0.54
	small house – old person	0.07	hot weather – elderly lady	0.00
	left arm – elderly woman	0.06	national government – cold air	0.00
—Sim	hot weather - further evidence	0.06	black hair – right hand	0.00
	dark eye – left arm	0.05	hot weather – further evidence	0.00
	national government – cold air	0.03	better job – economic problem	0.00

Table: Similarity scores predicted by C-LDA-A (optimal) and M&L; 33 attrs

- large majority of pairs in +Sim_{C-LDA-A} and +Sim_{M&L} represent matching attributes
- both models cannot deal with antonymous attribute values
- C-LDA-A utilizes larger range on the similarity scale

System Predictions: Most Similar/Dissimilar Pairs

	C-LDA-A; +		M&L ×	
	long period – short time	0.95	important part – significant role	0.66
	hot weather – cold air	0.95	certain circumstance – particular case	0.60
+Sim	different kind – various form	0.91	right hand – left arm	0.56
	better job – good place	0.89	long period – short time	0.55
	different part – various form	0.88	old person – elderly lady	0.54
	small house – old person	0.07	hot weather – elderly lady	0.00
	left arm – elderly woman	0.06	national government – cold air	0.00
-Sim	hot weather – further evidence	0.06	black hair – right hand	0.00
	dark eye – left arm	0.05	hot weather – further evidence	0.00
	national government – cold air	0.03	better job – economic problem	0.00

Table: Similarity scores predicted by C-LDA-A (optimal) and M&L; 33 attrs

- large majority of pairs in +Sim_{C-LDA-A} and +Sim_{M&L} represent matching attributes
- both models cannot deal with antonymous attribute values
- C-LDA-A utilizes larger range on the similarity scale

Agreement between Systems and Human Judgements

	C-LDA-A; +		M&L \times	
	major issue – american country	0.29	similar result – good effect	0.29
	efficient use – little room	0.29	small house – important part	0.14
+Agr	economic condition – american country	0.29	national government – new information	0.12
	public building – central authority	0.29	major issue – social event	0.26
	northern region – industrial area	0.28	new body – significant role	0.11
	early evening – previous day	0.80	effective way – efficient use	0.29
	rural community – federal assembly	0.67	federal assembly – national government	0.24
-Agr	new information – general level	0.68	vast amount – high price	0.10
	similar result – good effect	0.85	different kind – various form	0.24
	better job – good effect	0.88	vast amount – large quantity	0.36

Table: High and low agreement pairs (systems vs. human raters), together with system similarity scores as obtained from optimal model instances; 33 attrs

- -Agr_{C-LDA-A}: many adjectives with general or vague attribute meanings in combination with abstract nouns
- ▶ −Agr_{M&L}: lack of attribute-related adjective semantics
- notion of similarity underlying C-LDA-A is close to *relational analogies* (Turney, 2008)

Agreement between Systems and Human Judgements

	C-LDA-A; +		M&L ×	
	major issue – american country	0.29	similar result – good effect	0.29
	efficient use – little room	0.29	small house – important part	0.14
+Agr	economic condition – american country	0.29	national government – new information	0.12
	public building – central authority	0.29	major issue – social event	0.26
	northern region – industrial area	0.28	new body – significant role	0.11
	early evening – previous day	0.80	effective way – efficient use	0.29
	rural community – federal assembly	0.67	federal assembly – national government	0.24
-Agr	new information – general level	0.68	vast amount – high price	0.10
	similar result – good effect	0.85	different kind – various form	0.24
	better job – good effect	0.88	vast amount – large quantity	0.36

Table: High and low agreement pairs (systems vs. human raters), together with system similarity scores as obtained from optimal model instances; 33 attrs

 -Agr_{C-LDA-A}: many adjectives with general or vague attribute meanings in combination with abstract nouns

▶ −Agr_{M&L}: lack of attribute-related adjective semantics

 notion of similarity underlying C-LDA-A is close to *relational analogies* (Turney, 2008)

Agreement between Systems and Human Judgements

	C-LDA-A; +		M&L ×	
+Agr	major issue – american country	0.29	similar result – good effect	0.29
	efficient use – little room	0.29	small house – important part	0.14
	economic condition – american country	0.29	national government – new information	0.12
	public building – central authority	0.29	major issue – social event	0.26
	northern region – industrial area	0.28	new body – significant role	0.11
—Agr	early evening – previous day	0.80	effective way – efficient use	0.29
	rural community – federal assembly	0.67	federal assembly – national government	0.24
	new information – general level	0.68	vast amount – high price	0.10
	similar result – good effect	0.85	different kind – various form	0.24
	better job – good effect	0.88	vast amount – large quantity	0.36

Table: High and low agreement pairs (systems vs. human raters), together with system similarity scores as obtained from optimal model instances; 33 attrs

- -Agr_{C-LDA-A}: many adjectives with general or vague attribute meanings in combination with abstract nouns
- ► -Agr_{M&L}: lack of attribute-related adjective semantics
- notion of similarity underlying C-LDA-A is close to *relational analogies* (Turney, 2008)

Agreement between Systems and Human Judgements

	C-LDA-A; +		M&L ×	
+Agr	major issue – american country	0.29	similar result – good effect	0.29
	efficient use – little room	0.29	small house – important part	0.14
	economic condition – american country	0.29	national government – new information	0.12
	public building – central authority	0.29	major issue – social event	0.26
	northern region – industrial area	0.28	new body – significant role	0.11
	early evening – previous day	0.80	effective way – efficient use	0.29
—Agr	rural community – federal assembly	0.67	federal assembly – national government	0.24
	new information – general level	0.68	vast amount – high price	0.10
	similar result – good effect	0.85	different kind – various form	0.24
	better job – good effect	0.88	vast amount – large quantity	0.36

Table: High and low agreement pairs (systems vs. human raters), together with system similarity scores as obtained from optimal model instances; 33 attrs

- -Agr_{C-LDA-A}: many adjectives with general or vague attribute meanings in combination with abstract nouns
- –Agr_{M&L}: lack of attribute-related adjective semantics
- notion of similarity underlying C-LDA-A is close to *relational analogies* (Turney, 2008)

Conclusions and Outlook (I)

Contributions:

- approach to integrate attribute-specific topic models into distributional VSM framework
- assessed feasibility of similarity prediction along interpretable dimensions of meaning

Findings:

- 1. C-LDA-A vs. C-LDA-T:
 - C-LDA-T performs better on the full data set
 - C-LDA-A is advantageous on attribute-related subset

2. C-LDA vs. M&L:

- Iower overall performance of C-LDA models
- models capture different types of similarity
- diametric strengths and weaknesses: individual adjective vectors of C-LDA outperform those of M&L; nouns lag behind

Conclusions and Outlook (II)

Future Work:

- more thorough analysis of different shades of similarity underlying the data
- enrich noun representations of C-LDA models
- integrate semantics for attribute values
- possibly combine latent and interpretable models ?

References

- Baroni, Marco, Silvia Bernardini, Adriano Ferraresi and Eros Zanchetta (2009): The WaCky Wide Web. A Collection of Very Large Linguistically Processed Web-Crawled Corpora. Language Resources and Evaluation 43(3): 209-226.
- Blei, David, Andrew Ng and Michael Jordan (2003): Latent Dirichlet Allocation. Journal of Machine Learning Research 3: 993-1022.
- Hartung, Matthias & Anette Frank (2010): A Structured Vector Space Model for Hidden Attribute Meaning in Adjective-Noun Phrases. Proceedings of COLING, Beijing, China: 430-438.
- Li, Linlin, Benjamin Roth & Caroline Sporleder (2010): Topic models for word sense disambiguation and token-based idiom detection. Proceedings of ACL: 1138-1147.
- Mitchell, Jeff & Mirella Lapata (2009): Language Models Based on Semantic Composition. Proceedings of EMNLP, Singapore: 430-439.
- Mitchell, Jeff & Mirella Lapata (2010): Composition in Distributional Models of Semantics. Cognitive Science 34(8): 1388-1429.
- Ó Séaghdha, Diarmuid (2010): Latent Variable Models of Selectional Preference. Proceedings of ACL: 435-444.
- Ritter, Alan, Mausam & Oren Etzioni (2010): A Latent Dirichlet Allocation Method for Selectional Preferences. Proceedings of ACL: 424-434.

Thanks...

...for your attention. Questions ?

