
 1

Tutorial at COLING/ACL-98 Montreal 1998. Revised and extended version, 18 Sep 2004.

NATURAL LANGUAGE PARSERS

A "Course in Cooking"

Peter Hellwig, Heidelberg

0 Introduction

There are numerous technical reports about particular parsers and each conference on

computational linguistics adds a few more to the list. It is not our aim to survey this huge variety

of existing implementations. What we want to achieve is a basic understanding of the essentials

and to provide guidance for evaluating existing parsers as well as for putting together new ones.

For that purpose we have to take apart the known algorithms, identify the issues that arise in any

parser development, and compare the alternative solutions that exist for each identified task.

Metaphorically speaking, this paper should be read like a cookbook, and the reader is

encouraged to recombine the various ingredients in order to "cook" a new parser.

Chapter one surveys the most important issues and examines the choices one has, when

constructing a parser. Chapter two describes prototypical combinations of the basic principles

resulting in special types of parsers. Oftentimes the easiest way to understanding a theory is by

observing how it functions in practice. Therefore, chapter two is in the form of concrete

examples. This kind of presentation has extended the length of this paper. The busy reader may

skip the details and concentrate on the conclusions. The student, however, is invited to try out

each algorithm by solving the exercises in the appendix. Chapter three introduces criteria for

evaluating parsers and applies these criteria to the prototypes.

1 Parsing Issues

1.1 What is Parsing?

The definition of parsing depends on the discipline that is involved. The following answers to the

question are common

 (i) in computer science:

Parsing is the assignment of a structural description to a character string.

 (ii) in linguistics:

Parsing is the assignment of a syntactic description to a sentence.

 (iii) in knowledge-based systems:

Parsing is the assignment of a knowledge representation to an utterance.

 2

1.2 Prerequisites of a parser

A language consists of character strings structured in a specific way. The well-formed character

strings and their structures are defined by a grammar. A parser can therefore be defined more

specifically as a computer program that assigns a structural description to a given string relative

to a given grammar.

This definition implies the following prerequisites of a parser:

 (i) A grammar formalism

As a first step, a notation for drawing up grammars must be created.

 (ii) A grammar

Next, a grammar in the chosen formalism must be written for each language which the parser

should be able to handle.

 (iii) An algorithm

Finally, an algorithm must be developed which determines, whether a given input is covered by

the grammar, and if so, which description applies to it.

In the framework of Artificial Intelligence, these three tasks are known as knowledge

representation, knowledge, and knowledge processing. Different requirements characterize each

of these tasks, e.g. (i) expressiveness for the grammar formalism, (ii) adequacy for the grammar,

(iii) efficiency for the algorithm.

1.3 Connection between grammar and parser

There are three ways of connecting the description of grammatical data and the parsing

procedure:

 (i) Interpreting parser

Grammar and parsing procedure are separate. The grammar is data which is retrieved and

interpreted by the parsing routine. The grammar is "declarative", i.e. it is formulated

independently from the aspect of analysis. The algorithm is based exclusively on the syntax of

the grammar formalism, not on the contents of the individual grammar. (Aho/Sethi/Ullman

1986:3f)

Fig. 1: Interpreting parser

Grammar

 Parser as

 interpreter

 input

 language

 output

 structure

 3

 (ii) Procedural parser

Grammatical data and parsing procedure are not separate. The grammar is integrated in the

algorithm. The grammar is "procedural", i.e. it is formulated as a set of instructions for the

analysis of the input language. A new procedure must be programmed for each additional

language.

Fig. 2: Procedural parser

 (iii) Compiled parser

The grammar is drawn up in a declarative form and exists independently from the parser. Before

execution, the grammar is transformed into a procedural form by a specific program (a parser

generator; Aho, Sethi, Ullman 1986: 257f.). In the final parser, the grammar is part of the

algorithm.

Fig. 3: Compiled parser

 Parser with

 integrated

 grammar

 input

 language

 output

 structure

Grammar

Parser generator

 Parser with

 integrated

 grammar

 input

 language

 output

 structure

 4

1.4 The type of the structural description

It is common in linguistics to represent syntactic structure by tree diagrams. Two different types

of structural descriptions are widely used (Hudson 1980).

 (i) Constituency structure

The units that correspond to the nodes in a constituent tree are smaller or larger segments of the

input strings. The edges in a phrase structure tree represent the composition of larger phrases from

elementary ones. Each level in a phrase structure tree denotes another segmentation of the original

sentence or phrase. The topmost node covers the whole expression, subordinated nodes cover smaller

parts of the same expression and so on.

 a) S b) S

 NP VP NP VP

 VP NP

 NP

 Pron Aux Verb Noun Pron Verb Adje Noun

 they are flying planes they are flying planes

Fig. 4: Constituency trees

 (ii) Dependency structure

The units that correspond to the nodes in a dependency tree are all elementary segments of the

input string. The arcs denote the syntagmatic relationship between an elementary segment and its

complements (Tesnière 1959). All nodes belong to the same unique and complete segmentation.

Composed segments are present only as a combination of elementary segments which are associated with the

nodes of a partial or complete dependency tree.

 Aux Aux

 are are

 Verb Noun

 flying planes

 Pron Noun Pron Adje

 they planes they flying

Fig. 5: Dependency trees

 5

Although the nodes in the tree are labeled with words, dependency is not a relationship between

individual words but between an individual word and a phrase dominated by the word (Hellwig

1993). For example, a dependency relationships hold between a verb and its subject and between

the verb and its object. Obviously subjects and objects do not consist of single words only. They

are complex structures which are represented again by dependency trees. Technically,

dependency is a relationship between nodes and subtrees (i.e. a node together with all the nodes

it dominates). Dependency grammar was often misinterpreted in this respect and therefore

seldom used in computer systems.

Both types of structuring ask for complementary information. If constituency is the basic

relationship then the dependencies must be symbolized by additional labels (e.g. a label for

which constituent is the head of a phrase). If dependency is the basic relationship, an implicit

constituency can be derived from the tree in that any single node as well as any subtree

corresponds to a constituent. The linear precedence, which is depicted in the case of constituency

by the tree itself, must be explicitly stated in the decoration of the nodes in the dependency tree.

1.5 Complex categories and unification

A basic element as well as a phrase can be classified according to a host of features, e.g. verb or

noun, singular or plural, masculine or feminine, nominative or accusative etc. It is advantageous

to describe a syntactic unit by a category that is composed of a set of subcategories so that

various cross classifications are possible. In addition, one should distinguish between feature

types and concrete features or, in a common terminology, between attributes and values. It is

then possible to express generalizations, e.g. the agreement of two items in number or gender, by

means of attributes only. Attributes are, in a sense, variables that can, in the concrete case, be

instantiated by various values. The mechanism of instantiation and calculating agreement is often

referred to as unification. The essence of unification lies in the fact that, in contrast to

conventional pattern matching, there is no pre-established assignment of one item as pattern and

the other one as instance. The instantiation of a variable by a value can go in both directions and

the directions may differ for different attributes in the same category. Agreement may be

propagated in this way across a long distance. The whole grammar adopts the character of an

equation rather than that of a generative device. (Kratzer et al. 1974 , Hellwig 1980, Shieber

1986)

1.6 Grammar specification formats and basic recognition strategies

 (i) Production rules

The grammar consists of a set of so-called production rules by which all of the well-formed

character strings of a language are generated. The goal of the parser is to reconstruct the

derivation of the input character string from a given category (usually S or "sentence") on the

basis of these rules. If this goal can be achieved, the input is accepted and the corresponding

structure is assigned to it (Aho/Ullmann 1972).

 6

This strategy adheres to the sentence-oriented approach of generative grammar which was

introduced into linguistics by Noam Chomsky (Chomsky 1957, 1965).

 (ii) Transition networks

The fundamental idea is the simultaneous advancement within two symbol sequences: the

character string of the input and a pattern. The grammatical data is often represented as a

network. The arcs of the network denote linguistic units, the nodes of the network represent

states of the parser in the course of inspecting the input. The arcs are labeled by symbols which

define under what conditions the parser is allowed to move from one state to the next.

(Aho/Sethi/Ullman 1986: 183ff)

In the case of finite and recursive transition networks (FTN, RTN), the symbols in the patterns

are corresponding directly to the symbols in the input, i.e. these networks are equivalent to

declarative grammars. Augmented transition networks (ATN), augmented with conditions and

procedures, are patterns for processes which eventually lead to the recognition of the input

string, i.e. they are in fact flow charts of the program's actions. (Bobrow/Fraser 1969, Woods

1970)

 (iii) Complement slots

This approach is based on the assumption that the syntactic structure of a language originates

from the inherent combinatory capacity of the basic elements. The lexicon describes the

complements with which a lexical item combines. The parser checks whether any syntactic units

occur in the environment of the element that fulfill the specifications. If this is the case a new

unit is formed covering both the original element and the complements. The complements can be

thought of as fillers which fit into slots which are opened up by lexical items.

This strategy corresponds to the word-oriented treatment of syntax in traditional linguistics. The

lexical specification of complements also corresponds to strict subcategorization in generative

grammar. (Hellwig 1974, 1983, 1994, Hudson 1984, McCord 1980, Starosta/Nomura 1986)

1.7 Constructing a parse tree

The goal of the analysis is a hierarchical structure which is usually represented as a labeled tree.

The root of the tree is often known in advance. (In the case of the derivation-oriented analysis

the category of the root is identical with the starting symbol of the generation.) The exterior

nodes of the tree are also known. They are identical with the elementary units of the input string

and are identified and classified by means of the lexicon. What is unknown is the interior space

of the tree. In the following illustrations the area of the unknown is dotted. We have the

following point of departure:

Fig. 6: The tree to be filled in

 7

The interior of the tree has to be filled, step by step, with the aid of the grammar. The following

strategies differ in how they proceed from the known to the unknown.

 (i) Top-down analysis

The root of the tree is the starting point. Proceeding from top to bottom, one tries to add more

nodes according to the grammar, until the sequence of terminal nodes is reached. For example,

after a rule S -> NP VP has been applied, we have the following situation:

Fig. 7: Top-down analysis

The top-down strategy makes use of derivation rules in the direction from left to right.

Connecting a symbol in the tree occurring on the left side of the rule with the symbols on the

right side of the rule is called "expansion". The procedure is also said to be "expectation driven"

since the new symbols are hypotheses of what units will be found in the input string.

 (ii) Bottom-up analysis

Here, the lexical elements are the point of departure. In accordance with the grammar, new nodes

are linked to old ones, thus proceeding from bottom to top until the root of the tree has been

reached. After a rule NP -> Det N has been applied, the following situation exists:

Fig. 8: Bottom-up analysis

The bottom-up strategy makes use of derivation rules in the direction from right to left.

Connecting the symbols in the tree corresponding with the right hand side of a rule with the

symbol on the left side of the rule is called "reduction". The procedure is also said to be "data

driven" since only those categories that are present in the input lead to the application of a rule.

 8

 (iii) Depth first

The left-most (or the right-most) symbol of the symbols created is always processed first, until a

terminal symbol has been reached (or, in the case of bottom-up analysis, the root of the tree has

been reached). This strategy is reasonable in combination with a top-down analysis since the

terminal nodes are processed at the earliest possible stage and will verify or disprove the

derivation. In the following tree, the left context of the constituent A is already verified by the

derivation of the terminals t1 till tm. Hence one can be sure that the expansion of A is worth the

effort.

Fig. 9: Depth first

 (iv) Breadth first

Here symbols are processed in the sequence of their creation. As a consequence, the tree is filled

in its entire width. This is a useful organization for a bottom-up analysis since all of the

immediate constituents must have reached the same level and be complete with respect to their

own constituents before they can be linked to a larger constituent. A stage in such a breadth-first

analysis is illustrated by the following tree:

Fig. 10: Breadth first

 9

Both top-down analysis and bottom-up analysis have advantages and disadvantages. Ideally both

principles should be combined. The different strategies apply to dependency trees as well,

although linguistically, they mean something different here, as compared to phrase structure

trees. In the dependency framework, top-down analysis proceeds from the governing to the

dependent element while bottom-up analysis proceeds from the dependent to the governing

element. Whilst the first alternative can be said to be expectation-driven, both procedures are

more or less data-driven, since all of the nodes in a dependency tree represent lexical elements.

1.8 Processing the input

How the parser processes the input is another issue to be decided. The following possibilities

exist, which can partly be combined:

(i) The input is processed from left to right (i.e. from position 1 to n).

(ii) The input is processed from right to left (i.e. from position n to 1).

(iii) There is just one pass through the input during the whole analysis.

In this case the transition from one position to the next is the primary principle of control.

Sentence boundaries may be crossed readily and entire texts can be parsed on-line.

(iv) There are several passes through the input, because other control principles guide the

process.

(v) In addition to one path processing from left to right, it may be stipulated that the next word

will be accepted only if the complete context on the left of it has already been accepted. A parser

with this property is called left-associative.

(vi) Processing the input is not continuous at all but starts from several points in the string and

proceeds from there to the left and to the right (Island-parsing), or it is tried to identify the edges

of a constituent first and then fill the inner space. Cascaded application of parsers (e.g. FSA-

transducers) is one of the techniques.

1.9 Handling of alternatives

Alternatives occur while filling the syntax tree because there is not (yet) enough information

about the context or because the input is ambiguous. If alternative transitions to the next state are

possible in the course of parsing the following actions can be taken:

 10

 (i) Backtracking

The alternatives are processed one after the other. The path of one particular alternative is

pursued as far as possible. Then the parser is set back to the state at which the alternative arose

and the path of the next alternative is tracked. This procedure is continued until all alternatives

have been checked.

 (ii) Parallel-processing

All alternatives are pursued simultaneously. This means that the program's control has to cope

with several concurrent results or paths. If the hardware does not support real parallel

processing, the steps within the parallel paths are in fact processed consecutively, i.e. the control

constantly switches between paths.

 (iii) Reduction of alternatives by looking ahead

The choice of a rule of the grammar is made dependent on the next k categories in the input

beyond the segment to be covered by the rule. If there is only one possibility left, after taking

into account the next k symbols, the grammar has the LL(k) or (LR)k property and the parser can

work deterministically. Obviously, natural languages as a whole do not have the LL(k) or LR(k)

property, since ambiguity is their inherent feature. Nevertheless, it should be possible to process

large portions of text deterministically if enough context is taken into account.

1.10 Control of results

The parser must keep track of the intermediate results obtained at a given moment and the work

still to be done until the final result is reached. There are two possibilities:

 (i) Goal oriented recognition

The parser works on the final result right from the beginning. Intermediate hypotheses about the

syntactic structure of the input are introduced, rejected or refined until the final analysis is

achieved. One way to organize this task is via the consumption technique: Potential categories

that have to be verified are put in a workspace; those categories that were recognized are then

discarded from the workspace. An input is accepted when there are no more hypotheses to be

tested and the workspace is empty. Of course, somewhere the information must be saved that is

necessary for yielding a syntactic description as the final result.

 (ii) Storage of all intermediate results in a chart

The parser operates with a working area in which all intermediate results are stored separately

and remain accessible at all times. Every intermediate result can be re-used in any new

combination. This data structure is called a "well-formed substring table" or a "chart". At the end

of the execution the table should contain, among other things, the complete result. This

organization guarantees that no work is done more than once.

 11

1.11 Well-formed substring table (Chart)

The well-formed substring table associates structural descriptions with input segments. Each

entry in the table contains an indication of an input segment, e.g. by storing the positions of the

segment's start and its end, and the information so far created by the parser for this particular

segment, e.g. its grammatical category or its complete parse tree.

A well-formed substring table is often visualized as a chart with vertices and arcs. The vertices

mark the borderlines between the segments. The arcs bridge the span between the beginning and

the end of each segment. The vertices are numbered, the arcs are labeled with the categories of

the constituents. The smallest arcs bridge the segments associated with the lexical elements.

Longer arcs bridge non-terminal constituents. If an arc bridges the entire input string a complete

result has been found. (Varile 1983). The final chart for the ambiguous sentence "They are flying

planes" looks like this (arcs have been drawn above and below the vertices for the sake of

perspicuity, the arcs involved in the adjective reading are bold:

 S

 VP

 NP VP

 NP

 Pron Aux Verb Noun

 o THEY o ARE o FLYING o PLANES o

 Verb Adje

 NP

 VP

 S

Fig. 11: A chart

The non-ambiguous constituents NP:they and NP:planes are built into both sentences although
they were created just once. The arcs could also be labeled by the complete parse trees that
adhere to the spanned segments. This is to be recommended if the grammatical features of the
partial segments change (by means of the unification technique) when they are included in a
larger construction.

1.12 Overall Control

There are many possibilities for organizing the overall control of the parser. The steps of the parser
depends on specific mix of the chosen basic alternatives (Winograd 1983: 363ff.). It is very
common to use the continuous progression in the input as the primary organizing principle. More
exotic parsers use special data structures (e.g. a so-called agenda, Kay 1977) in order to arrive at a
more flexible behavior of the parser. Object-oriented architectures (e.g. so-called word-experts,
Small/Rieger 1982) as well as parallel processing open up a wide field for innovations. Creating
such new designs is left to the students of this tutorial.

 12

1.13 Checklist

Here is a list of the parsing issues mentioned in this chapter. In chapter three we will use this list

in order to characterize each prototype.

(1) Connection between grammar and parser

 interpreting parser

 procedural parser

 compiled parser

(2) The type of the structural description

 constituency descriptions

 dependency descriptions

 complex categories

(3) Grammar specification format

 production rules

 transition networks

 complement slots

(4) Recognition strategy

 category expansion (top-down)

 category reduction (bottom-up)

 state transition

 slot filling

(5) Processing the input

 from left to right or from right to left

 one-pass (depth-first)

 several passes (breadth-first)

 left-associative

 non-continuously (island parsing, edges-first, cascaded)

(6) Handling of alternatives

 backtracking

 parallel processing

 looking ahead

 well-formed substring table

(7) Control of results

 goal oriented recognition of final result(s)

 all intermediate results stored (chart)

 13

2 Prototypical parsers

The aim of this chapter is purely illustrative. On the one hand, there are many other typical

parsers (for example, Hellwig 1989 contains 16 prototypes). On the other hand, each prototype

can be implemented in various programming styles. The algorithms presented below are

certainly not to be implemented in the same fashion as they are described. The main criterion of

the presentation has been perspicuity for the human reader rather than proximity to the machine.

What I wanted to achieve was a non-technical presentation of technical issues. In fact, I have

experimented with various representations of the algorithms, for example with pseudocode and

Nassi-Shneiderman diagrams (cf. the recursive algorithm for PT-1). In my feeling, given the

purpose of this tutorial, it is too time-consuming for the reader to work through such technical

specifications which are certainly more adequate from the view of a modern style of

programming. Eventually I structured the presentation of algorithms in form of blocks with

labels and go-tos. The contents of each block are mandatory, their control by go-tos is not. I

recommend as general exercise for the student who is going to become a programmer to

reformulate each algorithm so that all gotos are eliminated.

PT-1. Top-down parser with backtracking

Illustrates:

(1) Connection between grammar and parser: Interpreting parser; grammar separate from

procedure.

(2) Linguistic structure assigned: Constituency trees.

(3) Grammar specification format: Context-free production rules.

(4) Recognition strategy: Category expansion (top-down); expectation driven.

(5) Processing the input: Left-to-right, one pass (depth-first); left-associative.

(6) Treatment of alternatives: Schematic backtracking.

(7) Control of results: Goal oriented recognition; consumption technique.

References: Aho/Ullman 1972-73:289ff, Hellwig 1989: 378ff, Winograd 1983:94ff

Prerequisites:

(P-1) An ordered set of production rules of a context-free phrase structure grammar without

left recursion. A key to identify each rule. A variable indentifying the current rule. At the

beginning the current rule is the first rule.

(P-2) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

(P-3) An input table which contains the words of the input together with their categories and

their position in the sequence. The categories have been assigned to the words according to the

lexicon in a preceding phase.

(P-4) A variable P for the current position in the course of moving forward from the

beginning to the end of the input. At the beginning P identifies the first word.

 14

(P-5) A working space consisting of a number of entries. The last entry is the current one,

identified by the variable A. The working space functions as a stack. A preceding entry can

become the current one again (by backtracking), all subsequent entries will then be

overwritten. Each entry contains a derivation, i.e. a sequence of symbols generated according to

the grammar rules. The current entry contains the latest derivation. The symbol farthest left in

the current entry is the symbol to be processed next, called the "due symbol". At the beginning,

the working space consists of one entry only, containing the initial symbol of the grammar (e.g.

"S").

(P-6) A backtracking store, i.e. a stack which is augmented whenever an alternative arises.

Each entry contains all the information necessary to reconstruct the state of affairs that existed

before one of several applicable rules has been chosen. This includes: the current position in the

input, the current entry in the working space, the next rule which is an alternative to the rule

chosen. Only the last entry is accessible in a stack. In order to access former entries, later entries

must be removed from the stack. At the beginning the backtracking store is empty. We use the

variable B in order to identify the states of the backtracking store.

Algorithm:

(A-1) Expansion (of non-terminal categories). If the current entry in the working space is

empty then go to (A-4) for backtracking. Loop through the rules starting with the current rule

and incrementing the current rule variable. If the due symbol in the current derivation is the same

as the symbol on the left side of the current rule then create a new derivation by replacing the

due symbol in the current derivation by the sequence of symbols on the right side of the rule. If

the due symbol is situated on the left side of a further rule, make a new entry in the backtracking

store containing the current position, the current row in the working table and the key of the next

applicable rule. Then add a new entry to the working space and store the new derivation in it.

The first symbol of the new derivation is now the new due symbol. If a replacement has taken

place in this block then go to (A-1) in order to try an expansion of the new derivation. If no

expansion was possible then go to (A-2) in order to check whether the due symbol is a terminal

category.

 (A-2) Recognition (of terminal categories). If the due symbol in the current entry agrees with

the category at the current position in the input table then add a new entry to the working space,

discard the recognized symbol from the derivation and store the rest of the symbols as the new

derivation. As a consequence, the next symbol in the sequence becomes the due symbol. Increase

the current position by 1 and go to (A-3). If the due symbol does not match with the category in

the input table then go to (A-4) for backtracking.

(A-3) Final condition. If the current position does not exceed the number of elements in the

input table then go to (A-1) in order to repeat the steps expansion and recognition. If the current

position exceeds the number of elements in the input table by one (i.e. the input is exhausted)

then there should be no symbols in the current derivation, i.e. all expectations should be met by

the input. If symbols are left in the derivation then go to (A4) for backtracking. Otherwise accept

the input and create an output. If all readings of a possibly ambiguous input should be detected

then go to (A-4) to check the alternatives, else finish the procedure.

(A-4) Backtracking. If the backtracking store is empty then finish the procedure. Reject the

input if the final condition in (A-3) was never met. If the backtracking store is not empty then

reconstruct the situation in the working space according to the top-most entry in the backtracking

store: Set the current position, the current entry in the working space and the current rule to the

values specified in the backtracking store. Then remove the entry from the backtracking stack.

 15

As a consequence, all entries in the working space being created after the last alternative are lost.

The one-but-latest alternative if any is now accessible on the backtracking store. Go to (A-1).

Example

GRAMMAR G1

Rules Lexicon

(R-1)

S -> NP VP

vi =

{sleep, fish}

(R-2) VP -> vi vt = {study, visit, see, enjoy}

(R-3) VP -> vt NP det = {the, no, my, many}

(R-4) VP -> vt NP PP adj = {foreign, beautiful}

(R-5) NP -> n n = {tourists, pyramids,

(R-6) NP -> det n friends, fish, cans,

(R-7) NP -> det adj n Egypt, we, they}

(R-8) PP -> prep NP prep = {in, by, with}

INPUT TABLE

Input: they visit friends in Egypt

Lexicon: n vt n prep n

Position: 1 2 3 4 5

WORKING SPACE BACKTRACKING STORE

A Derivations Explanation P B Back to

1 S state at start 1

 0

2 NP VP expansion R-1

3 n VP expansion R-5 1

P=1 A=2 R-6

4 VP recognized n 2

5 vi expansion R-2 2 P=2 A=4 R-3

4 VP B=2 back to A=4 2

 1 cf. above

5 vt NP expansion R-3 2

P=2 A=4 R-4

6 NP recognized vt 3

7 n expansionR-5 3

P=3 A=6 R-6

8 - recognized n 4

6 NP B=3 back to A=6 3

 2 cf. above

7 det n expansion R-6 3 P=3 A=6 R-7

6 NP B=3 back to A=6 3

 2

cf. above

7 det adj n expansion R-7

 16

4 VP B=2 back to A=4 2

 1

cf. above

5 vt NP PP expansion R-4

6 NP PP recognized vt 3

7 n PP expansion R-5 2

P=3 A=6 R-6

8 PP recognized n 4

9 prep NP expansion R-8

10 NP recognized prep 5

11 n expansion R-5 3

P=5 A=10 R-6

12 - recognized n 6

 One parse found. Construct parse tree with R-1, R-5, R-4, R-5, R-8, R-5.

10 NP B=3 back to A=10 5

 2 cf. above

11 det n expansion R-6 3 P=5 A=10 R-7

10 NP B=3 back to A=10 5

 2

cf. above

11 det adj n expansion R-7

6 NP PP B=2 back to A=6 3

 1 cf. above

7 det n PP expansion R-6 2 P=1 A=6 R-7

6 NP PP B=2 back to A=6 3

 1

cf. above

7 det adj n PP expansion R-7

2 NP VP B=1 back to A=2 1

 0

3 det n VP expansion R-6 1 P=0 A=2 R-7

2 NP PP B=1 back to A=2 1

 0

3 det adj n PP expansion R-7

 No more parses found.

Legend: The diagram shows the states of the working space and the backtracking store at

subsequent instances in time. Each row illustrates one state. A = current entry in the working space,

P = current position in the input table, B = top-most entry in the backtracking store, R-i = key of a

rule.

Generating a parse tree

The described algorithm consumes the terminal categories of the input table from left to right until

the workspace is empty. It is a pure recognition algorithm. If the parser should output a structural

description of the input sentence then the required information must be stored somehow. The

following possibilities exist: (i) Each recognized symbol is not really discarded but is just

temporarily made "invisible". A tree is created in parallel with the expansion steps of the parser

 17

(and revised with each backtracking instruction). (ii) A key is stored consisting of all successfully

applied rules; a parse tree is generated at the end by applying these rules. The latter procedure

yields the following output for the above example:

 Parse key: R-1, R-5, R-4, R-5, R-8, R-5

 Parse tree: Rule:

 S

 NP VP R-1

 n R-5

 vt NP PP R-4

 n R-5

 prep NP R-8

 n R-5

 they visit friends in Egypt

Implementation of PT-1 by recursive procedure calls

The following algorithm uses recursive procedure calls for expansion and backtracking instead of a
working space and a backtracking store. The stacks that have been maintained manually in PT-1 are
now taken care of by the operating system which keeps track of the procedure calls and returns.

Prerequisites:

(P-1) An ordered set of production rules of a context-free phrase structure grammar without

left recursion.

(P-2) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

 18

(P-3) The following functions:

parser() - the main procedure

read() - reads one sentence from the input

look_up_lexicon() - associates words with part-of-speech categories

expansion() - replaces non-terminal categories recursively according to the

production rules and returns the variable success

(P-4) The following variables:

Preterminals - contains the string of word categories

Constituents - contains the categories resulting from the expansion of the

start symbol

Position - stores the actual word position

Parse - contains a concatenation of numbers identifying the rules

applied in the expansion

SaveConstituents - saves the value of Constituents for backtracking

SavePosition - saves the value of Position for backtracking

SaveParse - saves the value of Parse for backtracking

Success - yields 1 in case of success and 0 in case of failure

Algorithm

1. Structogram of the parsing procedure:

parser()

Sentence = read() /* a sentence is read from the input */

Preterminals = look_up_lexicon (Sentence)

/* this function outputs a sequence of preterminal categories

which are associated with the words in the sentence according to

the lexicon */

Constituents="S" /* initial configuration */
Position=1
Parse=0

Success = expansion(Constituents, Preterminals, Position, Parse)

end parser

 19

2. Structogram of the expansion procedure:

expansion(Constituents,Preterminals,Position,Parse)

/* recognize */

Loop while 1st symbol in Constituents = symbol in Preterminals at

Position and Position <= the number of elements in Preterminals

Constituents=Constituents_with_first_element_erased

Position=Position + 1

/* assess result */

 if Constituents empty

 & Position > number of preterminals
yes no

 if Constituents not empty &

 Position < number of
 no preterminals

yes

print_parse_tree(Parse)
return (Success=1) return (Success=0) Success=0

/* expansion */

SaveConstituents=Constituents
SaveParse=Parse
SavePosition=Position

Wanted = 1st category in Constituents

loop R = 1 until number of rules

 if left symbol in rule R = Wanted

 yes no

 Constituents = Constituents_with_first_symbol_

 replaced_by_smbols_on_left_side_of_rule_R

 Parse=Parse concatenated with R
 Success = expansion(Constituent, Preterminals,

 Position, Parse)

 if Success=1 no
 yes /* backtracking */

 Constituent=SaveConstituents

 break Parse=SaveParse

 Position=SavePosition

return (Success)
end expansion

 20

Here is a trace of the recursive PT-1 parser. Compare the flow with the original version.

parser
Sentence="they visit friends"
Preterminals="n,vt,n"
Constituents="S"
Position=1
Parse=0
 Success=expansion("S", "n,vt,n", 1, 0)

/*expansion*/
SaveConstituents="S"
SaveParse=0
SavePosition=1
Wanted="S"
Loop R=1
Constituents="NP,VP"
Parse=1

 Success=expansion("NP,VP", "n,vt,n", 1, 1)
/*expansion*/
SaveConstituents="NP,VP"

SaveParse=1
SavePosition=1
Wanted="NP"
Loop R=1,2,3,4,5
Constituents="n,VP"
Parse=1+5

 Success=expansion("n,VP", "n,vt,n", 1, 1+5)
/*recognition*/
Constituents="VP"
Position=2
/*expansion*/
SaveConstituents="VP"
SaveParse=1+5
SavePosition=2
Wanted="VP"
Loop R=1,2
Constituents="vi"

Parse=1+5-2+

 Success=expansion("vi", "n,vt,n", 2, 1+5+2)
/*expansion*/
SaveConstituents="vi"
SaveParse=1+5+2
SavePosition=2
Wanted="vi"
Loop R=1,2,3,4,5,6,7,8
return Success=0

end expansion

 /*backtracking*/

Constituent="VP"

Parse=1+5

Position=2

Loop R=3

Constituents="vt, NP"
Parse=1+5+3

 21

 Success=expansion("vt,NP","n,vt,n",2,1+5+3)
/*recognition*/
Constituents="NP"

Position=3

 /*expansion*/
SaveConstituents="NP"
SaveParse=1+5+3
SavePosition=3
Wanted="NP"

Loop R=1,2,3,4,5

Constituents="n"
Parse=1+5+3+5

 Success=expansion("n","n,vt,n",3,1+5+3+
5)
Constituents=""
Position=4
print_parse_tree(1+5+3+5)
return Success=1

end expansion

 break

return Success=1

end expansion

 break
return Success=1

end expansion

 break
return Success=1

end expansion

 break
return Success=1

end expansion

end parser

Evaluation

(1) Efficiency. Blind generation of expansions. Schematic backtracking, many times. The same

work is done repeatedly because all intermediate results are lost that were created beyond the
point of backtracking. Nevertheless, the first complete result is usually reached much earlier
than the time needed to explore all possible alternatives. This is due to the left-to-right depth-
first expansion of categories. The parser arrives at terminal categories that can be verified
relatively soon and only such terminal categories are generated that fit into the left context.
(Besides, the algorithm of PT-1 is, in principle, the same as the proof mechanism of
PROLOG. Parsers that rely on the build-in mechanisms of PROLOG (Pereira/Warren 1983)
share the degree of efficiency with PT-1.)

(2) Coverage. Context-free grammar, however left-recursive rules are not admitted. A lot of

phenomena of natural language are not covered by the example prototype. For example, the
consumption technique is not suitable for calculating agreement.

(3) Drawing up lingware. A well-known grammar type; side effects will result from the change

of rules.

 22

PT-2. Top-down parser with parallel-processing

Illustrates:

(1) Connection between grammar and parser: Interpreting parser; grammar separate from

procedure.

(2) Linguistic structure assigned: Constituency trees.

(3) Grammar specification format: Context-free production rules.

(4) Recognition strategy: Category expansion (top-down); expectation driven.

(5) Processing the input: Left-to-right, one pass (depth-first); left associative.

(6) Treatment of alternatives: Parallel processing (the only difference to P-1).

(7) Control of results: Goal oriented recognition; consumption technique.

References: Hellwig 1989: 381ff, Kuno/Oettinger 1963, Winograd 1983:103ff

Prerequisites:

(P-1) An ordered set of production rules of a context-free phrase structure grammar without

left recursion.

(P-2) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

(P-3) An input table which contains the words of the input together with their categories

and their position in the sequence. The categories have been assigned to the words according to

the lexicon in a preceding phase.

(P-4) A variable P for the current position in the course of moving forward from the

beginning to the end of the input. At the beginning P identifies the first word.

(P-5) A working space consisting of a varying number of entries. As opposed to PT-1, all

entries are accessible at the same time. They contain the set of all derivations that can be

generated according to the grammar up to the current position in the input. The symbols farthest

to the left in each row are the due symbols. At the beginning, the working space consists of one

entry only, containing the initial symbol of the grammar (e.g. "S").

Algorithm:

(A-1) Expansion (of non-terminal symbols). Replace any due symbol in any entry of the

working space according to any production rule that is applicable. Store each expanded

derivation in a new entry. Repeat the same process for the derivations in all new entries until no

due symbol can be further expanded. Go to (A-2).

(A-2) Recognition (of terminal symbols). Remove from the working space all entries whose

due symbol does not agree with the category at the current position in the input table. If no entry

is left, then reject the input and quit the procedure. In the remaining entries remove the due

symbol from the derivation. As a consequence, the next symbol in each derivation becomes the

due symbol if there is any. Increase the current position by 1, and go to (A-3).

(A-3) Final condition. If the current position does not exceed the number of words in the input

table then go to (A-1). If the current position exceeds the number of elements in the input table

by one (i.e. the input is exhausted) and at least one entry with no symbol exists in the working

 23

space (i.e. in which all symbols are recognized) then accept the input and quit the procedure.

Else reject the input and quit the procedure.

Generating a parse tree. If the number of all the applied rules is stored with each derivation one

eventually arrives at a key that can serve for creating a parse tree in the same way as described

for PT-1 (compare the last column in the example below).

Example

GRAMMAR G1 (see above)
INPUT: they visit friends in Egypt

WORKING SPACE

Position

Input

Lexicon Derivation Explanation,

keys of applied rules
1 they n S

NP VP

n VP

det n VP

det adj n VP

start

1

1,5

1,6

1,7

VP 1,5

recognized n

2 visit vt vi

vt NP

vt NP PP

1,5,2

1,5,3

1,5,4

NP

NP PP

1,5,3

1,5,4

recognized vt

3 friends n n

det n

det adj n

n PP

det n PP

det adj n PP

1,5,3,5

1,5,3,6

1,5,3,7

1,5,4,5

1,5,4,6

1,5,4,7

-

PP

1,5,3,5

1,5,4,5

recognized n

4 in prep prep NP 1,5,4,5,8

NP 1,5,4,5,8

recognized prep

5 Egypt n n

det n

det adj n

1,5,4,5,8,5

1,5,4,5,8,6

1,5,4,5,8,7

- 1,5,4,5,8,5

recognized n,

save parse key

Legend: Each block in the diagram illustrates one cycle of expansions and a subsequent
recognition. The shaded portions contain the results of the recognition procedure; they form the
initial state for the next cycle of expansions.

Evaluation

(1) Efficiency. This parser always creates the maximum number of expansions. As a

consequence, the same amount of effort is needed for finding the first result as for finding all

results. On the other hand, no work is done twice as with PT-1.

(2) Coverage and lingware. The same as PT-1.

 24

PT-3. Top-down predictive analyzer (with Greibach normal form grammar)

Illustrates:

(1) Connection between grammar and parser: Interpreting parser; grammar separate from

procedure.

(2) Linguistic structure assigned: Constituency trees.

(3) Grammar specification format: Context-free production rules in Greibach normal form.

(4) Recognition strategy: Combination of category expansion (top-down), expectation driven,

and category reduction (bottom-up), data driven.

(5) Processing the input: Left-to-right, one pass (depth-first); left associative.

(6) Treatment of alternatives: Looking ahead by means of a special form of the grammar.

(7) Control of results: Goal oriented recognition; consumption technique.

References: Hellwig 1989: 382ff, Kuno/Oettinger 1963, Greibach 1964, Kuno 1965, Dietrich/Klein

1974: 81ff, Kuno 1976

Prerequisites:

(P-1) An ordered set of production rules of a context-free phrase structure grammar in Greibach

normal form. The first category on the right side of each rule is a lexical symbol (parts-of-

speech, grammatical features). The other categories on the right side of rules must be non-

terminal. This kind of a grammar is created by recursively substituting the first category on

the right side of the rules of the original grammar top-down depth-first until a lexical

symbol is reached and by introducing new non-terminal categories for the rest of the rule, if

necessary. The idea is to dislocate the process of top-down expansion from the parser into

the grammar. At run-time the selection of rules is narrowed down to those rules that start

with the lexical category of the actual word in the input. The following format of rules

emphasizes the predictive character of this grammar:

 Rules must have the form

 (A,a) | v or

 (A,a) | -

where "A" is a single non-terminal category, "a" is a single lexical category and "v" is a

sequence of one or more non-terminal categories. "A" is the left-side symbol of a common

production rule, "a" is the first category on the right side of a common rule (the "left

handle") and "v" covers the rest of the common rule.

(P-2) through (P-6) are the same as with PT-1.

Algorithm

(A-1) Prediction: Form a pair of the due symbol in the working space and the category at the

current position in the input table. If there is a rule with for this pair then create a derivation by

replacing the due symbol on a new line in the working space by the symbols on the right side of the

rule. If there is another rule for the same pair then make a new entry in the backtracking store

containing the current position, the current row in the working table and the key of the next

applicable rule. Increase position by one, go to (A2). If there is no rule matching the pair but there

 25

is an alternative lexical category then form a new pair with this category and go to (A-1). If there is

no matching rule and no lexical alternative then go to (A-3)

(A-2) Final condition. If the current position does not exceed the number of elements in the

input table then go to (A-1). If the current position exceeds the number of elements in the input

table by one (i.e. the input is exhausted) then there should be no symbols in the current

derivation, i.e. all expectations should be met by the input. If symbols are left in the derivation

then go to (A3) for backtracking. Otherwise accept the input and create an output. If all readings

of a possibly ambiguous input should be detected then go to (A-3) to check the alternatives, else

finish the procedure.

(A-3) Backtracking. If the backtracking store is empty then finish the procedure. Reject the

input if the final condition in (A-2) was never met. If the backtracking store is not empty then

reconstruct the situation in the working space according to the top-most entry in the backtracking

store: Set the current position, the current entry in the working space and the current rule to the

values specified in the backtracking store. Then remove the entry from the backtracking stack.

As a consequence, all entries in the working space being created after the last alternative are lost.

The one-but-latest alternative if any is now accessible on the backtracking store. Go to (A-1).

Example

GRAMMATIK G1-GNF (Greibach normal form, weakly equivalent with G1):

Rules Lexicon

(R-1)

(S,n) | VP

vi =

{sleep, fish}

(R-2) (S,det) | N VP vt = {study, visit, see, enjoy}

(R-3) (S,det) | AN VP det = {the, no, my, many}

 adj = {foreign, beautiful}

(R-4) (VP,vi) | - n = {tourists, pyramids,

(R-5) (VP,vt) | NP friends, fish, cans,

(R-6) (VP,vt) | NP PP Egypt, we, they}

 prep = {in, by, with}

(R-7) (NP,n) | -

(R-8) (NP,det) | N

(R-9) (NP,det) | AN

(R-10) (N,n) | -

(R-11) (PP,prep)| NP

(R-12) (AN,adj) | N

INPUT TABLE

Input: they visit friends in Egypt

Lexicon: n vt n prep n

Position: 1 2 3 4 5

 26

WORKING SPACE BACKTRACKING STORE

A Prediction Input P B Back to

1 S n 1 0

2 VP vt 2

3 NP n 3 1

P=2 A=2 R-6

4 - prep 4

2 VP vt 2 0

3 NP PP n 3

4 - PP prep 4

5 NP n 5

6 - - 6

Evaluation

(1) Efficiency. The predictive analyzer is expectation-driven and data-driven at the same time.

That is why it is relatively efficient. Instead of 25 symbol substitutions and 10 times

backtracking that are performed by PT-1 with the same input, the predictive analyzer has

explored all alternatives with 8 substitutions and backtracks just once. (Even this one time

could be avoided by changing the grammar a little bit.)

(2) Coverage. The same as PT-1.

(3) Lingware. The biggest drawback. The structural description of a Greibach form grammar

differs completely from the original grammar and contains unnatural constituents.

Note: The predictive analyzer can also be implemented on the basis of a parallel processing of

alternative predictions similar to PT-2.

 27

PT-4. Top-down parser with divided productions
(Earley's algorithm, "Active Chart Parser")

Illustrates:

(1) Connection between grammar and parser: Interpreting parser; grammar separate from

procedure.

(2) Linguistic structure assigned: Constituency trees.

(3) Grammar specification format: Context-free production rules.

(4) Recognition strategy: Top-down strategy with bottom-up phases; expectation and data-driven.

(5) Processing the input: Left-to-right, one pass (depth-first); left associative.

(6) Treatment of alternatives: No backtracking; use of a well-formed substring table.

(7) Control of results: All intermediate results accessible.

References: Earley 1970, Aho/Ullman 1972: 320ff., Winograd 1983: 105ff, Hellwig 1989: 396,

Covington 1994

Prerequisites:

(P-1) An ordered set of production rules of a context-free phrase structure grammar without

restrictions.

(P-2) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

(P-3) An input table which contains the words of the input together with their categories

and their margins in the sequence. The categories have been assigned to the words according to

the lexicon in a preceding phase.

(P-4) A working table (well-formed substring table, chart) consisting of an incremental

number of rows. For search purposes the table is arranged in sections. All rows with the same

right margin r form a section i, where r = i. Each row contains a description of one segment of

the input. The segment is identified by its left and right margin. (Margins can be represented in

various ways, for example as a simple count of boundaries between words.) The description

consists of a so-called divided production, i.e. a production rule furnished with a dot. The dot

divides the immediate constituents of the rule into a left portion that is verified by the actual

segment and a right portion that is still unmatched. A dot can also occur before or after all

constituents of a rule. In the first case, the rule is not yet processed, in the second case the rule is

completely verified. The symbol following the dot in a divided production is the due symbol. At

the beginning, the working table contains the divided production '# -> .S' in the first row,

where 'S' is the initial category of the grammar and '#' is a additional non-terminal symbol.

This means that a sentence is expected but nothing of it has been seen yet. The left and the right

margin for this production equal 0.

(P-5) Two variables, CUR and NEW, which identify rows in the table. CUR refers to the

production to be processed, NEW refers to the resulting production which is added to the

table at the end. At the beginning both are set to 1. Subsequently NEW advances ahead of CUR,

CUR is incremented continuously running through former values of NEW. Eventually CUR

catches up NEW and the procedure ends.

 28

Algorithm:

(A-1) Predictor. If a non-terminal constituent is due in the production of row CUR then do the

following, else go to (A-2). Extract from the grammar all productions that match with the due

symbol. Insert a dot in front of the right-hand side of each production. Store the productions in

new rows of the table (increase NEW accordingly). Set both the left and the right margin in row

NEW to the value of the right margin of CUR. If an identical production with the same left and

right margins already exists in the table then undo the step. Go to (A-4).

(A-2) Scanner. If a lexical constituent is due in the production of row CUR then do the

following, else go to (A-3). If the word in the input table at the position of the right margin of

CUR plus 1 agrees with the category of the due constituent, then copy the production in row

CUR into a new row (increase NEW accordingly), move the dot in the production beyond the

recognized constituent, adopt the left margin for row NEW from row CUR and set the right

margin in NEW to the value of CUR plus 1. Go to (A-4).

(A-3) Completer. If the production in the row CUR is complete, i.e. the dot has been moved

beyond all constituents, then do the following. Check all previous productions whose right

margin is identical to the left margin of the complete production as to whether they contain a due

constituent with the same category as the category of the complete production. Copy such

productions into a new row of the table (increase NEW accordingly), move the dot beyond the

recognized constituent, adopt as the left margin in NEW the left margin of the copied production,

set the right margin in NEW to the right margin of the complete production.

(A-4) Final condition. If CUR equals NEW then the work table is exhausted. Go to (A-5). Else

increase CUR by 1 and go to (A-1).

(A-5) Check for a complete result. If there is at least one production '#' -> S.' in the

table with the left margin equal to 0 and the right margin equal to the number of words in the

input table then accept the input and finish the procedure. Else reject the input and finish the

procedure.

 29

Example:

GRAMMAR G2 (ambiguous, includes G1)

Rules Lexicon

(R-1)

S -> NP VP

vi =

{sleep, fish}

(R-2) VP -> vi vt = {study,visit, see, enjoy}

(R-3) VP -> vt NP det = {the, no, my, many}

(R-4) VP -> VP PP adj = {foreign, beautiful}

(R-5) NP -> n n = {tourists, pyramids,

(R-6) NP -> det n friends, fish, cans,

(R-7) NP -> det adj n Egypt, we, they}

(R-8)

(R-9)

NP -> NP PP

PP -> prep NP

 prep = {in, by, with}

INPUT TABLE

Input: they study fish in cans

Lexicon: n vt vi/n prep n

Margins: 0 1 1 2 2 3 3 4 4 5

WORKING TABLE

Section 0:

 Divided productions Left
margin

Right
margin

Explanation

 (1) # -> .S 0 0 state at start

 (2) S -> .NP VP 0 0 predictor for (1) by R-1

 (3) NP -> .n 0 0 predictor for (2) by R-5

 (4) NP -> .det n 0 0 predictor for (2) by R-6

 (5) NP -> .det adj n 0 0 predictor for (2) by R-7

 (6) NP -> .NP PP 0 0 predictor for (2) by R-8

 (*) NP -> .n 0 0 predictor for (6) by R-5

 (*) NP -> .det n 0 0 predictor for (6) by R-6

 (*) NP -> .det adj n 0 0 predictor for (6) by R-7

 (*) NP -> .NP PP 0 0 predictor for (6) by R-8

 30

Section 1:

 (7) NP -> n. 0 1 scanner for(3), they

 (8) S -> NP. VP 0 1 completer for (7) in (2)

 (9) NP -> NP. PP 0 1 completer for (7) in (6)

(10) VP -> .vi 1 1 predictor for (8) by R-2

(11) VP -> .vt NP 1 1 predictor for (8) by R-3

(12) VP -> .VP PP 1 1 predictor for (8) by R-4

(13) PP -> .prep NP 1 1 predictor for (9) by R-9

 (*) VP -> .vi 1 1 predictor for (12) by R-2

 (*) VP -> .vt NP 1 1 predictor for (12) by R-3

 (*) VP -> .VP PP 1 1 predictor for (12) by R-4

Section 2:

(14) VP -> vt. NP 1 2 scanned for (11), study

(15) NP -> .n 2 2 predictor for (14) by R-5

(16) NP -> .det n 2 2 predictor for (14) by R-6

(17) NP -> .det adj n 2 2 predictor for (14) by R-7

(18) NP -> .NP PP 2 2 predictor for (14) by R-8

 (*) NP -> .n 2 2 predictor for (18) by R-5

 (*) NP -> .det n 2 2 predictor for (18) by R-6

 (*) NP -> .det adj n 2 2 predictor for (18) by R-7

 (*) NP -> .NP PP 2 2 predictor for (18) by R-8

Section 3:

(19) NP -> n. 2 3 scanner for (15), fish

(20) VP -> vt NP. 1 3 completer for (19) in (14)

(21) NP -> NP. PP 2 3 completer for (19) in (18)

(22) S -> NP VP. 0 3 completer for (20) in (8)

(23) VP -> VP.PP 1 3 completer for (20) in (12)

(24) PP -> .prep NP 3 3 predictor for (21) by R-9

(25) # -> S. 0 3 completer for (22) in (1)

Section 4:

(26) PP -> prep. NP 3 4 scanner for (24), in

(27) NP -> .n 4 4 predictor for (26) by R-5

(28) NP -> .det n 4 4 predictor for (26) by R-6

(29) NP -> .det adj n 4 4 predictor for (26) by R-7

(30) NP -> .NP PP 4 4 predictor for (26) by R-8

 (*) NP -> .n 4 4 predictor for (30) by R-5

 (*) NP -> .det n 4 4 predictor for (30) by R-6

 31

 (*) NP -> .det adj n 4 4 predictor for (30) by R-7

 (*) NP -> .NP PP 4 4 predictor for (30) by R-8

Section 5:

(31) NP -> n. 4 5 scanner vor (27), cans

(32) PP -> prep NP. 3 5 completer for (31) in (26)

(33) NP -> NP. PP 4 5 completer for (31) in (30)

(34) NP -> NP PP. 2 5 completer for (32) in (21)

(35) VP -> VP PP. 1 5 completer for (32) in (23)

(36) PP -> .prep NP 5 5 predictor for (33) by R-9

(37) VP -> vt NP. 1 5 completer for (34) in (14)

(38) NP -> NP. PP 2 5 completer for (34) in (18)

(39) S -> NP VP. 0 5 completer for (35) in (8)

(40) S -> NP VP. 0 5 completer for (37) in (8)

 (*) PP -> .prep NP 5 5 predictor for (38) by R-9

(41) # -> S. 0 5 completer for (39) in (1)

(42) # -> S. 0 5 completer for (40) in (1)

Legend: The shaded productions are complete. The entries with index (*) in the table are discarded

because an identical production is already present. The sections, one for each of the right margins,

correspond to the set of states in the original implementation of Earley. Earley's Algorithm is the

same as Winograd's "Active Chart Parser", just the terminology diverges.

Evaluation

(1) Efficiency. A lot of spurious productions are generated. However no work is done twice

since all intermediate results are saved and may be reused. The problem of backtracking does

not arise in this approach. The parser combines expectation-driven phases (the predictor)

with data-driven phases (when the completer checks the usability of a substring in all

environments). As a left-to-right depth-first parser, PT-4 does not generate intermediate

results that are obsolete with respect to the left context.

(2) Coverage. Unrestricted context-free rules. Incapable to handle phenomena that go beyond

context-free grammars.

(3) Drawing up lingware. The same as PT-1.

 32

PT-5. Bottom-up parser with a well-formed substring table
(Algorithm according to Cocke, Kasami and Younger)

Illustrates:

(1) Connection between grammar and parser: Interpreting parser; grammar separate from

procedure.

(2) Linguistic structure assigned: Constituency trees, dependency trees.

(3) Grammar specification format: Context-free production rules.

(4) Recognition strategy: Category reduction (bottom-up); data driven, no expectations.

(5) Processing the input: Left-to-right, one pass; but not left associative.

(6) Treatment of alternatives: no backtracking; well-formed substring table.

(7) Control of results: All intermediate results accessible.

References: Kasami 1965, Hays 1966, Younger 1967, Hellwig 1989: 400ff.

Prerequisites:

(P-1) The set of rules of a context-free phrase structure grammar in Chomsky normal

form, i.e. all productions contain exactly two immediate constituents. The right one of these

constituents is called the right "handle" of the rule.

(P-2) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

(P-3) An input table which contains the words of the input together with their categories

and their margins in the sequence. The categories have been assigned to the words according to

the lexicon in a preceding phase.

(P-4) A variable P for the current position in the course of moving forward from the

beginning to the end of the input. At the beginning P identifies the first word.

(P-5) A working table (a well-formed substring table, a chart) consisting of an incremental

number of rows. For search purposes the table is arranged in sections. All rows with the same

right margin r form a section i, where r = i. Each row contains the category of one segment of the

input. The segment is identified by its left and right margin. (Margins can be represented in

various ways, for example as a simple count of boundaries between words.) If the segment is the

result of a category reduction then the row contains two pointers, one to the left immediate

constituent and one to the right immediate constituent in the working table out of which the

segment was constructed.

 (P-6) Three variables, CUR, NEW and NEIGHBOR, which identify rows in the table. CUR

refers to the entry in the working table currently processed, NEW refers to the row of the

resulting segment which is added to the table at the end. NEIGHBOR is needed for identifying

a segment that is a left neighbor of the CUR segment. The category in the row CUR is the due

symbol. At the beginning CUR is 1 and NEW and NEIGHBOR are 0. NEW is incremented

when new rows must be stored. It advances ahead of CUR. CUR is incremented in order to run

through former values of NEW to find out if the categories of CUR and NEIGHBOR can be

reduced. Eventually no new categories are produced, CUR catches up with NEW and the

procedure ends.

 33

Algorithm:

(A-1) Shift (a terminal category onto the working table). Look up the word at the current

position P of the input table. Store its category in a new row of the working table (increase

NEW). Set the right margin in the row to P and the left margin to P minus 1. Set left immediate

constituent and right immediate constituent to zero. If there are several categories in the input

table due to lexical ambiguity then create a separate entry in the working table for each of them.

(A-2) Reduce. The symbol in the row CUR is chosen as a candidate for reduction. Find the

(next) production in which the due symbol is the right handle of the rule (i.e. it matches with the

right-most immediate constituent). If there is none (any more) then go to (A-3). Focus on the

category of the left immediate constituent in the rule. Find a row NEIGHBOR in the working

table that contains the same category; the rows that must be searched are in the section whose

right margins are identical with the left margin in the row CUR. If such an entry exists then

create a new row (increase NEW) and store the category of the left side of the rule in it (i.e. the

category to which the immediate constituents can be reduced). Adopt as left margin in row NEW

the left margin in row NEIGHBOR and as right margin in row NEW the current position P. Set

the pointer "left immediate constituent" to NEIGHBOR and the pointer "right immediate

constituent" to CUR. Go to (A-2).

(A-3) Final condition. Increase CUR by 1. If CUR does not exceed NEW (i.e. the number of

row in the table) then go to (A-2). Else increase the current position by 1. If the current position

has moved behind the end of the input then go to (A-4), else go to (A-1).

(A-4) Check for a complete result. If the working table contains one or more rows with the

left margin equal to 0 and the right margin equal to the number of words in the input then accept

the input and finish the procedure. Else reject the input and finish the procedure.

Example:

GRAMMAR G3 (weakly equivalent to G2; lexically and grammatically

ambiguous)

Rules Lexicon

(R-1)

S -> Nu,d Vi

Vi =

{sleep, fish}

(R-2) Vi -> Vt Nu,d Vt = {study, visit, see, enjoy}

(R-3) Vi -> Vi PP det = {the, no, my, many}

(R-4) Nd -> det Nu,a adj = {foreign, beautiful}

(R-5) Na -> adj Nu Nu = {tourists, pyramids,

(R-6) Nu -> Nu PP friends, fish, cans}

(R-7) PP -> prep Nu,d Nd =

prep =

{Egypt, we, they}

{in, by, with}

 34

Legend: The subscripts denote grammatical features: i = verbal phrase without an object or with the
object recognized, u = nominal phrase without determiner but expecting one, d = nominal phrase
with a determiner or with no need of a determiner, a = nominal phrase with an adjective. The
immediate constituent printed in bold is the head of the corresponding phrase.

INPUT TABLE

Input: they study fish in cans

Lexicon: Nd Vt Vi/Nu prep Nu

Margins: 0 1 1 2 2 3 3 4 4 5

WORKING TABLE

Section 1:

 Category Left
margin

Right
margin

Left
constituent

Right
constituent

Explanation

(1) Nd 0 1 - - shift they

Section 2:

(2) Vt 1 2 - - shift study

Section 3:

(3) Vi 2 3 - - shift fish

(4) Nu 2 3 - - shift fish

(5) Vi 1 3 2 4 reduce by R-2

(6) S 0 3 1 5 reduce by R-1

Section 4:

(7) prep 3 4 - - shift in

Section 5:

(8) Nd 4 5 - - shift cans

(9) PP 3 5 7 8 reduce by R-7

(10) Vi 2 5 3 9 reduce by R-3

(11) Nu 2 5 4 9 reduce by R-6

(12) Vi 1 5 5 9 reduce by R-3

(13) Vi 1 5 2 11 reduce by R-2

(14) S 0 5 1 12 reduce by R-1

(15) S 0 5 1 13 reduce by R-1

 35

Chart

The working table can be turned into the following graphical chart representation (dotted lines

denote obsolete reductions):

 14:S

 12:Vi

 6:S 10:Vi

 5:Vi 9:PP

 1:Nd 2:Vt 3:Vi 7:prep 8:Nd

 0 they 1 study 2 fish 3 in 4 cans 5

 4:Nu

 11:Nu

 13:Vi

 15:S

Producing a constituency and a dependency description as output

So far we concentrated on the recognition mechanism of our parsers. However, a parser must not

only accept or reject the input but also output a structural description. Of course, it is easy to

generate a binary constituent tree using the information in the working table of the Cocke

algorithm. One must start with a row containing a segment that covers the whole input. The

category of this segment is made the root of the tree. Then one subordinates the nodes for the left

and the right immediate constituent, which are identified by the pointers in the row. For each

new node the same subordination procedure is repeated until lexical categories are reached (i.e.

the pointers to the left and the right immediate constituent are empty). The constituency tree

rooted in the category of row 14 is the following:

 14:S

 12:Vi

 5:Vi 9:PP

 1:Nd 2:Vt 4:Nu 7:prep 8:Nd

 they study fish in cans

 36

The Chomsky normal form of constituency grammars, as it is used in the Cocke algorithm, is a

good occasion to explore the possibility of creating a dependency tree as the output of the parser.

A constituency grammar in Chomsky normal form contains binary rules only. Obviously each

rule represents a syntagmatic relationship between two elements, one of which, from a

dependency viewpoint, must be the dominant element and the other one the dependent element

in the relation. In the grammar G3 the dominant element (i.e. the head constituent) is printed

bold. Correspondingly, the pointers to the head constituents in the working table are printed bold

and shaded. By means of these pointers a dependency tree is created as follows.

Again, one begins with a row that indicates a complete result. The number of this row is stored

as the root node of a tree. This node is then replaced (rather than being subordinated as in the

case of the constituency tree!) by the pointer to the dominant constituent in the same row, i.e. the

one printed bold in the example. The pointer to the other constituent in the row is stored in a new

node which is made subordinate to the dominating one. (The effect is that the heads are

propagated upwards in the constituency structure while the dependents stay where they are.) For

each leaf in the resulting tree the row is looked up that corresponds with the current value in the

node. If there are pointers to immediate constituents in this row the same substitution of the head

constituent and subordination of the non-head is performed and this process is repeated until

rows are reached which represent lexical categories. Eventually, the lexical categories are

substituted by lexemes and, thus, a dependency tree has emerged.

In the following illustration we use a bracketed notation and we add the category of the

corresponding constituent to each node. For the two complete results existing in the working

table above, the process is as follows:

1. (14:S)

 (12:Vi (1:Nu))

 (5:Vi (1:Nu) (9:PP))

 (2:Vt (1:Nu) (4:Nu) (9:PP))

 (2:Vt (1:Nu) (4:Nu) (7:prep (8:Nu)))

 (2: study (1: they)(4: fish)(7: in (8: cans)))

The resulting expression is in familiar appearance:

 2: study

 1: they 4: fish 7: in

 8: cans

 37

2. (15:S)

 (13:Vi (1:Nu))

 (2:Vt (1:Nu) (11:Nu))

 (2:Vt (1:Nu) (4:Nu (9:PP)))

 (2:Vt (1:Nu) (4:Nu (7:prep (8:Nu))))

 (2: study (1: they) (4: fish (7: in (8: cans))))

This is the same as:

 2: study

 1: they 4: fish

 7: in

 8: cans

Evaluation

(1) Efficiency. As a chart parser PT-5 does not create anything twice; instead it reuses any

intermediate result in all possible combinations. This can lead to a considerable amount of

over-generation, though, because there is no restriction by the continuous left context.

(2) Coverage. Context-free rules; however no deletion rules admitted. Incapable to handle

phenomena that go beyond context-free grammars. The possibility to generate dependency

trees on the basis of a grammar with binary rules is a nice feature. As a bottom-up parser

with a chart, PT-5 is not biased in favor of a single kind of utterance. It can detect the

category of any constituent in the input, for example sentences as well as headings and other

special constructions occurring in normal texts.

(3) Drawing up lingware. The same as PT-1. The use of complex categories and the

implementation of a unification mechanism should pose no problem.

 38

PT-6. Table-controlled shift-reduce parser

Illustrates:

(1) Connection between grammar and parser: An action table and a goto table is compiled from the

grammar.

(2) Linguistic structure assigned: Constituency trees.

(3) Grammar specification format: Context-free production rules.

(4) Recognition strategy: Category expansion (transformed into state transitions) combined with

category reduction (bottom-up) at run-time.

(5) Processing the input: Left-to-right, one pass; left associative.

(6) Treatment of alternatives: Avoiding conflicts by looking ahead (implicit in the control table);

parallel processing if necessary.

(7) Control of results: Goal oriented recognition.

References: Aho/Ullman 1977: 198-248, Tomita 1986, Hellwig 1989: 389ff.

Prerequisites:

(P-1) An ordered set of production rules of a context-free phrase structure grammar without

restrictions.

(P-2) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

(P-3) An input table which contains the words of the input together with their categories

and their position in the sequence. The categories have been assigned to the words according to

the lexicon in a preceding phase.

(P-4) A variable P for the current position in the course of moving forward from the

beginning to the end of the input. At the beginning P identifies the first word.

(P-5) A control table, consisting of a matrix of states (in the rows) and the lexical symbols as

well as the non-lexical symbols (in the columns). The part of the matrix with lexical symbols in

the columns is called the action table, the part with the non-terminal symbols is called the goto

table. The fields in the matrix contain instructions for the parser. One column in the action table

is labeled with the symbol '$' which denotes the end of the input string.

(P-5) A working space which has the form of a network. The nodes are labeled with states and

the arcs are labeled with structural descriptions (e.g. with parse trees in bracketed notation). The

states correspond to certain points in the input. Hence, the structural descriptions at the arcs

represent temporary analysis results of the strings between two margins. At the beginning the

working area contains only one node denoting the state 0 and no arcs.

(P-6) A variable for the current state of the parser, which is initially set to the value 0.

Algorithm:

(A-1) Consultation of the control table. Determine the lexical category of the next word in the

input. (This is equivalent to a look ahead of k=1.) Look up the field in the action table that is at

 39

the intersection between the current state and the lexical category. If the end of the input is

reached, then look up the field in the column '$'. Go to (A-2).

(A-2) Final condition. If the field is empty then reject the input and finish the procedure. If the

field contains the entry "accept" (abbr. "acc") then print out the structure in the work space as

the result of the analysis and finish the procedure. Else go to (A-3).

(A-3) Shift. If the field contains the instruction "shift z" (abbr. "sh z"), where z is a state,

then add a new arc to the last node in the working space (which represents the current state) and

label it with the category of the next element in the input. Link the new arc to a new node labeled

z. Make z the new current state. Increase the current position by 1. Go to (A-1).

(A-4) Reduce. If the field contains the instruction "reduce r" (abbr. "re r"), where r is the

number of a rule, then combine the arcs in the work area that correspond to the immediate

constituents in the rule r in order to form a new arc. As many arcs have to be traced back in the

network as there are constituents in the rule. The arcs passed in this process have to be removed.

Form a new description by substituting the labels of the former arcs under the category of the

left-hand side of the rule. Label the new arc with this description. The node at the beginning of

the reduced constituents is defined as the temporary state. Look up the field in the goto table that

is at the intersection of the temporary state and the category of the reduction. Make the state z in

this field the new current state. Add z as new node to the working area and link the new arc to it.

Go to (A-1).

Example

GRAMMAR G1 (rules to be used in the reduce step):

(re1) S -> NP VP (re5) NP -> n

(re2) VP -> vi (re6) NP -> det n

(re3) VP -> vt NP (re7) NP -> det adj n

(re4) VP -> vt NP PP (re8) PP -> prep NP

ACTION TABLE GO TO TABLE

Z det adj n prep vi vt $ NP PP VP S

0 sh9 sh8 2 1

1 acc

2 sh4 sh5 3

3 re1

4 re2

5 sh9 sh8 6

6 sh13 re3 7

7 re4

8 re5 re5 re5 re5

9 sh11 sh10

10 re6 re6 re6 re6

11 sh12

12 re7 re7 re7 re7

13 sh9 sh8 14

14 re8

 40

INPUT TABLE

Input: they visit friends in Egypt

Lexicon: n vt n prep n

Position: 1 2 3 4 5

WORKING SPACE

 P: States and Descriptions: Explanation:

 41

Construction of the control table

The action table and goto table can be automatically compiled from a given grammar. The

underlying idea is the following: There are several states during the processing of each rule of

the grammar, which differ in how many of the immediate constituents have already been

checked and how many still follow. First, we have to find out how many states there are. Each

state can be represented by a so-called divided production (compare PT-4).

Given the rule: X -> Y Z

we mark the boundaries between the constituents with a dot and arrive at the following possible

states:
 X -> .Y Z

 X -> Y .Z

 X -> Y Z.

Trying to obtain the set of all states, we first add a rule to the grammar that can be turned into a

dived production at state (Z-0), that is the situation at the beginning of the parse before any

constituent of the initial category has been seen:

(Z-0) S' -> .S

The same state, i.e. the same position in the input string, is projected into all rules that will be

used in the course of the recursive expansion of the symbol behind the dot. If we base ourselves

on grammar G1, the following states are included in the state (Z-0), too:

 S -> .NP VP

 NP -> .n

 NP -> .det n

 NP -> .det adj n

The next state is obtained by moving the dot to the right by one constituent. The result is in the

case of (Z-0):

(Z-1) S' -> S.

A projection into further rules is not possible here, because there are no constituents on the right

of the dot any more. One now continues to divide the other rules into states. Since the state

before the first use of a rule is already included in a previous projection, it is sufficient to begin

with the state after the first immediate constituent in the rule. The rest of G1 is thus transformed

into the following divided productions. As far as two rules of the grammar coincide in the

constituents before the dot, they are subsumed under the same state (cf. states 5, 6 and 9).

 (Z-2) S -> NP .VP

 VP -> .vi

 VP -> .vt NP

 VP -> .vt NP PP

 (Z-3) S -> NP VP.

 42

 (Z-4) VP -> vi.

 (Z-5) VP -> vt. NP

 VP -> vt. NP PP

 NP -> .n

 NP -> .det n

 NP -> .det adj n

 (Z-6) VP -> vt NP.

 VP -> vt NP. PP

 PP -> .prep NP

 (Z-7) VP -> vt NP PP.

 (Z-8) NP -> n.

 (Z-9) NP -> det. N

 NP -> det. adj n

(Z-10) NP -> det n.

(Z-11) NP -> det adj. n

(Z-12) NP -> det adj n.

(Z-13) PP -> prep. NP

 NP -> .n

 NP -> .det n

 NP -> .det adj n

(Z-14) PP -> prep NP.

The states (Z-0) through (Z-14) form the rows in the action table as well as in the goto table. The

columns of the action table are labeled with the lexical categories and '$' (i.e. the end of the

input). The columns of the goto table are labeled with the non-terminal categories of the

grammar. The values of the fields in the two tables are computed as follows (compare the action

and goto table in the example above):

Walk through the above collection of states and through the divided productions in each state.

(1) If the dot is in front of a lexical category then enter "shift z" in the field that is at intersection

between the current state and this lexical category in the action table. z is the number of the

state that would be reached after the lexical category is processed by the parser. This state is

represented by the same rule as the current one except for the dot which is moved behind the

category. To find out the number of this state one must look in which of the collection of

states the rule with the moved dot occurs.

(2) If the dot is in front of a non-terminal category then enter "goto z" in the field that is at

intersection between the current state and this non-terminal category in the goto table. z is the

number of the state that would be reached after the non-terminal category is processed by the

parser. This state is represented by the same rule as the current one except for the dot which

is moved behind the category. To find out the number of this state one must look in which of

the collection of states the rule with the moved dot occurs.

 43

(3) If the dot is at the end of a production r then enter "reduce r" in certain columns in the row of

the current state of the action table, where r is the key of the rule in question. The idea is to

postpone the reduction step until the next constituent has been seen that cannot belong to the

constituents of the actual rule. This is what looking-ahead means. Therefore, "reduce r"

should be assigned to all categories in the action table that can occur as the first lexical

category of any constituent that can follow category X, where X is the head category of the

production r. If X also occurs at the end of the sentence then "reduce r" must be entered in

the column "$" as well. The respective lexical categories are found by means of the functions

FIRST and FOLLOW, see below.

(4) If the dot occurs at the end of the S'-production (e.g. S' -> S.) then insert "accept" in the

field at the intersection of the corresponding state and the column "$".

The function FOLLOW yields the set of possible constituents following a given constituent

according to the rules of a grammar. If in any rule an immediate constituent is following the

given one then this constituent is among the returned values. If the given constituent is the last of

the immediate constituents in a rule then the function FOLLOW is invoked recursively with the

head of the rule as the argument. Let us illustrate this by G1:

(re1) S -> NP VP

(re2) VP -> vi

(re3) VP -> vt NP

(re4) VP -> vt NP PP

(re5) NP -> n

(re6) NP -> det n

(re7) NP -> det adj n

(re8) PP -> prep NP

The function FOLLOW returns the following values:

FOLLOW(S) = $

FOLLOW(VP) = FOLLOW(S) = $

FOLLOW(NP) = VP

FOLLOW(NP) = FOLLOW(VP)= $

FOLLOW(NP) = PP

FOLLOW(NP) = FOLLOW(PP)= FOLLOW(VP) = $

FOLLOW(PP) = FOLLOW(VP) = FOLLOW(S) = $

FIRST receives the output of FOLLOW and returns the set of the initial lexical constituents for

each non-terminal category according to the grammar rules:

FIRST($) = $

FIRST(VP) = vi, vt

FIRST(NP) = det, n

FIRST(PP) = prep

 44

Algorithm for non-deterministic grammars

(akin to the Tomita parser)

If the creation of the action table and the goto table, according to the described procedure, results

in no more than one instruction in any field of the matrix then the parser proceeds

deterministically and the described language is of the LR(k)-type (left-to-right processing, right

derivation, looking k symbols ahead), with k=1. If the fields of the matrix receive multiple

entries, the language includes ambiguous string. This is no reason for abandoning table-

controlled shift-reduce parsing. The conflicting instructions in the tables (e.g. in the goto table of

the example below) can simply be followed in a parallel fashion. For this purpose the network in

the working area is allowed to branch, i.e. more than one arc may leave a node and arrive at

diverging states. If at a later position in the input an unambiguous portion occurs, the divergent

states may be connected and be continued by a joined arc. A reduction may follow either of the

alternative paths. The effect of this representation is the same as that of a well-formed substring

table: no work needs to be done twice. (Tomita's parser, which belongs to the same prototype,

achieves this goal with his so-called "forests" of parse trees.)

Example:

GRAMMAR G2 (ambiguous, includes G1)

Rules Lexicon

(R-1)

S -> NP VP

vi =

{sleep, fish}

(R-2) VP -> vi vt = {study,visit, see, enjoy}

(R-3) VP -> vt NP det = {the, no, my, many}

(R-4) VP -> VP PP adj = {foreign, beautiful}

(R-5) NP -> n n = {tourists, pyramids,

(R-6) NP -> det n friends, fish, cans,

(R-7) NP -> det adj n Egypt, we, they}

(R-8)

(R-8)

NP -> NP PP

PP -> prep NP

 prep = {in, by, with}

The states of processing G2:

 (Z-0) S' -> .S

 S -> .NP VP

 NP -> .n

 NP -> .det n

 NP -> .det adj n

 NP -> .NP PP

 (Z-1) S' -> S.

 (Z-2) S -> NP .VP

 VP -> .vi

 VP -> .vt NP

 VP -> .VP PP

 (Z-3) S -> NP VP.

 (Z-4) VP -> vi.

 (Z-5) VP -> vt. NP

 NP -> .n

 NP -> .det n

 NP -> .det adj n

 NP -> .NP PP

 (Z-6) VP -> vt NP.

 (Z-7) VP -> VP .PP

 PP -> .prep NP

 (Z-8) VP -> VP PP.

 45

 (Z-9) NP -> n.

 (Z-10) NP -> det. n

 NP -> det. adj n

 (Z-11) NP -> det n.

 (Z-12) NP -> det adj. n

 (Z-13) NP -> det adj n.

 (Z-14) NP -> NP. PP

 PP -> .prep NP

(Z-15) NP -> NP PP.

(Z-16) PP -> prep. NP

 NP -> .n

 NP -> .det n

 NP -> .det adj n

 NP -> .NP PP

(Z-17) PP -> prep NP.

ACTION TABLE GO TO TABLE

Z det adj n prep vi vt $ NP PP VP S

0

sh10

sh9

2,14

1

1 acc

2 sh4 sh5 3,7

3 re1

4 re2 re2

5 sh10 sh9 6,14

6 re3 re3

7 sh16 8

8 re4 re4

9 re5 re5 re5 re5

10 sh12 sh11

11 re6 re6 re6 re6

12 sh13

13 re7 re7 re7 re7

14 sh16 15

15 re8 re8 re8 re8

16 sh10 sh9 14,17

17 re9 re9 re9 re9

INPUT TABLE

Input: they study fish in cans

Lexicon: n vt vi/n prep n

Position: 1 2 3 4 5

 46

WORK AREA (subset)

 P: States and Descriptions: (Next step):

 47

Evaluation

(1) Efficiency. This kind of parser, which is well-known in computer science and is also

advocated for NLP (Tomita 1985) is impressively efficient. PT-6 processes the example, that

caused 10 times backtracking in PT-1, in a completely deterministic way. There are several

reasons for this efficiency. PT-6 combines an expectation driven strategy with a bottom-up

strategy. The top-down expansion of categories is translated into the procedural form of the

action table and goto table. At run-time the parser is data-driven. The most interesting feature

is the way that looking ahead is integrated into the action table. The command of reducing a

category is deferred not only until the current constituent is complete but rather until the first

element of a constituent shows up (FIRST of FOLLOW) that can by no means be included in

the current constituent under construction. In this way PT-6 can be pretty sure that the

reduction is correct. In addition, the parse is left-associative. So, there will be very little

over-generation.

(2) Coverage. Unrestricted context-free rules.

(3) Drawing up lingware. A disadvantage of PT-6 is the necessity to construct a new control

table each time a change is made in the grammar. The amount of effort for this task grows

exponentially with the size of the grammar. This is a serious drawback because usually one

would like to switch between updating the lingware and testing it within minutes.

 48

PT-7. FTN-parser for regular expressions

Illustrates:

(1) Connection between grammar and parser: Compiled parser; the grammar is transformed into a

state transition table representing a finite state transition network (FTN)

(2) Linguistic structure assigned: Per se no structure is detected.

(3) Grammar specification format: Regular expression or corresponding finite state transition

network (FTN)

(4) Recognition strategy: Pattern-oriented analysis; transition in a network.

(5) Processing the input: Left-to-right, one pass; left associative.

(6) Treatment of alternatives: A deterministic FTN can be derived from any FTN.

(7) Control of results: Goal oriented recognition; the goal is to reach an end state in the

network

References: Aho/Sethi/Ullman 1986: 124ff, Hellwig 1989: 406ff.

Regular expressions

Regular expressions are patterns that describe the strings of a regular language. A regular

language is the type of language generated by a regular grammar (Chomsky hierarchy Type 3).

Regular expressions are a way to formulate such a grammar. The metalanguage M of regular

expressions describing the object language L is defined as follows:

(i) '' is an expression of M and denotes the empty character string.

(ii) If a is an element of the vocabulary of L then a is an expression of M and denotes the

occurrence of the character string "a" in an instance of L.

(iii) If K is a subset of the vocabulary of L then K is an expression of M and denotes the occurrence

of an arbitrary element of category K in an instance of L.

(iv) If r and s are expressions of M then rs is an expression of M and denotes the concatenation of

the strings denoted by r and s in an instance of L.

(v) If r and s are expressions of M then r|s is an expression of M and denotes the occurrence of a

the string denoted by r or by s in an instance of L.

(vi) If r is an expression of M then r+ is an expression of M and denotes the concatenation of one

ore more occurrences of the string denoted by r in an instance of L.

(vii) If r is an expression of M then r* is an expression of M and denotes the concatenation of one

ore more occurrences of the string denoted by r or no occurrence at all in an instance of L. . r* is the

same as r+ | .

(viii) If r is an expression of M then r? is an expression of M and denotes the optional occurrence

of the string denoted by r in an instance of L. r? is the same as r|.

(ix) Brackets '(', ')' and '{', '}' are used to group expressions with respect to concatenation or

alternation. If r is an expression of M then (r) and {r} are expressions of M.

 49

Finite state transition networks

A network consists of nodes and labeled arcs connecting nodes. The nodes denote states of

matching the network with some input. The labels at the arcs are description of the input. The arcs

themselves denote the concatenation of input segments. A finite state transition network can be

designed from scratch. It can also be created automatically from a regular expression. Construction

of networks from regular expressions is done as follows. At first the elementary expressions of a

formula are associated with networks according to (i) through (iii). Then the partial networks are

combined according to (iv) through (ix). Let the starting state of a network be a, the end state be e,

and an intermediate state be si. A network is associated with each regular expression with exactly

one starting state and one end state.

(i) The expression '' is mapped by the following network:

 a e

(ii) The expression a (i.e. a lexical element of L) is mapped by the following network:
 a

 a e

(iii) The expression (i.e. an element of the subset K of the elements of L) is mapped by the

following network:

 K
 a e

(iv) The expression rs is mapped by the following complex network:

 r s

 a z1 e

(v) The expression r|s is mapped by the following network:

 r

 z1 z3

 a e

 s

 z2 z4

 50

(vi) The expression r+ is mapped by the following network:

 r
 a e

(vii) The expression r* is mapped by the following network:

 r
 a z1 z2 e

(viii) The expression r? is mapped by the following network:

 r

 a e

(ix) Expressions that are surrounded by brackets '(', ')' and '{', '}' must be mapped by a complete

network before this network can be combined with the networks corresponding to other parts of the

regular expression. Multiple bracketing must be processed proceeding from inner to outer brackets.

Construction of a deterministic finite state transition network

One starts with a non-deterministic FTN, for example one generated from a regular expression as

described above. Starting with state a in the non-deterministic FTN, a new network is

constructed. The individual states of the new network correspond to sets of states of the original

one, namely the set formed by a given state and all the states that are reachable from the given

one via an -arc (a so-called jump-arc - in the resulting network there will be no jump arcs), or

via an arc with the same basic symbol (in the resulting network there will be just one arc for

identical expressions). The nodes in the new network are connected by arcs in such a way, that

all and only those transitions are possible that were possible between the member states that now

form the new states. (The example below will make this clear.)

FTN Recognizer

Prerequisites:

(P-1) A deterministic finite state transition networks stored as a state transition table. Each

row of the table represents one arc in the network. Each entry consists of a starting state,

a label, and a target state. Possible end states of the network are marked by "/e".

 51

(P-2) A lexicon which associates categories (parts-of-speech, grammatical features) with the

words in the input.

(P-3) A variable for the actual state. At the beginning the value of this variable is the starting

state of the whole network.

(P-4) A variable containing the current position in the input.

Algorithm:

(A-1) Transition. If there is an entry in the transition table with the actual state as the starting state,

the category of the word in the actual position as the label and a target state then make the target

state the actual state, increase the current position by one and go to (A-2). If there is no such entry

go to (A-3).

(A-2) Final condition. If the current position is not greater than the number of element

in the input then go to (A-1). Else if the actual state is an end state in the network then

accept the input and return, otherwise reject the input and return.

Example

GRAMMATIK G4 (equivalent with G1)

Regular expression:

(det adj?)? n {vi | vt (det adj?)? n (präp (det adj?) n)? }

Lexicon as in G1

Non-deterministic finite state transition network:

 52

Deterministic finite state transition network:

 adj adj adj

 1/2 2 5/e 8/9 9 12/13 13

 det n n vi det n n det n n

 n vt n prep n

 a/2 3/4/6 7/9 10/14/e 11/13 14/e

(The names of states are composed of the original state names in the non-deterministic net for the sake of perspicuity.)

Finite state transition table:

starting

state

label target state

a/2 det 1/2

a/2 n 3/4/6

1/2 adj 2

1/2 n 3/4/6

2 n 3/4/6

3/4/6 vi 5/e

3/4/6 vt 7/9

7/9 det 8/9

7/9 n 10/14/e

8/9 adj 9

8/9 n 10/14/e

9 n 10/14/e

10/14/e prep 11/13

11/13 det 12/13

11/13 n 14/e

12/13 adj 13

12/13 n 14/e

13 n 14/e

Trace of the recognizer:

Input: they visit friends in Egypt

Lexicon: n vt n prep n

Actual position: 0 1 2 3 4 5

Actual state: a/2 3/4/6 7/9 10/14/e 11/13 14/e

Evaluation

(1) Efficiency. Very efficient if the input and the task at hand can resort to regular expressions.

(2) Coverage. Very limited. Suits regular languages only and usually does not assignment a

syntactic structure.

 53

PT-8. Augmented transition networks (ATN)

Illustrates:

(1) Connection between grammar and parser: Procedural parser, no separation of grammar and

parser.

(2) Linguistic structure assigned: Capability to recognize any input and to produce any output.

(3) Grammar specification format: Program instructions, for example in LISP.

(4) Recognition strategy: Pattern-oriented; transition in a network, usually top-down, depth-first.

(5) Processing the input: Left-to-right, one pass (depth-first); left associative.

(6) Treatment of alternatives: Backtracking can be avoided to a large extent by saving context

information in registers.

(7) Control of results: Goal oriented recognition.

References: Woods 1969, Bates 1978 , Winograd 1983: 195ff., Hellwig 1989: 412ff,

Prerequisites:

(P-1) The definition of an ATN formalism.

(P-2) An augmented transition network consisting of code in the chosen formalism.

(P-3) A lexicon which associates basic grammatical categories (parts-of-speech, grammatical

features) with lexical items.

(P-4) An input table which contains the words of the input together with their categories

and their position in the sequence. The categories have been assigned to the words according to

the lexicon.

(P-5) A list of register lists, one for each new level of recursion. A register list is a list of pairs

comprising a register name and a register content. (This organization allows for arbitrarily many

registers on each level.) The action SETR puts a new pair on top of the list. Older pairs are

accessible again if backtracking reactivates a former state of the register list.

(P-6) A HOLD-list which contains information about formerly processed constituents.

(P-7) Variables whose values define a so-called configuration. A configuration consists of the

current node, the current arc, and the current state of the register list.

(P-7) A pop-up stack. The current configuration is put on top of the stack before a PUSH-arc

leads into a deeper level of recursion.

(P-8) A backtracking store. If there is an alternative arc in the network than the current

configuration and the alternative arc are stored in the backtracking store.

 54

Definition of an ATN formalism

An augmented transition network (ATN) is conceptually based on a recursive transition network

(RTN) with nodes, arcs and the recursive invocation of sub-nets. The information associated

with an arc is augmented by conditions to be tested first and actions to be performed before or

after passing the arc. Tests and actions are formulated in a programming language, usually in

LISP. It is possible to allocate registers which can be referred to in conditions and actions and

there may even be global variables. Therefore, an ATN is actually a Turing machine. It can

generate any enumerable language. However, such an automaton is too powerful for processing

natural languages. Therefore, the ATN-formalism is subject to self-imposed restrictions. Here is

a definition of the most common features (terminal categories in italics):

<augmented transition network> := <set of arcs>*

<set of arcs> := <node> <arc>*

<arc> := <WRD-arc> | <CAT-arc> | <JUMP-arc> | <VIR-arc> | <PUSH-arc> |

<POP-arc>

<WRD-arc> := WRD <lexical element> <test>* <action>* <transition>

<CAT-arc> := CAT <lexical category> <test>* <action>* <transition>

<JUMP-arc> := JUMP <transition> <test>* <action>*

<VIR-arc> := VIR <constituent> <test>* <action>* <transition>

<PUSH-arc> := PUSH <node> <test>* <pre-action>* <test>*<action>*

<transition>

<POP-arc> := POP <form> <test>*

<test> := T | <condition>

<pre-action> := <send register>

<action> := <condition> <set register> | <condition> <lift register> |

<HOLD-action>

<set register> := SETR <register> <form> | ADDR <register> <form>

<send register> := SENDR <register> <form>

<lift register> := LIFTR <register> <form>

<HOLD-action> := HOLD <constituent> <form>

<form> := <current lexical item> | <current category> | <content of

register> | <build construction>

<current lexical item> := *

<current category> := GETF <attribute> | "<value>"

<content of register> := GETR <register>

<build construction> := BUILDQ <frame> <register>*

<transition> := TO <node>

 55

Algorithm:

(A) Navigating through the network

(A-1) Produce a starting configuration. The current position equals 1; the current node is the

first one in the net; the current arc is the first one that leaves the node; the register list is empty.

(A-2) "Snapshot". If there is another arc leaving the current node after the current arc then

save the current configuration, the contents of the HOLD-list, the contents of the pop-up stack

and the alternative arc in the backtracking store.

Process the current arc as follows:

WRD-arc: If the specified lexical element is identical to the current word in the input then

continue; otherwise go to (A-3). Evaluate the specified tests. If a test fails then go to (A-3).

Perform the specified actions. Increment the current position by 1. Turn the node after TO into

the new current node and its first arc into the current arc. Go to (A-2).

CAT-arc: If the specified lexical category is identical to the category of the current word then

continue; otherwise go to (A-3). Evaluate the specified tests. If a test fails then go to (A-3).

Perform the specified actions. Increment the current position by 1. Turn the node after TO into

the new current node and its first arc into the current arc. Go to (A-2).

JUMP-arc: Evaluate the specified tests. If a test fails then go to (A-3). Perform the specified

actions. Without incrementing the current position, turn the node after TO into the new current

node and its first arc into the current arc. Go to (A-2).

VIR-arc: If the specified constituent is contained in the HOLD-list then continue; otherwise go to

(A-3). Evaluate the specified tests. If a test fails then go to (A-3). Perform the specified actions.

Without incrementing the current position, turn the node after TO into the new current node and

its first arc into the current arc. Go to (A-2).

PUSH-arc: Evaluate the specified tests. If a test fails then go to (A-3). Perform the specified pre-

action. Put the current configuration on top of the pop-up stack. Produce a new configuration for

the next deeper level of recursion, i.e. turn the current node into the node specified in the arc and

its first arc into the current arc. Leave the current position as it is. Start a new register list. Go to

(A-2).

POP-arc: Evaluate the specified tests. If a test fails then go to (A-3). If the top-most level of

recursion is reached (i.e. the pop-up stack is empty) then go to (A-4). Otherwise restore the

configuration of the next higher level of recursion according to the configuration on top of the

pop-up stack. Remove that configuration from the stack. Transfer the specified form as well as

the position reached to the higher level. Continue processing along the PUSH-arc that called the

subordinated network and perform the actions that are specified there. Turn the node after TO

into the new current node and its first arc into the current arc. Go to (A-2).

(A-3) Backtracking. If there is an entry in the backtracking store then restore the configuration

specified in the top-most entry of the backtracking store, restore the specified state of the pop-up

stack as well as the state of the register list. Remove the entry from the backtracking store. Go to

(A-2). If there is no entry then refuse the input and stop.

 56

(A-4) Final condition. If the end of the input is reached then one successful parse was found.

Output the result. If all readings are to be found then go to (A-3). Otherwise stop. If the end of

the input is not reached then go to (A-3).

(B) Evaluation of tests

The truth value of a condition is computed. The condition may contain various predicates and

arguments. It can refer to registers and other parts of configurations. Conditions can be combined

by boolean operators. The test fails if the truth value of the condition is "false", otherwise it

succeeds.

(C) Actions

SETR-action: Put a new pair on the current register list consisting of the register name and the

specified form.

ADDR-action: Add the specified form to the form(s) associated with the specified register name.

SENDR-action: This is a pre-action which is applicable only on PUSH-arcs. Put the register

name and its content on the register list of the next lower level of recursion.

LIFTR-action: This is the inverse action of the SENDR-action. Put the register name and its

content on the register list of the next higher level of recursion.

HOLD-action: Put the specified form as an instance of the specified constituent on the HOLD-

list. The HOLD-list is global, i.e. it is accessible on all levels. The HOLD-list is consulted when

the parser processes a VIR-arc.

(D) The evaluation of forms

The variable * , as a rule, substitutes for the lexical element at the current input position. The use

in PUSH- and POP-arcs is an exception: Within the action of a PUSH-arc, * is identified with

the result that was returned by the preceding POP-arc.

In the case of GETF return the value of the specified attribute assigned to the current lexical

element, e.g. its number, gender, case etc.

In the case of GETR return the content of the specified register. If the register is empty return

"F".

BUILDQ is a function that is used in order to produce the desired output of the parser. The

function expects a frame, i.e. a fragment of a structure with constants and variables, and the

registers from which the substitutes for the variables are to be taken. A common symbol for a

variable is "+". Replace each occurrences of "+" in the frame by the contents of the

corresponding register listed in the BUILDQ instruction. The symbol * is used within the frame

in order to refer to the current lexical item. No register is following the frame in this case.

 57

Example

G5 - AN ATN NETWORK IN GRAPHICAL REPRESENTATION

 58

ATN-PROGRAM. i.e. the grammar G5 in procedural form:

Usually LISP is used for programming ATNs. Here, the program is sketched in pseudo-code.

Expressions in italics don't belong to the syntax but were added in order to improve readability.

Functions that return a value (i.e. functions that are evaluated before the value is used) are in

angled brackets.

The basic idea of G5 is to collect the subject and the objects at various positions in the sentence

(depending on the word order for questions and statements), store all the information in the register

Complements, then (at the node Valence) compare the contents of the register with the valency

subcategorization of the verb, and output a dependency description consisting of syntactic roles and

lexemes.

node Sentence

arc 1: CAT W_pron

action HOLD NP *

transition TO Aux

arc 2: JUMP

transition TO Aux

arc 3: JUMP

action SETR illocution "assertion"

action SETR verb_form "finite"

transition TO Subject

node Aux

arc 4: WRD do

action SETR number <GETF number>

action SETR person <GETF person>

action SETR verb_form "infinitive"

action SETR illocution "question"

transition TO Subject

node Subject

arc 5: PUSH NP

pre-action SENDR number

pre-action SENDR person

action ADDR complements "subject"

action ADDR arguments <BUILDQ (subject: *)>

transition TO Verb

node Verb

arc 6: CAT verb

test <GETR verb_form> equals <GETF form> or

{<GETR number> includes <GETF number> and

 <GETR person> includes <GETF person>}

action SETR predicate *

transition TO First_Object

node First_Object

arc 7: VIR NP

action ADDR complements "dir_object"

action ADDR arguments <BUILDQ (dir_object: +) NP>

action SETR dirobj "no_prep"

 59

transition To More_objects

arc 8: PUSH NP

action ADDR complements "dir_object"

action ADDR arguments <BUILDQ (dir_object: *)>

action SETR dirobj "prep"

transition TO More_objects

node More_Objects

arc 9a: PUSH NP

test <GETR dirobj> equals "no_prep"

action ADDR complements "indir_object"

action ADDR arguments <BUILDQ (indir_object: *)>

transition TO More_objects

arc 9b: PUSH PP

test <GETR dirobj> equal "prep"

test if <GETR preposition> equals "to" then

action

{ADDR complements "indir_object"

ADDR arguments <BUILDQ (indir_object: *)>}

test else

action

{ADDR complements <BUILDQ prep_object + preposition>

ADDR arguments <BUILDQ (prep_object: + *) preposition>}

transition TO More_Objects

arc 10: WRD ?

test <GETR illocution> equals "question"

transition TO Valence

arc 11: WRD .

test <GETR illocution> equals "assertion"

transition TO Valence

node Valence

arc 12: JUMP

test <GETF valence> includes <GETR complements>

transition TO End_sentence

node End_sentence

arc 13: POP

BUILDQ (illocution: + (predicate: + +))

illocution predicate arguments

node NP

arc 14: JUMP

transition TO Center

arc 15: CAT det

action SETR determiner <BUILDQ (determiner: *)>

transition TO Center

arc 16: CAT pron

test <GETR number> is empty or equals <GETF number>

test <GETR person> is empty or equals <GETF person>

action SETR number <GETF number>

action SETR person <GETF person>

action SETR structure <GETF *>

transition TO End_NP

 60

node Center

arc 17: CAT adje

action ADDR attributes <BUILDQ: (attrib: *)>

transition TO Center

arc 18: CAT noun

test <GETR number> is empty or equals <GETF number>

test <GETR person> is empty or equals "3rd"

action SETR number <GETF number>

action SETR person "3rd"

action SETR head <GETF *>

transition TO Attributes

node Attributes

arc 19: PUSH PP

test GETF lex is not "to"

action ADDR attributes <BUILDQ: (attrib: *)>

transition TO Attributes

arc 20: JUMP

action SETR structure <BUILDQ + + + head determiner

attributes>

transition TO End_NP

node End_NP

arc 21: POP structure

action LIFTR number

action LIFTR person

node PP

arc 22: CAT prep

action SETR preposition <GETF *>

transition TO Prep_NP

node Prep_NP

arc 23: PUSH NP

action SETR structure <BUILDQ (*)>

transition TO End_PP

node End_PP

arc 24: POP structure

action LIFTR preposition

 61

LEXICON:

sleep

lex[sleep] cat[verb] form[infinitive] valence[subject]

sleep lex[sleep] cat[verb] form[finite] person[1st, 2nd]

number[singular]valence[subject]

sleeps lex[sleep] cat[verb] form[finite] person[3rd] number[singular]

valence[subject]

sleep lex[sleep] cat[verb] form[finite] person[1st, 2nd, 3rd]

number[plural] valence[subject]

feed lex[feed] cat[verb] form[infinitive] valence[subject,

direct_object, indirect_object]

feed lex[feed] cat[verb] form[finite] person[1st, 2nd] number[singular]

valence[subject, direct_object, indirect_object]

feeds lex[feed] cat[verb] form[finite] person[3rd] number[singular]

valence[subject, direct_object, indirect_object]

feed lex[feed] cat[verb] form[finite] person[1st, 2nd, 3rd]

number[plural] valence[subject, direct_object, indirect_object]

do lex[do] cat[verb] form[infinitive]

do lex[do] cat[verb] form[finite] person[1st, 2nd] number[singular]

does lex[do] cat[verb] form[finite] person[3rd] number[singular]

do lex[do] cat[verb] form[finite] person[1st, 2nd, 3rd] number[plural]

Gudrun lex[Gudrun] cat[noun] person[3rd] number[singular]

cat lex[cat] cat[noun] person[3rd] number[singular]

fish lex[fish] cat[noun] person[3rd] number[singular, plural]

I lex[I] cat[pron] person[1st] number[singular]

you lex[you] cat[pron] person[2nd] number[singular, plural]

what lex[what] cat[W_pron]

the lex[the] cat[det]

her lex[her] cat[det]

silly lex[silly] cat[adje]

to lex[to] cat[prep]

with lex[with] cat[prep]

INPUT:

 what does Gudrun feed her cat ?

 62

TRACE:

P:

Word:

Configurations:

Alter-

natives:

1 what node Sentence

 arc 1: CAT W_pron arc 2

 action HOLD NP[what]

 transition TO Aux

2 does node Aux

 arc 4: WRD do

 action SETR number[singular]

 action SETR person[3rd]

 action SETR verb_form[infinitive]

 action SETR illocution[question]

 transition TO Subject

3 Gudrun node Subject

 arc 5: PUSH NP

 pre-action SENDR number[singular]

 pre-action SENDR person[3rd]

 node NP

 arc 14: JUMP arc 15

 transition TO Center

 node Center

 arc 17: CAT adje fails arc 18

 arc 18: CAT noun

 test number[singular] equals number[singular]

 test person[3rd] equals person[3rd]

 action SETR number[singular]

 action SETR person[3rd]

 action SETR head[Gudrun]

 transition TO Attributes

4 feed node Attributes

 arc 19: PUSH PP arc 20

 node PP

 arc 22: CAT prep fails

 arc 20: JUMP

 action SETR structure[Gudrun]

 transition TO End_NP

 node End_NP

 arc 21: POP [Gudrun]

 action LIFTR number[singular]

 action LIFTR person[3rd]

 action ADDR complements[subject]

 action ADDR arguments[(subject: Gudrun)]

 transition TO Verb

 node Verb

 arc 6: CAT verb

 test verb_form[infinitive] equals form[infinitive]

 action SETR predicate[feed]

 transition TO First_Object

 63

5 her node First_Object

 arc 7: VIR NP arc 8

 action ADDR complements[subject, dir_object]

 action ADDR arguments[(subject: Gudrun)(dir_object:

 what)]

 action SETR dirobj[no_prep]

 transition TO More_objects

 node More_Objects

 arc 9a: PUSH NP arc 9b

 test dirobj[no_prep] equals "no:prep"

 node NP

 arc 14: JUMP arc 15

 transition TO Center

 node Center

 arc 17: CAT adje fails arc 18

 arc 18: CAT noun fails

 arc 15: CAT det arc 16

 action SETR determiner[(determiner: her)]

 transition TO Center

6 cat node Center

 arc 17: CAT adje fails arc 18

 arc 18: CAT noun

 test number is empty

 test person is empty

 action SETR number[singular]

 action SETR person[3rd]

 action SETR head[cat]

 transition TO Attributes

7 ? node Attributes

 arc 19: PUSH PP arc 20

 node PP

 arc 22 CAT prep fails

 arc 20: JUMP

 action SETR structure[cat (determiner:her)]

 transition TO End_NP

 node End_NP

 arc 21: POP [cat (determiner: her)]

 action LIFTR number[singular]

 action LIFTR person[3rd]

 action complements [subject, dir_object,

 indir_object]

 action arguments[(subject: Gudrun)(dir_object: what)

 (indir_object: cat (determiner: her))]

 transition TO More_Objects

 node More_Objects

 arc 9b: PUSH PP arc 10

 node PP

 arc 22: CAT prep fails

 arc 10: WRD ? arc 11

 test [question] equals "question"

 64

 transition TO Valence

 node Valence

 arc 12: JUMP

 test [subject, dir_object, indir_object] includes

 complements[subject, dir_object, indir_object]

 transition TO End_sentence

 node End_sentence

 arc 13: POP [(illocution: question (predicate: feed

 (subject: Gudrun)(dir_object: what)

 (indir_object: cat (determiner: her))]

RESULT

 (illocution: question

 (predicate: feed

 (subject: Gudrun)

 (dir_object: what)

 (indir_object: cat

 (determiner: her))]

One parse is found. However, the program will still check numerous alternative arcs.

Evaluation

(1) Efficiency. An augmented transition network is tailored to the syntactic structure of a

particular language. Therefore, it can be very efficient. Blind backtracking can be avoided

by means of registers which are maintained in order to locate the reasons for a failure.

However, this requires additional effort from the programmer since he must anticipate the

dead-ends into which the system might run. There is also a "wait-and-see"-style of ATN-

programming that simply collects any constituents at first and then interprets them when the

end of the network is reached.

(2) Coverage. ATNs are capable to deal with any phenomenon since they allow, in principle, of

any tests and any actions. Among our prototypes, PT-8 is the only one with a theoretical

chance to cope with all of the phenomena of a natural language, as for example

discontinuous constituents, coordination, ellipsis etc. The problem is to reduce the Turing

power of ATNs by limiting the variety of tests and actions to the minimum needed. If this is

not done, it would be impossible to predict the behavior of the parser.

(3) Drawing up lingware. With regard to perspicuity, PT-8 is the worst among our prototypical

parsers. ATNs are the exact opposite of a modular and lexicalistic style of descriptions. An

ATN for a larger fragment of natural language is a huge and complex system. It is difficult to

debug a grammar that is formulated as a program and trouble with side effects must be

expected. The usual means that ATNs lend for calculating agreement, namely SENDR and

LIFTR actions operating on individual attributes, are awkward. The ATN formalism should

be augmented by a UNIFY action that operates on complex categories as a whole. ATNs can

be very efficient and cover a lot of phenomena when they are completed, but it is awkward to

write them. Unfortunately, for each new language a new ATN must be written from scratch.

 65

PT-9. Chart Parsing according to the slot-and-filler principle

Illustrates:

(1) Connection between grammar and parser: Interpreting parser; separation of grammar and

parser.

(2) Linguistic structure assigned: Dependency descriptions.

(3) Grammar specification format: Templates associated with lexical items; lexicalized grammar.

(4) Recognition strategy: Completion oriented analysis with slots and fillers; top-down creation of

slots, bottom-up insertion of fillers.

(5) Processing the input: Left-to-right, one path.

(6) Treatment of alternatives: No backtracking; well-formed substring table.

(7) Control of results: All intermediate results accessible; parallel processes.

References: Hellwig 1980, 1988, 1989: 425, 1993, McCord 1980

Prerequisites:

(P-1) A morpho-syntactic lexicon relating each basic input segment (e.g. each word form) to a

representation of a basic node that will become part of a dependency tree in the course of the

analysis. As a rule, the representation includes the indication of a lexeme and a set of morpho-

syntactic categories. The latter describe the part of speech and the inherent grammatical features

of the corresponding segment.

(P-2) A set of templates each describing one potential syntagmatic relationship between a

lexical item and a set of constructions which combine with the item in the specific role (e.g. the

subjects, objects etc. that go with a verb). Templates define syntagmatic relationships in form of

subtrees of dependency trees. Each template consists of a name and a minimal tree with two

nodes: a node for a governing word and a so-called slot which substitutes for a potential

complement. The governing node contains morpho-syntactic constraints regarding the governing

word. The slot contains the role and the morpho-syntactic and semantic requirement for the

dependent.

(P-3) A syntagmatic lexicon with valency frames each relating a lexical item to a set of

templates. This information is equivalent to strict subcategorization in a Chomsky grammar.

(P-4) A declaration of the morpho-syntactic categories used in the lexicon and in the

templates defining the attributes and values for each category and the way in which

correspondences between values are computed during the slot filling process (i.e. the type of

unification). Typical devices for processing values are the construction of the intersection or

union of features and the verification of positional order.

(P-5) A working space for storing the immediate results. Any information collected about a

smaller or larger segment of the input is stored in an object called "bulletin". Among other

points, a bulletin comprises the lefts and right margins of the corresponding segment in the input,

a reference to the previous bulletin that provided the head and slots and a reference to the

previous bulletin that provided the filler, a dependency tree representing the current description

of the segment including subordinated fillers as well as open slots. A special mark signals the

capability of a bulletin for discontinuous attachment of fillers.

(P-6) A chart, i.e. a table in which each bulletin is registered

 66

Algorithm:

The program consists of the following processes which are partially executed in parallel and

communicate with each other via message queues.

(A-1) Scanner. Read the input text until the end of file. Divide the input text into lexical elements

according to the morpho-syntactic lexicon (multi-word lexical entries are possible). Extract the

lexemes and the morpho-syntactic categories for each lexical item. Allocate a separate bulletin for

each reading associated with each particular segment and register it in the chart. Save all available

information in the bulletin and send the bulletin to the Predictor via the predictor-queue.

(A-2) Predictor. As long as the predictor-queue is not empty, choose a bulletin and extract its

lexeme. Look up the valency frames for the lexeme in the lexicon. Inspect all the templates that

are mentioned in the frame, compare the head constraints in the template with the information

collected for the word in the bulletin and copy all applicable slots into the bulletin. Send the

augmented bulletin to the Selector via the selector-queue.

(A-3) Selector. As long as the selector-queue is not empty, choose a bulletin. Retrieve all other

bulletins (via the chart) whose segments are promising candidates for mutual combination with the

given segment, as head or as filler. Send the resulting pairs of bulletins to the Completer via the

completor-queue. Note that the selector-queue is fed by both the Predictor and the Completer

process. The former introduces lexical segments, the latter submits composed segments for further

combination. In this way the slot-filling activity is recursive.

(A-4) Completer. As long as the completer-queue is not empty, choose a pair of bulletins and

try to combine them according to the following slot-filling device. Inspect the dependency

description of both trees for slots. If a slot is found then check whether the tree in the other

bulletin meets the specified filler requirements. If there are open obligatory slots in the filler tree

then discard this candidate right away, except for discontinuous slots which don't need to be

filled yet. Apply the unification method appropriate to each attribute while comparing slot and

filler and while checking the agreement of filler and head. If a filler fits into a slot and if it agrees

with the head then form a new tree in which the filler is inserted into the slot. Remove all open

slots from the filler except those which may be filled by discontinuous constituents. Remove all

slots from the head that are alternatives to the slot just filled. Allocate a new bulletin and save the

new tree as well as the appropriate information in the control portion of the bulletin. (If the

segment on the right hand-side was the filler then block the resulting bulletin for further left

hand-side completion. This is necessary to avoid double results due to a varying sequence of

attachments.) Submit the new bulletin to the Assess-Result function.

(A-5) Assess-Result. Check whether the current bulletin contains an utterance marker and

whether the corresponding segment spans the whole input since the last utterance has been

outputted. If this is the case then output the dependency description of the current bulletin and

erase the bulletin and all its antecessors from the working space. Otherwise pass the bulletin to

the Selector via the selector-queue.

 67

Example

DECLARATION OF MORPHO-SYNTACTIC CATEGORIES

Main Categories:

verb, noun, wh_pron, dete, adje, particle, prep

Grammatical features:

Attributes: Values: Unification:

form finite, compute intersection

 infinitive,

 past_part

person 1st, 2nd, 3rd compute intersection

number singular, compute intersection

 plural

case subject compute intersection

 object

mode quest compute intersection

 assert

utterance +

-

compute intersection

sent_position 1 – 7 verify positional order

 compute union

np_position 1 – 4 verify positional order

 compute union

pp_position 1 – 2 verify positional order

 compute union

discont left, right verify discontinuity

 verify positional order

MORPHO-SYNTACTIC LEXICON
(similar to the lexicon of PT-8 without the valence feature)

sleep (lex[sleep] cat[verb] form[infinitive]);

sleep (lex[sleep] cat[verb] form[finite] person[1st, 2nd]

 number[singular]);

sleeps (lex[sleep] cat[verb] form[finite] person[3rd] number[singular]);

sleep (lex[sleep] cat[verb] form[finite] number[plural]);

 68

feed (lex[feed] cat[verb] form[infinitive]);

feed (lex[feed] cat[verb] form[finite] person[1st, 2nd]

 number[singular]);

feeds (lex[feed] cat[verb] form[finite] person[3rd] number[singular]);

supply (lex[supply] cat[verb] form[infinitive]);

supplies (lex[supply] cat[verb] form[finite] person[3rd] number[singular]);

fed (lex[feed] cat[verb] form[past_part]);

do (lex[do] cat[verb] form[infinitive]);

do (lex[do] cat[verb] form[finite] person[1st, 2nd] number[singular]);

does (lex[do] cat[verb] form[finite] person[3rd] number[singular]);

do (lex[do] cat[verb] form[finite] number[plural]);

did (lex[do] cat[verb] form[finite] person[3rd] number[singular]);

has (lex[have] cat[verb] form[finite] person[3rd] number[singular]);

Gudrun (lex[Gudrun] cat[noun] person[3rd] number[singular]);

cat (lex[cat] cat[noun] person[3rd] number[singular]);

cats (lex[cat] cat[noun] person[3rd] number[plural]);

fish (lex[fish] cat[noun] person[3rd]);

I (lex[I] cat[pron] person[1st] number[singular] case[subject]);

me (lex[I] cat[pron] case[object]);

you (lex[you] cat[pron] person[2nd]);

he (lex[he] cat[pron] person[3rd] number[singular] case[subject]);

him (lex[he] cat[pron] case[object]);

what (lex[what] cat[wh_pron] person[3rd] number[singular]

 mode[quest,C]);

who (lex[who] cat[wh_pron] person[3rd] number[singular] case[subject]

 mode[quest,C]);

whom (lex[who] cat[wh_pron] case[object] mode[quest,C]);

the (lex[the] cat[dete]);

a (lex[a] cat[dete] number[singular]);

all (lex[all] cat[dete] number[plural]);

her (lex[her] cat[dete]);

silly (lex[silly] cat[adje]);

to (lex[to] cat[prep]);

with (lex[with] cat[prep]);

? (lex[question'] cat[particle] utterance[+]);

. (lex[assertion'] cat[particle] utterance[+]);

 69

TEMPLATES

(template[+question]

(role[ILLOCUTION] cat[particle] sent_position[7]

 (< slot[oblig] role[PREDICATE] cat[verb] form[finite] mode[quest]

sent_position[2,C])));

(template[+assertion]

(role[ILLOCUTION] cat[particle] sent_position[7]

 (< slot[oblig] role[PREDICATE] cat[verb] form[finite] mode[assert]

sent_position[4,C])));

(template[+aux_subject]

(cat[verb] form[finite] sent_position[2]

 (> slot[oblig] role[SUBJECT] cat[noun] mode[quest,C]) number[C]

person[C] sent_position[3,C])));

(template[+aux_subject]

(cat[verb] form[finite] sent_position[2]

 (> slot[oblig] role[SUBJECT] cat[pron] case[subject] mode[quest,C])

number[C] person[C] sent_position[3,C])));

(template[+infinitiv]

(cat[verb] form[finite] sent_position[2]

 (> slot[oblig, nuleus] role[PRED_COMPLEMENT] cat[verb]

form[infinitive] mode[C] sent_position[4,C])));

(template[+participle]

(cat[verb] form[finite] sent_position[2]

 (> slot[oblig, nucleus] role[PRED_COMPLEMENT] cat[verb]

form[past_part] mode[C] sent_position[4,C)));

(template[+subject]

(cat[verb] form[finite] sent_position[4]

 (< slot[oblig] role[SUBJECT] cat[noun] mode[assert,C]) number[C]

person[C] sent_position[3,C])));

(template[+subject]

(cat[verb] form[finite] sent_position[4]

 (< slot[oblig] role[SUBJECT] cat[pron] case[subject]

mode[assert,C]) number[C] person[C] sent_position[3,C])));

(template[+subject]

(cat[verb] form[finite] sent_position[4]

 (< slot[oblig] role[SUBJECT] cat[wh_pron] mode[quest,C] person[C]

number[C] sent_position[1,C])));

(template[+dir_object]

(cat[verb] sent_position[4]

 (> slot[optional] role[DIR_OBJECT] cat[noun]

sent_position[5,6,C])));

(template[+dir_object]

(cat[verb] sent_position[4]

 (> slot[optional] role[DIR_OBJECT] cat[pron] case[object]

sent_position[5,C])));

(template[+dir_object]

(cat[verb] form[infinitive] sent_position[4]

 (< slot[optional] role[DIR_OBJECT] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])));

 70

(template[+indir_object]

(cat[verb] sent_position[4]

 (> slot[optional] role[INDIR_OBJECT] cat[noun]

sent_position[5,C])));

(template[+indir_object]

(cat[verb] sent_position[4]

 (> slot[optional] role[INDIR_OBJECT] lex[to] cat[prep]

sent_position[6,C])));

(template[+indir_object]

(cat[verb] form[infinitive] sent_position[4]

 (< slot[optional] role[INDIR_OBJECT] lex[to] cat[prep]

mode[quest,C] sent_position[1,C] discont[left])));

(template[+count]

(cat[noun] number[singular] np_position[3]

 (< slot[oblig] role[DETERMINER] cat[dete] number[C]

np_position[1,C])));

(template[+count]

(cat[noun] number[plural] np_position[3]

 (< slot[optional] role[DETERMINER] cat[dete] number[C]

np_position[1,C])));

(template[+mass]

(cat[noun] number[singular] np_position[3]

 (< slot[optional] role[DETERMINER] cat[dete] np_position[1,C])));

(template[+attribute]

(cat[noun] np_position[3]

 (< slot[optional, sequence] role[ATTRIBUTE] cat[adje]

np_position[2,C])));

(template[+prep_attribute]

(cat[noun] np_position[3]

 (> slot[optional] role[PREP_ATTRIBUTE] cat[prep]

np_position[4,C])));

(template[+prep_phrase]

(cat[prep] pp_position[1]

 (> slot[oblig] role[PREP_COMPL] cat[noun] pp_position[2,C])));

(template[+prep_phrase]

(cat[prep] pp_position[1]

 (> slot[oblig] role[PREP_COMPL] cat[pron] case[object]

pp_position[2,C])));

Legend: Template names are printed bold. Grammatical roles are in upper case. If a filler is
expected on the left of the head the slot is marked by "<", if on the right the slot is marked by ">".
Slots can be obligatory or optional. The value "sequence" allows for several complements of the
same kind, e.g. several adjectives in front of a noun. The value "nucleus" is used for slots that form
a special union with the head like the auxiliary with the main verb. The value 'C' in a slot triggers
the unification of values of the corresponding attributes in the filler and the head term.

 71

VALENCY FRAMES
(equivalent to lexical subcategorization in generative grammar)

Word Templates

sleep

->

+subject

feed -> +subject, +direct_object, +indirect_object

do -> +aux_subject +infinitiv

have -> +aux_subject +participle

cat -> +count, +attribute

fish -> +count, +attribute

fish -> +mass, +attribute

to -> +prep_phrase

with -> +prep_phrase

question' -> +question

assertion' -> +assertion

 72

How a bulletin is composed:

1 MORPHO-SYNTACTIC LEXICON

 does (lex[do] cat[verb] form[finite] person[3rd]

number[singular]);

2 SUBCATEGORIZATION (VALENCY FRAME)

 do -> +aux_subject, +infinitiv

3 TEMPLATES

(template[+aux_subject]

(cat[verb] form[finite] sent_position[2]

 (> slot[oblig] role[SUBJECT] cat[noun] mode[quest,C]) number[C]

person[C] sent_position[3,C])));

(template[+aux_subject]

(cat[verb] form[finite] sent_position[2]

 (< slot[oblig] role[SUBJECT] cat[pron] case[subjective]

mode[quest,C]) number[C] person[C] sent_position[1,C])));

(template[+infinitiv]

(cat[verb] form[finite] sent_position[2]

 (> slot[oblig, nucleus] role[PRED_COMPLEMENT] cat[verb]

form[infinitive] mode[C] sent_position[4,C])));

4 BULLETIN

(2) does 1 5 - - N

(lex[do] cat[verb] form[finite] person[3rd] number[singular] sent_position[2]

 {(> slot[oblig] role[SUBJECT] cat[noun] mode[quest,C]) number[C] person[C]

sent_position[3,C]) |

 (< slot[oblig] role[SUBJECT] cat[pron] case[subjective] mode[quest,C])

number[C] person[C] sent_position[1,C]) }

 (> slot[oblig, nucleus] role[PRED_COMPLEMENT] cat[verb] form[infinitive]

mode[C] sent_position[4,C]));

 73

INPUT

Input:

what does Gudrun feed her cat

Position: 1 2 3 4 5 6

WORKING AREA (BULLETINS)

A:

Segment:

Left
margin:

Right
margin:

Head
bulletin:

Filler
bulletin:

Disconti-
nuous
slot?

(1) what 1 1 - - N

(lex[what] cat[wh_pron] person[3rd] number[singular] mode[quest,C]);

(2) does 2 2 - - N

(lex[do] cat[verb] form[finite] person[3rd] number[singular] sent_position[2]

 {(> slot[oblig] role[SUBJECT] cat[noun] mode[quest,C]) number[C] person[C]

sent_position[3,C])|

 (> slot[oblig] role[SUBJECT] cat[pron] case[subject] mode[quest,C])

number[C] person[C]) sent_position[3,C]) }

 (> slot[oblig, nuleus] role[PRED_COMPLEMENT] cat[verb] form[infinitive]

mode[C] sent_position[4,C]));

(3) Gudrun 3 3 - - N

(lex[Gudrun] cat[noun] person[3rd] number[singular]);

(4) does Gudrun 2 3 (2) (3) N

(lex[do] cat[verb] form[finite] person[3rd] number[singular] mode[quest]

sent_position[2,3]

 (> role[SUBJECT] lex[Gudrun] cat[noun] mode[quest,C]) number[singular,C]

person[3rd,C] sent_position[3,C])

 (> slot[oblig, nuleus] role[PRED_COMPLEMENT] cat[verb] form[infinitive]

mode[C] sent_position[4,C]));

(5) feed 4 4 - - N

(lex[feed] cat[verb] form[infinitive] sent_position[4]

 {(> slot[optional] role[DIR_OBJECT] cat[noun] sent_position[5,6,C]) |

 (> slot[optional] role[DIR_OBJECT] cat[pron] case[object]

sent_position[5,C]) |

 (< slot[optional] role[DIR_OBJECT] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])}

 {(> slot[optional] role[INDIR_OBJECT] cat[noun] sent_position[5,C]) |

 (> slot[optional] role[INDIR_OBJECT] lex[to] cat[prep]

sent_position[6,C]) |

 (< slot[optional] role[INDIR_OBJECT] lex[to] cat[prep] mode[quest,C]

sent_position[1,C] discont[left])});

 74

(6) feed 4 4 - - N

(lex[feed] cat[verb] form[finite] person[1st, 2nd] number[singular]

sent_position[4]

 (< slot[oblig] role[SUBJECT] cat[pron] case[subject] mode[assert,C])

number[C] person[C] sent_position[3,C])

 {(> slot[optional] role[DIR_OBJECT] cat[noun] sent_position[5,6,C]) |

 (> slot[optional] role[DIR_OBJECT] cat[pron] case[object]

sent_position[5,C]) }

 {(> slot[optional] role[INDIR_OBJECT] cat[noun] sent_position[5,C]) |

 (> slot[optional] role[INDIR_OBJECT] lex[to] cat[prep]

sent_position[6,C])});

(7) does Gudrun feed 2 4 (4) (5) Y

(lex[do] cat[verb] form[finite] person[3rd] number[singular]) mode[quest]

sent_position[2,3,4]

 (> role[SUBJECT] lex[Gudrun] cat[noun] mode[quest,C]) number[C] person[C]

sent_position[3,C])

 (> role[PRED_COMPLEMENT] lex[feed] cat[verb] form[infinitive]

sent_position[4,C])

 (< slot[optional] role[DIR_OBJECT] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])));

(8) what does Gudrun feed 1 4 (7) (1) N

(lex[do] cat[verb] form[finite] person[3rd] number[singular] mode[quest]

sent_position[1,2,3,4]

 (> role[SUBJECT] lex[Gudrun] cat[noun] mode[quest,C]) number[C] person[C]

sent_position[3,C])

 (> role[PRED_COMPLEMENT] lex[feed] cat[verb] form[infinitive]

sent_position[4,C]

 (< role[DIR_OBJECT] lex[what] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])));

(9) her 5 5 - - N

(lex[her] cat[dete]);

(10) cat 6 6 - - N

(lex[cat] cat[noun] person[3rd] number[singular] np_position[3]

 (< slot[oblig] role[DETERMINER] cat[dete] number[C] np_position[1,C])

 (< slot[optional, sequence] role[ATTRIBUTE] cat[adje] np_position[2,C])

 (> slot[optional] role[PREP_ATTRIBUTE] cat[prep] np_position[4,C]));

(11) her cat 5 6 (10) (9) N

(lex[cat] cat[noun] person[3rd] number[singular] np_position[1,3]

 (role[DETERMINER] lex[her] cat[dete] number[C] np_position[1,C])

 (> slot[optional] role[PREP_ATTRIBUTE] cat[prep] np_position[4,C]));

 75

(12) feed her cat 4 6 (5) (11) Y

(lex[feed] cat[verb] form[infinitive] sent_position[4,5]

 {(< slot[optional] role[DIR_OBJECT] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left]) |

 (> slot[optional] role[DIR_OBJECT] cat[noun] sent_position[6,C])}

 (> role[INDIR_OBJECT] lex[cat] cat[noun] person[3rd] number[singular]

np_position[1,3] sent_position[5,C]

 (role[DETERMINER] lex[her] cat[dete] number[C] np_position[1,C])));

(13) feed her cat 4 6 (6) (11) N

(lex[feed] cat[verb] form[finite] person[1st, 2nd] number[singular]

sent_position[4,5]

 (< slot[oblig] role[SUBJECT] cat[pron] case[subject] mode[assert,C])

number[C] person[C] sent_position[3,C])

 (> slot[optional] role[DIR_OBJECT] cat[noun] sent_position[6,C])

 (> role[INDIR_OBJECT] lex[cat] noun person[3rd] number[singular]

np_position[1,3] sent_position[5,C]

 (role[DETERMINER] lex[her] cat[dete] number[C] np_position[1,C])));

(14) does Gudrun feed her cat 2 6 (4) (12) Y

(lex[do] cat[verb] form[finite] person[3rd] number[singular] mode[quest]

sent_position[2,3,4,5]

 (> role[SUBJECT] lex[Gudrun] cat[noun] mode[quest,C]) number[singular,C]

person[3rd,C] sent_position[3,C])

 (> role[PRED_COMPLEMENT] lex[feed] verb form[infinitive]

sent_position[4,6,C]

 (< slot[optional] role[DIR_OBJECT] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])

 (> role[INDIR_OBJECT] lex[cat] cat[noun] person[3rd] number[singular]

np_position[1,3] sent_position[5,C]

 (< role[DETERMINER] lex[her] cat[dete] number[C]

np_position[1,C])));

(15) what does Gudrun feed

her cat

1 6 (14) (1) N

(lex[do] cat[verb] form[finite] person[3rd] number[singular] mode[quest]

sent_position[1,2,3,4,5]

 (> role[SUBJECT] lex[Gudrun] cat[noun] mode[quest,C]) number[singular,C]

person[3rd,C] sent_position[3,C])

 (> role[PRED_COMPLEMENT] lex[feed] verb form[infinitive]

sent_position[1,4,6,C]

 (< role[DIR_OBJECT] lex[what] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])

 (> role[INDIR_OBJECT] lex[cat] cat[noun] person[3rd] number[singular]

np_position[1,3] sent_position[5,C]

 (< role[DETERMINER] lex[her] cat[dete] number[C]

np_position[1,C])));

(16) ? 7 7 - - N

(role[ILLOCUTION] lex[question'] cat[particle] utterance[+] sent_position[7]

 (< slot[oblig] role[PREDICATE] cat[verb] form[finite] mode[quest]

sent_position[2,C]));

 76

(17)

what does Gudrun feed

her cat ?

1

7

(16)

(15)

N

(role[ILLOCUTION] lex[question'] cat[particle] utterance[+]sent_position[7]

 (< role[PREDICATE] lex[do] cat[verb] form[finite] person[3rd]

number[singular] mode[quest] sent_position[1,2,3,4,5]

 (> role[SUBJECT] lex[Gudrun] cat[noun] mode[quest,C])

number[singular,C] person[3rd,C] sent_position[3,C])

 (> role[PRED_COMPLEMENT] lex[feed] verb form[infinitive]

sent_position[1,4,6,C]

 (< role[DIR_OBJECT] lex[what] cat[wh_pron] mode[quest,C]

case[object] sent_position[1,C] discont[left])

 (> role[INDIR_OBJECT] lex[cat] cat[noun] person[3rd]

number[singular] np_position[1,3] sent_position[5,C]

 (< role[DETERMINER] lex[her] cat[dete] number[C]

np_position[1,C])));

RESULT (without morho-syntactic categories):

 (ILLOCUTION: question'

 (PREDICATE: do

 (SUBJECT: Gudrun)

 (PRED_COMPLEMENT: feed

 (DIR_OBJECT: what)

 (INDIR_OBJECT: cat

 (DETERMINER: her))));

Evaluation

(1) Efficiency. The slot-and-filler parser starts with the terminal elements in the input; these

elements are associated with slots for other elements in the input. So, PT-9 is data-driven and

expectation-driven at the same time, or more precisely, even its expectations are data-driven.

Therefore, the slots of PT-9 are much more concrete than the expectations derived from the

abstract sentence structure in rule-based parsers. Although there is a considerable amount of

local over-generation, the potential relevance of each intermediate result is high. As opposed

to top-down parsers, the number of rules/slots that must be checked is independent of the size

of the grammar; the number of steps of the parser are completely determined by the valency

of the encountered words.

(2) Coverage. The grammar of PT-9 is an instance of an attribute grammar (Knuth 1968, Van

Wijngaarden 1969, Pagan 1981). Its power depends on the kind of attributes used. The position

attributes and the discont-attribute exceed context-freeness. Other attributes may be added in the

course of dealing with additional phenomena of natural languages. Of course, one should keep

the portion of context-sensitiveness to the minimum. In a way, PT-9 comes from the opposite

direction as compared to ATN. Instead of forcing the power of a Turing machine down to a

desirable level, the context-free level is gradually augmented by a desirable extension into the

area of context-sensitive power.

 77

(3) Drawing up lingware. The extremely modular and lexicalized approch of PT-9 is the contrary

of huge networks like ATNs (PT-8) and tight systems like table-based shift-reduce parsers (PT-

6). It is easy to describe the valency of words and not many side effects are to be expected from

the addition of more word descriptions. Note that complex categories and the unification

mechanism are prerequisites for the direct processing of dependency trees as shown in PT-9.

Multiple labeling of the nodes in the dependency tree is the key to achieve a description without

non-terminal nodes. Removing non-terminal nodes is, however, very advantageous in order to

simplify the description.

 78

3 Comparative evaluation of the parser prototypes

A parser should meet the following requirements:

- The parser should be as efficient as possible both in space and time.

- The capacity of the parser must cover the specific phenomena of natural language.

- Drawing up linguistic resources for the parser should be easy.

- The results of the parser must suit the envisaged application.

In the sequel we discuss the pros and cons of the various parsing technologies with respect to

these goals.

3.1 Efficiency

Parsers do not differ so much in the space they require. In addition, space requirements are not

very critical any more. Therefore we concentrate on the time aspect here. There are two main

problems that have an impact on processing time: the control of alternative steps and the

overgeneration of intermediate results.

3.1.1 Control of alternatives

A parser runs deterministically if it is always clear what will be its next state, given the sequence of

previous states and the current input. Humans seem to process language deterministically most of

the time; at least no hesitation in understanding the next word is observable (for consequences see

Marcus 1980). On the other hand a parser for natural language cannot be totally deterministic,

because ambiguity is a genuine property of natural language. A speaker can utter an ambiguous

sentence on purpose. That is why a deterministic FTN parser (PT-7) can never cope with the whole

range of syntactic structures.

Schematic backtracking as well as parallel processing of all alternatives are the worst choices in

order to deal with syntactic variation. Under this aspect PT-1 and PT-2 should be ruled out. Both

prototypes require 17 rule applications in order to parse the example. The same rule is often

applied several times to the same substring because somewhere else in the previous context an

alternative path has been followed, i.e. the same work is done over and over again. Recursive

transition networks adhere to the same principles and are, therefore, no better. (By the way, the

same is true for the built-in resolution mechanism of PROLOG.)

Augmented transition networks (PT-8) can avoid blind backtracking by means of the registers

which can be inspected in order to locate the reasons for a failure. However, this requires

additional effort from the programmer since he must anticipate the dead-ends into which the

system may run. There is also a "wait-and-see"-style of ATN-programming that simply collects

constituents at first and then interprets them at the exit of the network. Thus, ATNs can be

efficient once they are constructed, but it is awkward to write them.

Table-controlled shift-reduce parsers (PT-6) are virtually similar to transition networks. They are

impressively efficient because looking ahead across the border to the next constituent is

integrated into the control table. PT-6 processes the example, that causes 10 times backtracking

in PT-1, completely deterministically. This type of a parser was recently advocated again

 79

(Tomita 1985). A slight disadvantage of this approach is the necessity to construct a new control

table each time a change is made in the grammar.

The remaining possibility to deal with variations in an efficient manner is the use of a well-

formed substring table or "chart". Any substring that has been analyzed is kept in the working

area and may be used again in various different combinations with its context. The Earley parser

(PT-4), the Cocke-Parser (PT-5), and the slot-filler parser (PT-9) are examples of this technique.

The problem of backtracking does not arise at all in this approach. The conclusion is that,

according to the state of the art, chart parsing is usually recommendable.

3.1.2 Overgeneration

"Overgeneration" is a label to cover a range of problems, "combinatorial explosion" is another.

In principle, a grammar would be overgenerating if it allowed for strings that are not part of the

language. Although it is not easy to draw up a grammar that assigns a structural description to all

and only the well-formed strings of a language, this is not the problem here. What touches

efficiency is the fact that in the course of filling the search space (compare figure 6 in section

1.7) substrings and structures may be generated that are superfluous or obsolete in the context.

Since the context that is taken into account can only be increased gradually it is obvious that

there are situations where alternative readings for parts of the input must be kept. Each

alternative asks for further processing and, as a consequence, the number of intermediate results

have impact on the efficiency of the parser.

In principle, there are two factors that influence the amount of overgeneration: the parser's

strategy and the quality of the grammar.

With respect to the first factor, top-down and bottom-up strategies differ in their advantages and

disadvantages. A top-down parser may generate expansions which will never be met by the

terminal elements while a bottom-up parser may construct constituents from terminal elements

which are obsolete in the broader context. Instances of the first type are PT-1, PT-2, PT-4, PT-6,

PT-8 instances of the latter type are PT-5 and PT-9. The advantages of top-down parsers result

from the fact, that these parsers rely, in a sense, on expectations what comes next. This is

especially true for PT-6 which includes looking one constituent ahead. The advantages of

bottom-up parsers result from the fact that they are data-driven, i.e. they will not expand a rule

that will have no chance with respect to the actual input. Overgeneration will possibly be

minimized if a strategy is found that combines both principles in one way or the other.

If we leave aside ATNs that are capable of any tests and actions but are difficult to draw up, PT-

4, PT-6 and PT-9 are on the short list of efficient parsers that attempt to combine top-down and

bottom-up strategies. The Earley parser (PT-4) alternates between top-down rule expansion

(expectation-driven) and bottom-up completion (data-driven). The table-controlled shift-reduce

parser (PT-6) confines the top-down approach to the construction of the tables, while it proceeds

bottom-up at run-time. The slot-filler parser (PT-9) starts with the elements which are in fact

present (data-driven). These elements are associated with slots for other elements in the input

(expectation driven). The slot-filling mechanism reconciles expectations and actual data.

The Earley chart parser (PT-4) would not generate intermediate results that are obsolete with

respect to the left context. On the other hand it produces superfluous expansions, the number of

which depends on the total number of grammar rules. The slot-filler parser (PT-9) produces

intermediate segments that are not connected with the beginning of the sentence and, hence, may

 80

be obsolete in the broader context. On the other hand PT-9 applies only rules (in the form of

slots) that are relevant for the actual terminal elements. The number of slots that will be checked

is independent of the size of the grammar. The table-controlled shift-reduce parser (PT-6) uses

the left context, the actual terminal element, as well as the first element of the constituent to

follow in order to rule out overgeneration. In this respect, PT-6 seems to be the most efficient

parser.

The second factor with respect to the problem of overgeneration is the quality of the grammar.

This factor can hardly be overestimated. A bad grammar is often the reason for poor

performance of the parser. Slight changes in the lingware can have major effects to the worse as

well as to the better. Thus, it is not enough to have a good parser. What is needed also, is a

scrutinized tuning of constraints for a large variety of words. If such a sophisticated lingware is

at hand the problem of spurious segments can hopefully be reduced to a minimum.

Of course, a parser can not perform better than a human to whom a string is presented in

isolation. There may be syntactic overgeneration because disambiguation is impossible an purely

syntactic grounds. In this case, the parser must produce as many parses as there are ambiguities.

The task of resolving these ambiguities involves extra-syntactic resources, e.g. semantic

relationships, discourse understanding, world knowledge. It is an open question whether these

resources should intervene with the parsing process or follow it up. In any case, such additional

devices must be worked out carefully. If one adds ad hoc restrictions, e.g. semantic features

according to a given object domain, the system would not be re-usable in other environments.

This would be a severe deficiency. The parser would then undergenerate in other applications, a

behavior that is worse than overgeneration.

3.2 Coverage

It is a truism that a parser must be able to cope with the linguistic phenomena. As a first

indication, the coverage of parsers can be correlated with Chomsky's hierarchy of grammars

(Chomsky 1959):

Language Grammar Automaton Network

type-3 regular grammar finite-state automaton FTN

type-2 context-free grammar push-down store RTN

type-1 context-sensitive

grammar

linear restricted

automaton

ATN

type-0 unrestricted production

system

Turing machine

Some parsers impose further restrictions on the grammar, for example, they do not allow left-

recursive rules or no category deletion ("epsilon" rules). Or they accept a certain normal form

only, for example, only binary rules.

PT-1 through PT-6 cover context-free grammars only, PT-7 is restricted to regular grammars.

They are not suitable to deal with natural language phenomena as, for instance, discontinuous

constituents or unbound dependencies that require greater power. This deficiency is a strong

objection to the application of these parsers. Even PT-4 and PT-6, which are good choices for

programming languages, will fail for many natural languages if broad coverage is the goal. In

English, discontinuous left dislocations might still be tractable with a context-free device (e.g.

Gazdar's slash categories), but this attempt will be awkward for languages with free word order,

 81

e.g. German. Nevertheless, there are other phenomena in natural language, for instance

coordination and ellipsis, which will eventually rule out the common parsing techniques

developed in computer science.

ATNs (PT-8) are capable to deal with any phenomenon since they allow, in principle, for any

tests and any actions. The problem with this approach is to reduce the power of the formalism by

limiting the variety of tests and actions to the minimum needed. If this is not done it would be

impossible to predict the behavior of the parser. The lexicalistic slot-and-filler parser (PT-9)

seems to be promising with respect to extended coverage because there will be no syntactic

phenomenon that is not reflected by relationships between words and phrases and thus does not

fit into the basic framework. The provision for the extension of this parser beyond context-free

structures is the possibility to define different ways in which attributes are unified. The positional

attributes in the above example are instances for such an extension. Other types of attributes, i.e.

other procedures for controlled unification, can be added when needed. This attempt to preserve

flexibility for future extensions is similar to the principle open-endedness of ATNs. However, in

contrast to ATNs, this possibility for augmentation is precisely located within the formalism. In a

way, PT-9 comes from the opposite direction as compared to ATN. Instead of limiting the power

of a Turing machine down to a desirably restricted level, the context-free level is gradually

augmented by a desirable extension into the area of context-sensitive power.

3.3 Drawing up Lingware

The task of providing lingware to the parser is by far the most costly one. For each language,

some 100 000 words must be categorized according to numerous syntactic relationships. This

can be achieved only in a long process of research, testing and debugging. And because natural

languages constantly change, updates of the grammar will be an important economic factor. If

the costs for development and maintenance of a NLP system are to be minimized then the ease of

writing and tuning the lingware must have highest priority. In the sequel we comment on three

aspects: perspicuity, side-effects, and usability of external resources.

3.3.1 Perspicuity

Although the knowledge about an object domain, i.e. natural language, may be very complex the

knowledge representation can vary with respect to perspicuity. The worst case among our

prototypical parsers is an ATN (PT-8). The same is true for any parser that does not separate

grammar and procedures. (Another case of this type is "Word expert parsing"). It is quite

obvious that procedural representations are less perspicuous than declarative ones.

Grammars differ in the type of structure they assign to the input strings. The main choice is

constituency structure versus dependency structure. Constituency structure is more complex and

hence less perspicuous because it has to introduce a non-terminal node into the parse tree for

each syntagmatic entity that is composed by a rule application. Some parsers, e.g. the Cocke-

parser (PT-5) and ATNs (PT-8), allow for the construction of dependency trees although they

process the input along constituency lines. However, this kind of two-fold thinking does not

facilitate the writing of the grammar. A uniform way of constructing dependency trees right from

the beginning is the slot-and-filler parser PT-9.

The use of complex categories, each comprising a set of attributes and values, as well as a

mechanism to calculate the agreements between attributes of different elements (unification) is a

must for all formalisms. Otherwise a combinatorial explosion cannot be avoided, especially in

 82

the case of heavily inflected languages. (For instance, the rule S -> NP VP would have to be

replaced by six rules if only person and number agreement between NP and VP is taken into

account.) We have not worked out complex categorization and unification in the above

examples, except for PT-9, but it may be assumed that the rules of PT-1 through PT-6 can be

augmented by attributes and values similar to PT-9. The usual means that ATNs lend for

calculating agreement, namely SENDR and LIFTR actions operating on individual attributes, are

awkward. They should be augmented by a UNIFY action that operates on complex categories as

a whole. Note that complex categories and unification is a prerequisite for the direct processing

of dependency trees as shown in PT-9. Multiple labeling of the nodes in the dependency tree is

the key to achieve a description without non-terminal nodes. Removing non-terminal nodes,

however, is very advantageous in order to simplify the unification process, because the nodes

that have to be compared for agreement are not mediated by an overhead of nodes that would

only inherit the features in question.

Unification of categories requires the storage of detailed intermediate results. The consumption

technique of some recognizers (PT-1, PT-2) is less favorable for this goal. The relationship

between parser and grammar also has an impact on perspicuity. It is likely that a procedural

representation (PT-8) is less transparent than a declarative one. Therefore, the separation of

grammar and procedures is an important criterion.

3.3.2 Side effects

It is a well-known crux that the addition of more grammatical data may cause bad performance

of the parser even in areas where it worked well before. This means that after any change in the

lingware the whole system must be tested for undesired side effects. Therefore, it is highly

desirable that additions have little impact on the rest of the grammar. The best way to reach this

goal is to organize the grammatical data in small, modular portions, so that the range of the

changes remain calculable.

The most difficult problems with respect to side effects must be expected if the software and the

lingware of the parser are not separated as it is the case with ATNs (PT-8). Debugging a

procedural parser is awkward because there can always be two quite distinct reasons for a bad

performance: either the control structure of the parser as such is faulty or the grammar is not

adequate with respect to the language phenomena. The measures which must be taken in the two

cases are quite different: In the first case the programmer must locate the error and correct the

source code, in the second case the linguist must study the language and alter his descriptions.

As long as program and grammar intervene, the task can neither be divided among different

people nor will the program ever be finished, since changes in the grammar will always be

necessary. Hence, the choice must be a declarative grammar and an interpretative parser in order

to minimize side effects by additional data.

Among declarative grammars we have the choice between sentence-oriented, rule-based

grammars (PT-1 through PT-7) and word-oriented, lexicalized grammars (PT-9). In the first

case, the potential range of structures that may be affected by an alteration is the sentence. In the

second case the range is limited to a word and the structures which are potential dependents of

the word. The latter is much smaller. As a consequence, we conclude that the lexicalized

dependency parser PT-9 is the least vulnerable by side effects.

 83

3.3.3 Usability of external resources

Given the fact that drawing up lingware is the most costly task in developing NLP systems, it is

desirable to exploit external resources automatically. Examples are existing dictionaries as well

as large data bases which may result from current activities of the European Community (e.g.

Eurotra-7, MULTILEX etc.). Here again a lexicon-based system (e.g. PT-9) is advantageous

because the information present in external resources is the most akin to the lingware of the

system.

3.4 Suitability for the application

Naturally, the required quality of the parsing results depends on the application. For example, a

grammar checker needs a very scrutinizing parser. It must not accept any ill-formed input. A

parser used in a machine translation system should analyze the syntactic structure of sentences

correctly. On the other hand, ill-formed input as well as wrong parses might be tolerated in

information retrieval, as long as a sufficient amount of content is recognized. In many cases, it

is reasonable to apply statistical methods (n-grams, Markov models etc.) in order to extract

isolated phrases or to detect certain features of a text rather than include a full-fledged parser.

An interesting extension of the art of parsing is the ability to correct ill-formed input so that it

fits a correct structural description. Three subtasks of error correction can be distinguished:

- the error must be located,

- the type of error must be diagnosed

- the error must be corrected.

The ability to locate the error depends partially on the strategy which the parser applies in order

to fill the search space in the parse tree. Parsers that proceed from left to right and construct

intermediate results that are linked to the beginning of the input (i.e. PT-2, PT-4, PT-6) will stop

at the first deviant element or shortly there after. The latter is the case if there is accidentally a

reading beyond the factual error. Parsers with schematic backtracking (PT-1, PT-8) can only

locate an error if they store the information about the ultimate position that was successfully

reached before they scroll back though former alternatives. Bottom-up chart parsers (PT-5, PT-9)

face greater difficulties to locate errors. They must collect adjacent segments of decreasing size

that were successfully accumulated in the chart and calculate the most probable positions where

two adjacent segments should have been able to combine but failed to do so. The advantage of

bottom-up parsers, however, is the fact that they alone have a potential to cope with multiple

errors.

The critical property of a parser in the framework of grammar checking is the suitability for

diagnosis and correction. The basis for human error diagnosis and correction is the redundancy

of natural language which leaves clues for the right version even if part of the information is

destroyed. Therefore one can assume in general that a parser is the more suitable to serve the

goals of error correction the more information it has accumulated in the search space and, more

importantly, that this information consists of expectations and data which can be reconciled in

one way or the other.

As a consequence, only parsers that combine the top-down and the bottom-up principle are likely

to be suitable for high-quality error correction. Pure top-down parsers (PT-1, PT-2, PT-7) are

 84

probably insufficient because they produce expectations but, as soon as an error occurs, they do

not reach the level of terminal elements that would provide the information about the factual

situation. The Earley parser (PT-4) and the table-controlled shift-reduce parser, too, associate

top-down and bottom-up information only up to that point in the input that could be reached

successfully. Pure bottom-up parsers (PT-5) face the problem that they first have to acquire top-

down information when they fail in order to reconcile the fragments they have built so far. This

may not be infeasible since the source of top-down information, namely the production rules, are

still at hand.

The dependency parser PT-9 has a chart structure similar to PT-5; however the necessary top-

down information needs not to be collected by additional rule applications but is already present

in form of open slots. The slots define precisely what the context of the given words should be

like. The information what properties the actual fragments have is also available. By comparing

the required features of the slots and the factual features of the existing segments the differences

between both sets can be calculated. The least deviant cases are selected and their features are

changed. Then the parser resumes its attempts to construct a coherent result. If it succeeds then a

new string is generated according to the (partially changed) features of the complete parse tree

and is offered as a proposal for correction. It seems that this method is superior to the other

approaches.

 85

4 Bibliography

Aho/Ullman

1972

Aho, A.V./Ullman, J.D: The Theory of Parsing, Translation, and

Compiling. Englewood Cliffs: Prentice Hall 1972

Aho/Sethi/Ullman

1986

Aho, Alfred V./Sethi, Ravi/Ullman, Jeffrey D.: Compilers: Principles,

techniques, and tools. Reading, Mass. 1986.

Aho/Ullman 1977 Aho, A.V./Ullman, J.D: Principles of Compiler Design, reading, Mass, 1977

Bates 1978 Bates, Madeleine: The theory and practice of augmented transition network

grammars. In: Bolc [ed.] 1978 191-257.

Bobrow/Fraser

1969,

Bobrow, Daniel G./Fraser, E.: An augmented state transition network

analysis procedure. In: Proceedings of the International Joint Conference on

Artificial Intelligence, Washington 1969, Bedford, Mass. 1969, 557-567.

Bolc 1978 Bolc, Leonard [ed.]: Natural Language Communication with Computers.

Lecture Notes in Computer Science, Vol. 63. Berlin - Heidelberg - Tokyo -

New York 1978.

Chomsky 1957 Chomsky, Noam: Syntactic Structures. The Hague 1957.

Chomsky 1959 Chomsky, Noam: On certain formal properties of grammars. In: Information

and Control 2, 1959, 137-167.

Chomsky 1965 Chomsky, Noam: Aspects of the Theory of Syntax. Cambridge, Mass. 1965

Covington 1994 Michael A. Covington Natural Language Processing for Prolog

Programmers Englewood Cliffs (Prentice-Hall) 1994

Earley 1970 Earley, Jay C.: An efficient context-free parsing algorithm. In:

Communications of the ACM 13 (2), 1970, 94-102.

Hays 1966 Hays, David G.: Parsing. In: David G. Hays (ed.): Readings in Automatic

Language Processing. New York 1966

Hellwig 1974 Formal-desambiguierte Repräsentation. Vorüberlegungen zur

maschinellen Bedeutungsanalyse auf der Grundlage der Valenzidee.

(Dissertation Heidelberg 1974.) Stuttgart 1978.

Hellwig 1980 PLAIN - A Program System for Dependency Analysis and for

Simulating Natural Language Inference. In: Leonard Bolc (Ed.):

Representation and Processing of Natural Language. München, Wien,

London 1980, S. 271 - 376.

Hellwig 1988 Chart Parsing According to the Slot and Filler Principle. In Proceedings of

the 12th International Conference on Computational Linguistics (COLING

88). John von Neumann Society for Computing Sciences Budapest. Buda-

pest 1988. Vol. I., S. 242-244.

Hellwig 1989 Parsing natürlicher Sprachen: Grundlagen, Parsing natürlicher Sprachen:

Realisierungen. In: Computational Linguistics. Ein internationales

Handbuch zur computerunterstützten Sprachforschung und ihrer Anwen-

dung. Hrsg. von I. S. Bátori, W. Lenders, W. Putschke. Berlin: De

Gruyter 1989. (Handbücher zur Sprach- und

Kommunikationswissenschaft.) S. 348 - 431.

Hellwig 1993 Extended Dependency Unification Grammar. In: Eva Hajicova (ed.):

Functional Description of Language. Faculty of Mathematics and Physics,

Charles University, Prague 1993. S. 67-84.

Hopcroft/Ullman

1979

Hopcroft, John E./Ullman, Jeffrey D.: Introduction to Automata Theory,

Languages and Computation. Reading, Mass. 1979.

Hudson 1980 Hudson, Richard A.: Constituency and dependency. In: Linguistics, Vol. 1,

1980, 179-198.

Hudson 1980 Hudson, Richard A.: Word grammar. Oxford 1984.

 86

Kasami 1965 Kasami, T.: An efficient recognition and syntax analysis algorithm for

context-free languagwes. Technical report, Air Force Cambridge Research

Laboratory, Bedford, Mass. 1965

Kay 1977 Kay, Martin: Morphological and syntactic analysis. In: Zampolli [ed.] 1977,

131-234.

Knuth 1968 Knuth, Donald E.: Semantics of context-free languages. In: Mathematical

systems theory 2, 1968, 127-145.

Kratzer et al.

1974

Kratzer, Angelika/Pause, Eberhard/Stechow, Arnim von: Einf•hrung in die

Theorie und Anwendung der generativen Syntax. 2 Bde. Frankfurt/M. 1973-

74.

Kuno/Oettinger

1963

Kuno, Susumo/Oettinger, Anthony G.: Multiple-path English Analyzer. In:

Report No. NSF-8 Mathematical LInguistics and Automatic Translation.

Lehnert/Ringle

1982

Lehnert, Wendy G./Ringle, Martin H. [eds.]: Strategies for Natural

Language Processing. Hillsdale, N.J. - London 1982.

Marcus 1980 Marcus, Mitchell P.: A theory of syntactic recognition for natural language.

Cambridge, Mass. 1980.

McCord 1980, McCord, M.C.: Slot grammars. In: AJCL 6, 1, 1980, 31-43.

Naumann/Langer

1994

S. Naumann, H. Langer: Parsing. Stuttgart: Teubner 1994.

Pagan 1981 Pagan, Frank G.: Formal specification of programming languages. Prentice

Hall, N.J. 1981.

Pereira/Warren

1983

Pereira, Fernando C.N./Warren, David H.D.: Parsing as deduction. In:

Proceedings of 21st Annual Meeting of the Association for Computational

Linguistics, Boston, Mass. 1983, 137-144.

Shieber 1986 Shieber, Stuart M.: An introduction to unification-based approaches to

grammar. University of Chicago Press, Chicago 1986

Small/Rieger 1982 Small, Steven/Rieger, C.: Parsing and Comprehending with Word Experts.

In: Lehnert/Ringle [eds.] 1982, 89-147.

Starosta/Nomura

1986

Starosta, Stanley/Nomura, Hirosato: Lexicase Parsing: A Lexicon-driven

Approach to Syntactic Analysis. In: COLING '86, Proceedings of the 11th

International Conference on Computational Linguistics, Bonn 1986, 127-

132.

Tesnière 1959 Tesnière, Lucien: Eléments de syntaxe structurale. Paris 1959.

Tomita 1986 Tomita, M. : Efficient Parsing for Natural Languages. A Fast Algorithm for

Practical Systems. Kluewer, Boston 1986

Van Wijngaarden

1969

Wijngaarden, A. van: Report on the algorithmic language ALGOL 68. In:

Numerische Mathematik 14, 1969, 79-218.

Varile 1983 Varile, Giovanni Battista: Charts: A data structure for parsing. In: King

[ed.] 1983, 73-87.

Winograd 1983 Winograd, Terry: Language as a Congnitive Process. Volume I: Syntax.

Reading, Mass. 1983.

Woods 1969 Woods, William A.: Augmented Transition Networks for Natural Language

Analysis. Report CS-1, Aiken Computer Laboratory, Harvard University.

Cambridge, Mass. 1969.

Woods 1970 Woods, William A.: Transition Network Grammars for Natural Language

Analysis. In: Communications of the Association for Computing Machinery

13, No. 10, 1970, 591-606.

Younger 1967 Younger, D.H.: Recognition of Context-free Languages in Time n
3
. In: Inf.

Control 10, 1967, 189-208.

Zampolli 1977 Zampolli, Antonio [ed.]: Linguistic Structures Processing. Amsterdam -

New York - Oxford 1977.

 87

5 Exercises

PT-1. Top-down parser with backtracking

Draw up the work table and the backtracking store for the sentence:

 "Many foreign tourists see the pyramids"

PT-2. Top-down parser with parallel processing

Draw up the work table for the sentence:

 "Many foreign tourists see the pyramids"

PT-3. Top-down predictive analyzer (reibach normal form grammar)

Draw up the work table for the sentence:

 "Many foreign tourists see the pyramids"

PT-4. Top-down parser with divided productions

Draw up a work table for the sentence:

 "Many tourists enjoy Egypt"

PT-5. Bottom-up parser with a well-formed substring table

Draw up a work table and construct a dependency representation for the sentence:

 "Many tourists enjoy Egypt"

PT-6. Table-controlled shift-reduce parser

Draw up a complete network using the ambiguous grammar G2 for the sentence:

 "My friends in Egypt sleep"

PT-7. Parsing with finite transition networks (FTN)

Process the following sentence according to the finite state transition table for G4:

 "Many foreign tourist enjoy the pyramids"

PT-8. Augmented transition networks (ATN)

Process the following sentence according to the ATN-program:

 "Gudrun feeds fish to her silly cat ."

PT-9. Chart parsing according to the slot-and-filler principle

Process the following sentence according to the given valency patterns and valency references:

 "Gudrun feeds fish to her silly cat ."

 88

Table of Contents

1 Parsing Issues ... 1

1.1 What is Parsing? .. 1

1.2 Prerequisites of a parser .. 2

1.3 Connection between grammar and parser ... 2

1.4 The type of the structural description .. 4

1.5 Complex categories and unification .. 5

1.6 Grammar specification formats and basic recognition strategies .. 5

1.7 Constructing a parse tree .. Fehler! Textmarke nicht definiert.

1.8 Processing the input ... Fehler! Textmarke nicht definiert.

1.9 Handling of alternatives ... 9

1.10 Control of results ... 10

1.11 Well-formed substring table (Chart) .. 11

1.12 Overall Control .. 11

1.13 Checklist ... 12

2 Prototypical parsers .. 13

PT-1. Top-down parser with backtracking ... 13

PT-2. Top-down parser with parallel-processing ... 22

PT-3. Top-down predictive analyzer (with Greibach normal form grammar) 24

PT-4. Top-down parser with divided productions ... 27

PT-5. Bottom-up parser with a well-formed substring table ... 32

PT-6. Table-controlled shift-reduce parser .. 38

PT-7. FTN-parser for regular expressions ... 48

PT-8. Augmented transition networks (ATN) .. 53

PT-9. Chart Parsing according to the slot-and-filler principle ... 65

3 Comparative evaluation of the parser prototypes ... 78

3.1 Efficiency .. 78
3.1.1 Control of alternatives ... 78

3.1.2 Overgeneration .. 79

3.2 Coverage ... 80

3.3 Drawing up Lingware .. 81
3.3.1 Perspicuity ... 81

3.3.2 Side effects .. 82

3.3.3 Usability of external resources .. 83

3.4 Suitability for the application ... 83

4 Bibliography .. 85

5 Exercises ... 87

