
Joey NMT: A Minimalist NMT Toolkit for Novices

Julia Kreutzer
Computational Linguistics

Heidelberg University
kreutzer@cl.uni-heidelberg.de

Joost Bastings
ILLC

University of Amsterdam
bastings@uva.nl

Stefan Riezler
Computational Linguistics & IWR

Heidelberg University
riezler@cl.uni-heidelberg.de

Abstract
We present Joey NMT, a minimalist neural
machine translation toolkit based on PyTorch
that is specifically designed for novices. Joey
NMT provides many popular NMT features in
a small and simple code base, so that novices
can easily and quickly learn to use it and adapt
it to their needs. Despite its focus on sim-
plicity, Joey NMT supports classic architec-
tures (RNNs, transformers), fast beam search,
weight tying, and more, and achieves perfor-
mance comparable to more complex toolk-
its on standard benchmarks. We evaluate the
accessibility of our toolkit in a user study
where novices with general knowledge about
Pytorch and NMT and experts work through
a self-contained Joey NMT tutorial, show-
ing that novices perform almost as well as
experts in a subsequent code quiz. Joey
NMT is available at https://github.
com/joeynmt/joeynmt.

1 Introduction

Since the first successes of neural machine trans-
lation (NMT), various research groups and indus-
try labs have developed open source toolkits spe-
cialized for NMT, based on new open source deep
learning platforms. While toolkits like OpenNMT
(Klein et al., 2018), XNMT (Neubig et al., 2018)
and Neural Monkey (Helcl and Libovický, 2017)
aim at readability and extensibility of their code-
base, their target group are researchers with a
solid background in machine translation and deep
learning, and with experience in navigating, un-
derstanding and handling large code bases. How-
ever, none of the existing NMT tools has been de-
signed primarily for readability or accessibility for
novices, nor has anyone studied quality and ac-
cessibility of such code empirically. On the other
hand, it is an important challenge for novices to
understand how NMT is implemented, what fea-
tures each toolkit implements exactly, and which

toolkit to choose in order to code their own project
as fast and simple as possible.

We present an NMT toolkit especially designed
for novices, providing clean, well documented,
and minimalistic code, that is yet of comparable
quality to more complex codebases on standard
benchmarks. Our approach is to identify the core
features of NMT that have not changed over the
last years, and to invest in documentation, simplic-
ity and quality of the code. These core features
include standard network architectures (RNN,
transformer, different attention mechanisms, input
feeding, configurable encoder/decoder bridge),
standard learning techniques (dropout, learning
rate scheduling, weight tying, early stopping cri-
teria), and visualization/monitoring tools.

We evaluate our codebase in several ways:
Firstly, we show that Joey NMT’s comment-to-
code ratio is almost twice as high as other toolk-
its which are roughly 9-10 times larger. Secondly,
we present an evaluation on standard benchmarks
(WMT17, IWSLT) where we show that the core
architectures implemented in Joey NMT achieve
comparable performance to more complex state-
of-the-art toolkits. Lastly, we conduct a user
study where we test the code understanding of
novices, i.e. students with basic knowledge
about NMT and PyTorch, against expert coders.
While novices, after having worked through a self-
contained Joey NMT tutorial, needed more time
to answer each question in an in-depth code quiz,
they achieved only marginally lower scores than
the experts. To our knowledge, this is the first user
study on the accessibility of NMT toolkits.

2 Joey NMT

2.1 NMT Architectures

This section formalizes the Joey NMT imple-
mentation of autoregressive recurrent and fully-

https://github.com/joeynmt/joeynmt
https://github.com/joeynmt/joeynmt

attentional models.
In the following, a source sentence of length lx

is represented by a sequence of one-hot encoded
vectors x1,x2, . . . ,xlx for each word. Analo-
gously, a target sequence of length ly is repre-
sented by a sequence of one-hot encoded vectors
y1,y2, . . . ,yly .

2.1.1 RNN
Joey NMT implements the RNN encoder-decoder
variant from Luong et al. (2015).

Encoder. The encoder RNN transforms the in-
put sequence x1, . . . ,xlx into a sequence of vec-
tors h1, . . . ,hlx with the help of the embeddings
matrix Esrc and a recurrent computation of states

hi = RNN(Esrc xi,hi−1); h0 = 0.

The RNN consists of either GRU or a LSTM units.
For a bidirectional RNN, hidden states from both
directions are are concatenated to form hi. The
initial encoder hidden state h0 is a vector of ze-
ros. Multiple layers can be stacked by using each
resulting output sequence h1, . . . ,hlx as the input
to the next RNN layer.

Decoder. The decoder uses input feeding (Lu-
ong et al., 2015) where an attentional vector s̃ is
concatenated with the representation of the previ-
ous word as input to the RNN. Decoder states are
computed as follows:

st = RNN([Etrg yt−1; s̃t−1], st−1)

s0 =


tanh(Wbridge hlx + bbridge) if bridge
hlx if last
0 otherwise

s̃t = tanh(Watt[st; ct] + batt)

The initial decoder state is configurable to be ei-
ther a non-linear transformation of the last encoder
state (“bridge”), or identical to the last encoder
state (“last”), or a vector of zeros.

Attention. The context vector ct is computed
with an attention mechanism scoring the previous
decoder state st−1 and each encoder state hi:

ct =
∑
i

ati · hi

ati =
exp(score(st−1,hi))∑
k exp(score(st−1,hk))

where the scoring function is a multi-layer percep-
tron (Bahdanau et al., 2015) or a bilinear transfor-
mation (Luong et al., 2015).

Output. The output layer produces a vector
ot = Wout s̃t, which contains a score for each to-
ken in the target vocabulary. Through a softmax
transformation, these scores can be interpreted as
a probability distribution over the target vocabu-
lary V that defines an index over target tokens vj .

p(yt = vj | x, y<t) =
exp(ot[j])∑|V|
k=1 exp(ot[k])

2.1.2 Transformer
Joey NMT implements the Transformer from
Vaswani et al. (2017), with code based on The An-
notated Transformer blog (Rush, 2018).

Encoder. Given an input sequence x1, . . . ,xlx ,
we look up the word embedding for each input
word using Esrcxi, add a position encoding to it,
and stack the resulting sequence of word embed-
dings to form matrix X ∈ Rlx×d, where lx is the
sentence length and d the dimensionality of the
embeddings.

We define the following learnable parameters:1

A ∈ Rd×da B ∈ Rd×da C ∈ Rd×do

where da is the dimensionality of the attention (in-
ner product) space and do the output dimensional-
ity. Transforming the input matrix with these ma-
trices into new word representations H

H = softmax
(
XAB>X>

)︸ ︷︷ ︸
self-attention

XC

which have been updated by attending to all other
source words. Joey NMT implements multi-
headed attention, where this transformation is
computed k times, one time for each head with
different parameters A,B,C.

After computing all k Hs in parallel, we con-
catenate them and apply layer normalization and a
final feed-forward layer:

H = [H(1); . . . ;H(k)]

H ′ = layer-norm(H) +X

H (enc) = feed-forward(H ′) +H ′

We set do = d/k, so that H ∈ Rlx×d. Multiple of
these layers can be stacked by setting X = H (enc)

and repeating the computation.

1Exposition adapted from Michael Collins https://
youtu.be/jfwqRMdTmLo

https://youtu.be/jfwqRMdTmLo
https://youtu.be/jfwqRMdTmLo

Decoder. The Transformer decoder operates in
a similar way as the encoder, but takes the stacked
target embeddings Y∈Rly×d as input:

H = softmax
(
YAB>Y >

)︸ ︷︷ ︸
masked self-attention

YC

For each target position attention to future in-
put words is inhibited by setting those attention
scores to −inf before the softmax. After obtain-
ing H ′ = H + Y , and before the feed-forward
layer, we compute multi-headed attention again,
but now between intermediate decoder representa-
tions H ′ and final encoder representations H (enc):

Z = softmax
(
H ′AB>H (enc)>)︸ ︷︷ ︸

src-trg attention

H (enc)C

H (dec) = feed-forward(layer-norm(H ′ + Z))

We predict target words with H (dec)Wout.

2.2 Features
In the spirit of minimalism, we follow the 80/20
principle (Pareto, 1896) and aim to achieve 80%
of the translation quality with 20% of a common
toolkit’s code size. For this purpose we identi-
fied the most common features (the bare neces-
sities) in recent works and implementations. Ta-
ble 6 in Appendix A.1 gives an overview over
Joey NMT’s features compared with several popu-
lar NMT toolkits. As can be seen, Joey NMT cov-
ers all features that those toolkits have in common.
It includes standard architectures (see §2.1), label
smoothing, dropout in multiple places, various at-
tention mechanisms, input feeding, configurable
encoder/decoder bridge, learning rate scheduling,
weight tying, early stopping criteria, beam search
decoding, an interactive translation mode, visual-
ization/monitoring of learning progress and atten-
tion, checkpoint averaging, and more.

2.3 Documentation
The code itself is documented with doc-strings and
in-line comments (especially for tensor shapes),
and modules are tested with unit tests. The doc-
umentation website2 contains installation instruc-
tions, a walk-through tutorial for training, tun-
ing and testing an NMT model on a toy task3,
an overview of code modules, and a detailed API
documentation. In addition, we provide thorough

2https://joeynmt.readthedocs.io
3Demo video: https://youtu.be/PzWRWSIwSYc

Counts OpenNMT-py XNMT Joey NMT

Files 94 82 20
Code 10,287 11,628 2,250
Comments 3,372 4,039 1,393

Comment/Code Ratio 0.33 0.35 0.62

Table 1: Python code statistics for OpenNMT-py (com-
mit hash 624a0b3a), XNMT (a87e7b94) and Joey
NMT (e55b615).

answers to frequently asked questions regarding
usage, configuration, debugging, implementation
details and code extensions, and recommend re-
sources, such as data collections, PyTorch tutorials
and NMT background material.

2.4 Code Complexity

In order to facilitate fast code comprehension and
navigation (Wiedenbeck et al., 1999), Joey NMT
objects have at most one level of inheritance. Ta-
ble 1 compares Joey NMT with OpenNMT-py
and XNMT (selected for their extensibility and
thoroughness of documentation) in terms of code
statistics, i.e. lines of Python code, lines of com-
ments and number of files.4 OpenNMT-py and
XNMT have roughly 9-10x more lines of code,
spread across 4-5x more files than Joey NMT .
These toolkits cover more than the essential fea-
tures for NMT (see §2.2), in particular for other
generation or classification tasks like image cap-
tioning and language modeling. However, Joey
NMT’s comment-to-code ratio is almost twice as
high, which we hope will give code readers better
guidance in understanding and extending the code.

2.5 Benchmarks

Our goal is to achieve a performance that is com-
parable to other NMT toolkits, so that novices
can start off with reliable benchmarks that are
trusted by the community. This will allow them
to build on Joey NMT for their research, should
they want to do so. We expect novices to have lim-
ited resources available for training, i.e., not more
than one GPU for a week, and therefore we fo-
cus on benchmarks that are within this scope. Pre-
trained models, data preparation scripts and con-
figuration files for the following benchmarks will
be made available on https://github.com/
joeynmt/joeynmt.

4Using https://github.com/AlDanial/cloc

https://joeynmt.readthedocs.io
https://youtu.be/PzWRWSIwSYc
https://github.com/joeynmt/joeynmt
https://github.com/joeynmt/joeynmt
https://github.com/AlDanial/cloc

System Groundhog RNN Best RNN Transformer

en-de lv-en layers en-de lv-en en-de lv-en

NeuralMonkey 13.7 10.5 1/1 13.7 10.5 – –
OpenNMT-Py 18.7 10.0 4/4 22.0 13.6 – –
Nematus 23.9 14.3 8/8 23.8 14.7 – –
Sockeye 23.2 14.4 4/4 25.6 15.9 27.5 18.1
Marian 23.5 14.4 4/4 25.9 16.2 27.4 17.6
Tensor2Tensor – – – – – 26.3 17.7

Joey NMT 23.5 14.6 4/4 26.0 15.8 27.4 18.0

Table 2: Results on WMT17 newstest2017. Comparative scores are from Hieber et al. (2018).

WMT17. We use the settings of Hieber et al.
(2018), using the exact same data, pre-processing,
and evaluation using WMT17-compatible Sacre-
BLEU scores (Post, 2018).5 We consider the set-
ting where toolkits are used out-of-the-box to train
a Groundhog-like model (1-layer LSTMs, MLP
attention), the ‘best found’ setting where Hieber
et al. train each model using the best settings that
they could find, and the Transformer base setting.6

Table 2 shows that Joey NMT performs very well
compared against other shallow, deep and Trans-
former models, despite its simple code base. 7

IWSLT14. This is a popular benchmark because
of its relatively small size and therefore fast train-
ing time. We use the data, pre-processing, and
word-based vocabulary of Wiseman and Rush
(2016) and evaluate with SacreBLEU.8 Table 3
shows that Joey NMT performs well here, with
both its recurrent and its Transformer model. We
also included BPE results for future reference.

System de-en

Wiseman and Rush (2016) 22.5
Bahdanau et al. (2017) 27.6
Joey NMT (RNN, word) 27.1
Joey NMT (RNN, BPE32k) 27.3
Joey NMT (Transformer, BPE32k) 31.0

Table 3: IWSLT14 test results.

5
BLEU+case.mixed+lang.[en-lv|en-de]+numrefs.1+smooth.exp+

test.wmt17+tok.13a+version.1.3.6
6Note that the scores reported for other models reflect

their state when evaluated in Hieber et al. (2018).
7Blog posts like Rush (2018) and Bastings (2018) also

offer simple code, but they do not perform as well.
8
BLEU+case.lc+numrefs.1+smooth.exp+tok.none+version.1.3.6

3 User Study

The target group for Joey NMT are novices who
will use NMT in a seminar project, a thesis, or an
internship. Common tasks are to re-implement a
paper, extend standard models by a small novel
element, or to apply them to a new task. In or-
der to evaluate how well novices understand Joey
NMT, we conducted a user study comparing the
code comprehension of novices and experts.

3.1 Study Design

Participants. The novice group is formed of
eight undergraduate students with a Computa-
tional Linguistics major that have all passed in-
troductory courses to Python and Machine Learn-
ing, three of them also a course about Neural Net-
works. None of them had practical experience
with training or implementing NMT models nor
PyTorch, but two reported theoretic understand-
ing of NMT. They attended a 20h crash course in-
troducing NMT and Pytorch basics (see §A.3 for
details). Note that we did not teach Joey NMT
explicitly in class, but the students independently
completed the Joey NMT tutorial.

As a control group (the “experts”), six gradu-
ate students with NMT as topic of their thesis or
research project participated in the study. In con-
trast to the novices, this group of participants has a
solid background in Deep Learning and NMT, had
practical experience with NMT. All of them had
previously worked with NMT in PyTorch.

Conditions. The participation in the study was
voluntary and not graded. Participants were not
allowed to work in groups and had a maximum
time of 3h to complete the quiz. They had pre-

viously locally installed Joey NMT9 and could
browse the code with the tools of their choice (IDE
or text editor). They were instructed to explore
the Joey NMT code with the help of the quiz, in-
formed about the purpose of the study, and agreed
to the use of their data in this study. Both groups
of participants had to learn about Joey NMT in a
self-guided manner, using the same tutorial, code,
and documentation. The quiz was executed on the
university’s internal e-learning platform. Partici-
pants could jump between questions, review their
answers before finally submitting all answers and
could take breaks (without stopping the timer).
Answers to the questions were published after all
students had completed the test.

Question design. The questions are not de-
signed to test the participant’s prior knowledge
on the topic, but to guide their exploration of the
code. The questions are either free text, multiple
choice or binary choice. There are three blocks of
questions (§A.6 contains the full list):

1. Usage of Joey NMT : nine questions on how
to interpret logs, check whether models were
saved, interpret attention matrices, pre-/post-
process, and to validate whether the model is
doing what it is built for.

2. Configuring Joey NMT : four questions that
make the users configure Joey NMT in such
a way that it works for custom situations, e.g.
with custom data, with a constant learning
rate, or creating model of desired size.

3. Joey NMT Code: eighteen questions target-
ing the detailed understanding of the Joey
NMT code: the ability to navigate between
python modules, identify dependencies, and
interpret what individual code lines are do-
ing, hypothesize how specific lines in the
code would have to get changed to change
the behavior (e.g. working with a different
optimizer). The questions in this block were
designed in a way that in order to find the cor-
rect answers, every python module contained
in Joey NMT had to be visited at least once.

Every question is awarded one point if answered
correctly. Some questions require manual grading,

9Joey NMT commit hash 0708d596, prior to the Trans-
former implementation.

most of them have one correct answer. We record
overall completion time and time per question.10

3.2 Analysis
Total duration and score. Experts took on aver-
age 77 min to complete the quiz, novices 118 min,
which is significantly slower (one-tailed t-test, p <
0.05). Experts achieved on average 82% of the
total points, novices 66% (details in §A.5). Ac-
cording to the t-test the difference in total scores
between groups is significant at p < 0.05. An
ANOVA reveals that there is a significant differ-
ence in total duration and scores within the novices
group, but not within the experts group.

Per question analysis. No question was incor-
rectly answered by everyone. Three questions (#6,
#11, #18) were correctly answered by everyone–
they were appeared to be easiest to answer and
did not require deep understanding of the code.
In addition, seven questions (#1, #13, #15, #21,
#22, #28, #29) were correctly answered by all ex-
perts, but not all novices–here their NMT expe-
rience was useful for working with hyperparame-
ters and peculiarities like special tokens. However,
for only one question, regarding the differences
in data processing between training and validation
(#16), the difference between average expert and
novice score was significant (at p < 0.05). Six
questions (#9, #18, #21, #25, #31) show a signifi-
cantly longer average duration for novices than ex-
perts. These questions concerned post-processing,
initialization, batching, end conditions for train-
ing termination and plotting, and required detailed
code inspection.

LME. In order to analyze the dependence of
scores and duration on particular questions and in-
dividual users, we performed a linear mixed ef-
fects (LME) analysis using the R library lme4
(Bates et al., 2015) (details in §A.7). Participants
and questions are treated as random effects (cate-
gorical), the level of expertise as fixed effect (bi-
nary). Duration and score per question are re-
sponse variables. 11 For both response variables
the variability is higher depending on the question
than on the user (6x higher for score, 2x higher for

10Time measurement is noisy, since full minutes are mea-
sured and students might take breaks at various points in time.

11Modeling expertise with higher granularity instead of the
binary classification into expertise groups (individual vari-
ables for experience with PyTorch, NMT and background in
deep learning) did not have a significant effect on the model,
since the number of participants is relatively low.

time). The intercepts of the fixed effects show that
novices score on average 0.14 points less while
taking 2.47 min longer on each question than ex-
perts. The impact of the fixed effect is significant
at p < 0.05.

3.3 Findings
First of all, we observe that the design of the ques-
tions was engaging enough for the students be-
cause all participants invested at least 1h to com-
plete the quiz voluntarily. The experts also re-
ported having gained new insights into the code
through the quiz. We found that there are sig-
nificant differences between both groups: Most
prominently, the novices needed more time to an-
swer each question, but still succeeded in answer-
ing the majority of questions correctly. There are
larger variances within the group of novices, be-
cause they had to develop individual strategies to
explore the code and use the available resources
(documentation, code search, IDE), while experts
could in many cases rely on prior knowledge.

4 Conclusion

We presented Joey NMT, a toolkit for sequence-
to-sequence learning designed for NMT novices.
It implements the most common NMT features
and achieves performance comparable to more
complex toolkits, while being minimalist in its de-
sign and code structure. In comparison to other
toolkits, it is smaller in size and but more exten-
sively documented. A user study on code acces-
sibility confirmed that the code is comprehensibly
written and structured. We hope that Joey NMT
will ease the burden for novices to get started with
NMT, and can serve as a basis for teaching.

Acknowledgments

We would like to thank Sariya Karimova, Philipp
Wiesenbach, Michael Staniek and Tsz Kin Lam
for their feedback on the early stages of the code
and for their bug fixes. We also thank the student
and expert participants of the user study.

References
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,

Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Joost Bastings. 2018. The annotated encoder-decoder
with attention.

Douglas Bates, Martin Mächler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects mod-
els using lme4. Journal of Statistical Software,
67(1):1–48.

Jindřich Helcl and Jindřich Libovický. 2017. Neural
Monkey: An Open-source Tool for Sequence Learn-
ing. PBML.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2018. The sockeye neural machine translation
toolkit at amta 2018. In AMTA.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent
Nguyen, Jean Senellart, and Alexander Rush. 2018.
Opennmt: Neural machine translation toolkit. In
AMTA.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP.

Graham Neubig, Matthias Sperber, Xinyi Wang,
Matthieu Felix, Austin Matthews, Sarguna Padman-
abhan, Ye Qi, Devendra Sachan, Philip Arthur,
Pierre Godard, John Hewitt, Rachid Riad, and Lim-
ing Wang. 2018. XNMT: The extensible neural ma-
chine translation toolkit. In AMTA.

Vilfredo Pareto. 1896. Cours d’économie politique:
professé á l’Université de Lausanne, volume 1. F.
Rouge.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In WMT.

Alexander Rush. 2018. The annotated transformer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Susan Wiedenbeck, Vennila Ramalingam, Suseela
Sarasamma, and Cynthia L Corritore. 1999. A com-
parison of the comprehension of object-oriented and
procedural programs by novice programmers. Inter-
acting with Computers, 11(3):255–282.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In EMNLP, Austin, Texas.

A Supplemental Material

A.1 NMT Features

Table 6 gives an overview over Joey NMT’s features compared with several popular NMT toolkits imple-
mented in Python, such as Sockeye, Neural Monkey, fair-seq, tensor2tensor, XNMT and OpenNMT-py.
Sockeye is based on MXNet, Neural Monkey and tensor2tensor on TensorFlow, XNMT on Dynet and
fair-seq, OpenNMT-py and JoeyNMT on PyTorch. We filled the table to our best knowledge with infor-
mation obtained from GitHub repositories, published papers and provided documentation.

A.2 Extra Results

WMT14. WMT14 has been a popular benchmark to compare MT systems, even though different pre-
/post-processing methods make comparisons noisy.12 We train a recurrent 1-layer (“shallow”) and 4-
layer (“deep”) model on the same data as Luong et al. (2015). Training the shallow models took about
5 days on one P40 GPU; the deep models took around 9 days. For comparative purposes we report
(Moses-)tokenized and compound-splitted (only en-de) multibleu scores. Table 4 compares the Joey
NMT models against GNMT and Luong et al. (2015). Without checkpoint averaging and extensive
hyperparameter tuning, Joey NMT achieves results that come close to these systems.

System en-de en-fr

Luong et al. (2015) 18.1 31.5
GNMT 24.6 39.0
Joey NMT RNN 22.5 35.7
Joey NMT RNN (deep) 24.0 37.4

Table 4: newstest2014 results.

IWSLT En-Vi. We also compared our RNNs against Tensorflow NMT and XNMT on the IWSLT15
en-vi data set as pre-processed by Stanford. Table 5 shows the results. The first three sys-
tems were trained on sentences of up to 50 tokens, while last two systems were trained on sen-
tences of up to 110 tokens. Our BLEU scores were computed with SacreBLEU with version string
BLEU+case.mixed+numrefs.1+smooth.exp+ tok.none+version.1.3.6. We use the original tokenization
and data from https://nlp.stanford.edu/projects/nmt.

System en-vi

Luong et al. (2015) 23.3
TensorFlow NMT 26.1
Joey NMT RNN 26.5

XNMT 27.3
Joey NMT RNN 27.7

Table 5: IWSLT en-vi

A.3 Crash Course on NMT and Pytorch Basics

Prior to the study, the novices attended a three-day crash course (ca. 20h in total) where they were
introduced to the concepts of feed-forward, recurrent and attentional neural networks, to PyTorch and
the encoder-decoder model for sequence-to-sequence learning. In addition to lectures on the theory
and background, they completed a subset of the PyTorch and RNN exercises of the Udacity course on

12 See https://github.com/tensorflow/tensor2tensor/issues/317 for a discussion on post-processing
for en-de.

https://nlp.stanford.edu/projects/nmt
https://github.com/tensorflow/tensor2tensor/issues/317

Deep Learning13, so that they had all implemented and trained a feed-forward neural network for image
classification and an LSTM for character-level language modeling. Solutions were discussed in class. In
addition, they worked through the “The Annotated Encoder Decoder”14 (Bastings, 2018) to get a grasp
of the building blocks of a NMT implementation in PyTorch. Note that we did not teach Joey NMT
explicitly in class, but the students had to self-sufficiently work through a Joey NMT tutorial15.

A.4 Quiz Interface

Figure 1: A free-text and a multiple-choice question. Instructions ”Antwort” (response) are in German since the
interface of the e-learning platform is.

Figure 1 shows the interface for two example questions, one as a free-text question, and one as a
multiple-choice task.

A.5 Quiz Statistics

Figure 2 compares the total completion time for the quiz, Figure 3 the total points between experts and
novices.

Experts Novices
0

20

40

60

80

100

120

140

To
ta

l d
ur

at
io

n
[m

in
]

Figure 2: Total duration of quiz taken by experts and novices.

13Parts 1-6 of the publicly available notebooks on https://github.com/udacity/
deep-learning-v2-pytorch/tree/master/intro-to-pytorch and https://github.com/udacity/
deep-learning-v2-pytorch/tree/master/recurrent-neural-networks/char-rnn, commit hash
9b6001a.

14 https://github.com/bastings/annotated_encoder_decoder
15https://JoeyNMT.readthedocs.io

https://github.com/udacity/deep-learning-v2-pytorch/tree/master/intro-to-pytorch
https://github.com/udacity/deep-learning-v2-pytorch/tree/master/intro-to-pytorch
https://github.com/udacity/deep-learning-v2-pytorch/tree/master/recurrent-neural-networks/char-rnn
https://github.com/udacity/deep-learning-v2-pytorch/tree/master/recurrent-neural-networks/char-rnn
https://github.com/bastings/annotated_encoder_decoder
https://Joey NMT .readthedocs.io

Experts Novices
0

20

40

60

80

To
ta

l p
oi

nt
s [

%
]

Figure 3: Percentage of points scored by experts and novices.

A.6 Quiz Questions
1. Training. You have successfully installed Joey NMT and written a configuration file

config.yaml. Which command would you use to start training a model with this configura-
tion?

• python3 -m Joey NMT train config.yaml

2. Translating. Model training with config.yaml has finished and now you want to translate
the pre-processed file translate-me.txt and save the translations in file translated.txt
without specifying the file’s path in the configuration file. Which command would you use?

• python3 -m Joey NMT translate config.yaml < translate-me.txt >
translated.txt

3. Saving. How do you know your model was saved during training?

3 Check in the validation report whether there’s any line ending with ”*”.
3 Check the training log if it says it saved checkpoints.
3 Check if there are any *.ckpt files in the model directory.
7 The model always gets saved during training.

4. Testing. When using Joey NMT in test mode, can you specify the checkpoint for testing anywhere
outside the configuration file?

3 True
7 False

5. Parameters. How many parameters does the model specified in configs/default.yaml have
in total? This includes all parameter weights and biases of the model, including e.g. the embeddings.
Hint: Joey NMT computes it for you.

• 66,376

6. Attention. Which source token receives most attention when generating the target word “if”?

• “wenn”

7. Speed. How do you find out how fast your model trains (including validations)?

• The number of tokens per second is logged and reported in the log file.

8. Pre-processing. Which pre-processing does Joey NMT do for you? (if specified)

7 splitting into sub-word units (BPEs)
7 data filtering by source/target length ratio
3 data filtering by source and target length
7 tokenization

3 lowercasing

9. Post-processing. Which post-processing does Joey NMT for you? (if specified)

7 recasing
7 detokenization
3 subword merging (“un-BPE-ing”)
7 delemmatization

10. Checkpoints. In a debugging scenario, you don’t want to store checkpoints for your current model.
There’s a line that you can add to your configuration file to make the model not save any checkpoints
during training. What is this line?

• keep_last_ckpts: 0

11. Model size. Change the following model configuration to use three encoder layers.

encoder:
rnn_type: "lstm"
embeddings:

embedding_dim: 16
hidden_size: 64
bidirectional: True

Which line would you have to add?

• num_layers: 3

12. Data Path. Which line would you have to add to the data configuration below to use
my home/my dir/my data.en as test input file?

data:
src: "en"
trg: "fr"
train: "test/data/reverse/train"
dev: "test/data/reverse/dev"

level: "word"
lowercase: False
max_sent_length: 25

Hint: mind the file ending.

• test: "my_home/my_dir/my_data"

13. Training hyperparameters. Modify the following training configuration such that it uses a con-
stant learning rate of 0.02.

training:
optimizer: "adam"
learning_rate: 0.001
clip_grad_norm: 1.0
batch_size: 10
scheduling: "plateau"
patience: 5
decrease_factor: 0.5
early_stopping_metric: "eval_metric"
epochs: 6
validation_freq: 1000
logging_freq: 100
model_dir: "reverse_model"
max_output_length: 30

Paste the modified configuration below.

• training:
optimizer: "adam"
learning_rate: 0.02
clip_grad_norm: 1.0
batch_size: 10
patience: 5
decrease_factor: 0.5
early_stopping_metric: "eval_metric"
epochs: 6
validation_freq: 1000
logging_freq: 100
model_dir: "reverse_model"
max_output_length: 30

14. Vocabulary generation. When the vocabulary is extracted from training data, we keep only the
src voc limit / trg voc limit most frequent tokens that occur at least src min freq
/ trg min freq times in the training data.

For the example, the vocabulary limit is 15, while the minimum frequency is 3.

After counting the tokens in the training data and filtering by minimum frequency, we have the
following counts:

i: 22
you: 14
and: 9

,: 9
to: 7
if: 6
joey: 5
’t: 5
anymore: 5
’re: 4
scared: 4
be: 4
angry: 4
but: 3
it: 3
out: 3
don: 3
get: 3
oh: 3
the: 3

Which of those tokens would not end up in the vocabulary, according to Joey NMT ’s vocabulary
building?

3 it
3 the
3 oh
3 get
7 don
7 but
3 out

15. Special tokens. Which is the default token used for marking the end-of-sequence position in Joey
NMT ? e.g. <end> or [EOS]?

• </s>

16. Data iterators. Training and validation data are treated differently in Joey NMT - but in which
ways? For example, if you choose “sorting”, it means that validation and training data are handled
differently with respect to sorting - one gets sorted and the other doesn’t.

3 Shuffling
3 Filtering
7 Tokenization
7 Embedding
3 Sorting

17. Training loop. Where is the training for-loop over epochs defined? Paste the line in the textbox
below. (Not the line number)

• for epoch_no in range(self.epochs):

(in training.py)

18. End of training. When does training end? (Assuming there are no technical problems like memory
errors etc.) We refer to settings in the configuration file, e.g. learning rate.

3 When the minimum learning rate (learning rate min) has been reached.

7 When the maximum validation scores has been reached.
7 Just after keep last ckpts checkpoints have been saved.
7 When Joey NMT gets tired.
3 When all epochs (epochs) have been completed.
3 When you interrupt the training process with Ctrl+C.

19. Model. What does model.forward() return?

• decoder outputs, decoder last hidden state, attention probabilities, attentional vectors

20. Initialization. How are forget gates of LSTMs initialized by default?

3 All ones
7 Random normal initialization
7 Random uniform initialization
7 All zeros
7 Xavier initialization

21. Embeddings. In the configuration we can ”freeze” the embeddings, so that they are not (further)
trained:

embeddings:
embedding_dim: 16
freeze: True

Where does the freezing happen in JoeyNMT’s code? Please give the freezing function’s name.

• freeze params

22. Bidirectional. How are forward and backward states combined for a bidirectional recurrent en-
coder? Choose the correct tensor operation:

7 torch.add

3 torch.cat

7 torch.addbmm

7 torch.sum

7 torch.mul

7 torch.pow

23. Bridge. What’s the name of the function that connects encoder and decoder by computing the initial
decoder state given the last encoder state?

7 bridge layer

7 BahdanauAttention

7 init decoder hidden

7 bridge layer

7 bridge

7 init decoder hidden

7 init hidden

3 init hidden

7 bridge

7 LuongAttention

7 attend

7 forward step

24. Loss computation. Find the place where the batch loss is computed (comparing model
outputs with targets), and paste the statement below. e.g. train batch loss =
my loss function(outputs, targets)

• batch_loss = loss_function(
input=log_probs.contiguous().view(-1, log_probs.size(-1)),
target=batch.trg.contiguous().view(-1))

25. Batch. During training, the Batch object in JoeyNMT holds the reference sequence in trg for
computing the loss and in trg input for feeding it into the decoder.

What’s the difference between those two tensors? (batch.trg vs. batch.trg input)

7 <s> is prepended to the first, otherwise no difference
3 </s> is appended to the first and ¡s¿ is prepended to the second
7 <s> is prepended to the second, otherwise no difference
7 <s> is appended to the first and ¡/s¿ is prepended to the second
7 </s> is appended to the first, otherwise no difference

26. Inference algorithm. Where in the code is the decision made whether to decode greedily or with
beam search? Paste the line below.

Hint: it’s an if-statement.

• if beam size == 0:

27. Validation score computation. Find the place where the validation score (here BLEU,
eval metric: bleu is computed and paste the statement below.

• current_valid_score = bleu(valid_hypotheses, valid_references)

28. BLEU computation. Which library is used for BLEU score computation?

• sacrebleu

29. Optimizers. Let’s say you have invented a new optimizer and implemented it in Pytorch
as torch.optim.MagicOptimizer. Now you want to use it in JoeyNMT by setting
optimizer: magic in the configuration file.

Which of JoeyNMT’s Python files would you have to add the following lines to?

elif optimizer_name == "magic":
new awesome optimizer
optimizer=torch.optim.MagicOptimizer(

parameters, weight_decay=weight_decay, lr=learning_rate)

• builders.py

30. Attention. For Bahdanau attention, find the line where the attention scores for a decoder hidden
state are computed (before masking).

• scores = self.energy_layer(
torch.tanh(self.proj_query + self.proj_keys))

31. Plotting. You want to use a different colormap for attention visualization, namely the one called
‘‘binary’’. Give the line of JoeyNMT’s code that is responsible for plotting the attention,
modified to use the new colormap.

• plt.imshow(scores, cmap=’binary’, aspect=’equal’,
origin=’upper’, vmin=0., vmax=1.)

A.7 LMEM Details

A.8 Score per Question

Linear mixed model fit by REML [’lmerMod’]
Formula: score ˜ group + (1 | item) + (1 | user)

Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.03668 0.1915
user (Intercept) 0.00661 0.0813
Residual 0.12191 0.3492
Number of obs: 434, groups: item, 31; user, 14

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.81532 0.05422 15.036
groupnovice -0.14258 0.05545 -2.571

Correlation of Fixed Effects:
(Intr)

groupnovice -0.584

all.model_score0: score ˜ (1 | item) + (1 | user)
all.model_score: score ˜ group + (1 | item) + (1 | user)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
all.model_score0 4 394.39 410.68 -193.20 386.39
all.model_score 5 390.50 410.87 -190.25 380.50 5.8904 1 0.01522 *

A.9 Time per Question

Linear mixed model fit by REML [’lmerMod’]
Formula: time ˜ group + (1 | item) + (1 | user)

Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 0.8800 0.9381
user (Intercept) 0.4834 0.6953
Residual 11.2855 3.3594
Number of obs: 434, groups: item, 31; user, 14

Fixed effects:
Estimate Std. Error t value

(Intercept) 2.4677 0.4119 5.992
groupnovice 1.3266 0.4972 2.668

Correlation of Fixed Effects:
(Intr)

groupnovice -0.690

all.model_time0: time ˜ (1 | item) + (1 | user)
all.model_time: time ˜ group + (1 | item) + (1 | user)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
all.model_time0 4 2330.1 2346.4 -1161.0 2322.1

all.model_time 5 2325.7 2346.1 -1157.8 2315.7 6.3868 1 0.0115 *

Feature Sockeye Neural Monkey fair-seq T2T XNMT OpenNMT-py Joey NMT

Architecture
RNN encoder 3 3 3 3 3 3 3

RNN decoder 3 3 3 3 3 3 3

Transformer encoder 3 3 3 3 3 3 3

Transformer decoder 3 3 3 3 3 3 3

ConvS2S encoder 3 3 3 3

ConvS2S decoder 3 3 3

Image Encoder 3 3 3 3

Audio Encoder 3 3 3 3 3

CTC 3

Attention Mechanisms 3 3 3 3 3 3 3

Tasks
Embedding Tying 3 3 3 3 3 3

Softmax Tying 3 3 3 3 3 3 3

Parameter Freezing 3 3 3

Multi-Source 3 3 3

Factored Input 3 3 3

Multi-Task 3 3 3

Sequence Labeling 3

Sequence Classification 3 3

Language Modeling 3 3 3 3 3

Inference
Segmentation Levels (word/char/bpe) 3 3 3 3 3 3 3

Beam Search 3 3 3 3 3 3 3

n-best outputs 3 3 3

Sampling 3 3 3 3 3

Rescoring 3 3 3

Checkpoint averaging 3 3 3 3 3 3 3

Training
MLE 3 3 3 3 3 3 3

MRT 3 3

Gradient Clipping 3 3 3 3 3 3 3

Dropout 3 3 3 3 3 3 3

Weight Decay 3 3 3 3 3 3 3

Label Smoothing 3 3 3 3 3 3 3

Optimizer 3 3 3 3 3 3 3

Scheduler 3 3 3 3 3 3 3

Early Stopping 3 3 3 3 3 3 3

Usage
CPU/GPU 3 3 3 3 3 3 3

Monitoring 3 3 3 3 3 3 3

Attention Visualization 3 3 3 3 3

Table 6: Features implemented by popular NMT toolkits in Python as of July 1, 2019.

