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We all need people who will give us feedback.
That’s how we improve.

- Bill Gates, TED Talks Education, May 2013





Abstract

Many applications nowadays rely on statistical machine-learnt models, such as a rising
number of virtual personal assistants. To train statistical models, typically large amounts
of labelled data are required which are expensive and difficult to obtain. In this thesis, we
investigate two approaches that alleviate the need for labelled data by leveraging feed-
back to model outputs instead. Both scenarios are applied to two sequence-to-sequence
tasks for Natural Language Processing (NLP): machine translation and semantic parsing
for question-answering. Additionally, we define a new question-answering task based on
the geographical database OpenStreetMap (OSM) and collect a corpus, NLmaps v2, with
28,609 question-parse pairs. With the corpus, we build semantic parsers for subsequent ex-
periments. Furthermore, we are the first to design a natural language interface to OSM, for
which we specifically tailor a parser.

The first approach to learn from feedback given to model outputs, considers a scenario
where weak supervision is available by grounding the model in a downstream task for
which labelled data has been collected. Feedback obtained from the downstream task is
used to improve the model in a response-based on-policy learning setup. We apply this
approach to improve a machine translation system, which is grounded in a multilingual
semantic parsing task, by employing ramp loss objectives. Next, we improve a neural se-
mantic parser where only gold answers, but not gold parses, are available, by lifting ramp
loss objectives to non-linear neural networks. In the second approach to learn from feed-
back, instead of collecting expensive labelled data, a model is deployed and user-model
interactions are recorded in a log. This log is used to improve a model in a counterfactual
off-policy learning setup. We first exemplify this approach on a domain adaptation task for
machine translation. Here, we show that counterfactual learning can be applied to tasks
with large output spaces and, in contrast to prevalent theory, deterministic logs can suc-
cessfully be used on sequence-to-sequence tasks for NLP. Next, we demonstrate on a se-
mantic parsing task that counterfactual learning can also be applied when the underlying
model is a neural network and feedback is collected from human users. Applying both ap-
proaches to the same semantic parsing task, allows us to draw a direct comparison between
them. Response-based on-policy learning outperforms counterfactual off-policy learning,
but requires expensive labelled data for the downstream task, whereas interaction logs for
counterfactual learning can be easier to obtain in various scenarios.
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Kurzfassung

Viele Anwendungen basieren heutzutage auf statistischen, maschinell erlernten Modellen, wie z.B.
eine steigende Anzahl von virtuellen persönlichen Assistenten. Um statistischeModelle zu trainieren,
sind typischerweise große Mengen an parallelen Daten erforderlich, welche teuer und schwer zu
beschaffen sind. In dieser Arbeit werden wir zwei Ansätze untersuchen, die den Bedarf an paral-
lelen Daten verringert, indem stattdessen “Feedback” für Modellausgaben verwendet wird. Beide
Szenarien werden auf zwei “Sequence-to-Sequence” Aufgaben für “Natural Language Processing
(NLP)” angewendet: Maschinelle Übersetzung und semantisches Parsen für die Beantwortung von
Fragen. Zusätzlich definieren wir eine neue Aufgabe für die Beantwortung von Fragen auf Basis der
geographische Datenbank OpenStreetMap (OSM). Hierfür sammeln wir einen Korpus, NLmaps v2,
mit 28.609 Frage-Parse Paaren. Mit dem Korpus bauen wir semantische Parser für spätere Experi-
mente. Darüber hinaus sind wir die Ersten, die eine natürlichsprachliche Schnittstelle zu OSM en-
twerfen, wofür wir speziell einen Parser anpassen.

Der erste Ansatz, um von “Feedback” für Modellausgaben zu lernen, sieht ein Szenario vor, bei dem
ein schwaches Lernsignal vorhanden ist. Das Modell wird in einer nachfolgenden Aufgabe verankert
für die parallele Daten vorhanden sind. Das “Feedback”, welches die nachfolgenden Aufgabe vergibt,
wird zur Verbesserung des Modells in einem “response-based on-policy learning” Setup verwendet.
Dieser Ansatz wird zunächst verwendet, um ein maschinelles Übersetzungssystem zu verbessern.
Dieses ist in einemmultilingualen semantischen Parsen Problem verankert und es werden “ramp loss
objectives” zur Verbesserung des Systems verwendet. Als nächstes verbessernwir einen semantischen
Parser für den nurGold-Antworten, aber keineGold-Parse, vorhanden sind, in demwir “ramp loss ob-
jectives” auf nicht-lineare neuronale Netzwerke anwenden. Im zweiten Ansatz, um aus “Feedback”
zu lernen, wird, anstelle der Sammlung teurer paralleler Daten, ein Modell eingesetzt um Nutzer-
Modell Interaktionen in einer Logdatei zu sammeln. Diese Log Datei wird verwendet, um ein Mod-
ell in einem “counterfactual off-policy learning” Setup zu verbessern. Wir verwenden diesen Ansatz
zunächst um ein maschinelles Übersetzungssystem an eine neue Domäne anzupassen. Hier zeigen
wir, dass dieser Ansatz auf Aufgaben mit großen Ausgabemengen angewendet werden kann und,
im Gegensatz zu gängiger Theorie, können deterministische Logdateien erfolgreich bei “Sequence-
to-Sequence” Aufgaben für “NLP” eingesetzt werden. Als nächstes demonstrieren wir an Hand eines
semantischen Parsers, dass der Ansatz auch dann angewendet werden kann, wenn das zugrunde
liegende Modell ein neuronales Netzwerk ist und das “Feedback” von menschlichen Nutzern gesam-
melt wurde. Die Anwendung beider Ansätze auf dasselbe Problem für semantisches Parsen, ermög-
licht es uns einen direkten Vergleich zu ziehen. “Response-based on-policy learning” übertrifft “coun-
terfactual off-policy learning”, aber es benötigt teure parallele Daten für die nachfolgende Aufgabe,
während Logdateien von Nutzer-System Interakationen für “counterfactual off-policy learning” in
verschiedenen Szenarien einfacher zu erhalten sind.
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Chapter 1

Introduction

Many applications nowadays are built upon machine-learnt statistical models
which, given an input, produce an output that is presented to a user. For
example, virtual personal assistants have been on the rise to help an increas-
ing number of peoplewith an increasing number of everyday tasks, such as

placing an order for a product online, navigating a music playlist or question-answering on
various topics. The underlying statisticalmodels are typically trained using fully supervised
data where inputs are paired with corresponding gold targets, i.e. labelled data is available
for direct supervision. However, the creation of such labelled data is often costly and time-
consuming and thus it is fruitful to explore alternative learning methods. One option is to
learn from weaker supervision signals instead, such as from feedback obtained for model
outputs. This reduces the need for expensive gold targets. Additionally, there are often al-
ternative outputs that are as good as the annotated gold target, but are never discovered
if a model relies only on learning from annotated gold targets. Finally, learning from feed-
back also enables models to continue improving over time and it is possible to personalise
a model to specific user needs.

Given model outputs and corresponding extrinsic feedback, we investigate how to improve
sequence-to-sequence models in Natural Language Processing (NLP) tasks. This setup is
visualised in Figure 1.1. Given a pre-trainedmodel, we explore two distinct approaches that
leverage feedback given to model outputs to further improve a model. The two approaches
are applied to two different tasks, machine translation and semantic parsing for question
answering, and to two different model types, linear and non-linear. For both approaches we
have a concrete application inmind. This application is the creation of a natural language in-
terface to the geographical database OpenStreetMap (OSM). With two approaches to learn
from feedback and one application, this thesis is comprised of three parts that we elaborate
on in the following.
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Figure 1.1.: General setup of experiments conducted in this thesis.

1.1. A Natural Language Interface to OpenStreetMap
(OSM)

We introduce and define the task of building a natural language interface to OpenStreet-
Map (OSM), which is a geographical database populated by volunteers with GPS coordin-
ates and relevant facts about points of interests all over the world. The basis of the inter-
face will be a semantic parser that maps natural language questions to parses that can be
executed against the OSM database. To achieve this goal, we first define an appropriate Ma-
chine Readable Language (MRL) that can express natural language questions as semantic
parses. Based on this, we create aQuestion-Answering (QA) corpus, namedNLmaps, which
consists of question-parse pairs. Corresponding answers can be obtained by executing the
parses against the OSM database. To the best of our knowledge, this constitutes the first
publicly available corpus for semantic parsing in the OSM domain. We compare both cor-
pora to two similar question-parse corpora, namely Geoquery (Wong and Mooney, 2006)
and Free917 (Cai and Yates, 2013). Two extensions to the corpus lead to a larger corpus,
referred to as NLmaps v2, which totals 28,609 question-parse pairs.

Using both versions of the NLmaps corpus, several semantic parsing models are built in a
supervisedmannerwhich serve as baselines for various tasks throughout the thesis.We em-
ploy two different frameworks for the different semantic parsing models. The first is Cdec
(Dyer et al., 2010), a hierarchical phrase-based StatisticalMachine Translation (SMT) frame-
work, which is modified to be suitable for semantic parsing. The second is a sequence-to-
sequence framework based on Recurrent Neural Networks (RNNs), called Nematus (Sen-
nrich et al., 2017).

Furthermore,wedescribe a specifically tailored graphicalweb interface that users can access
online to pose natural language questions to the OSMdatabase. For this, we introduce a few
modifications to the baseline models which aim to offer additional conveniences to users
of the interface. This constitutes the application-oriented contribution of this thesis. In the
following we turn to the two distinct approaches for learning from feedback to improve
statistical models for sequence-to-sequence tasks in NLP.
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1.2. Response-Based On-Policy Learning

The first approach that we explore is response-based on-policy learning. In some situ-
ations, it is more beneficial to learn from an indirect supervision signal rather than using
directly supervised data. In grounded learning a system learns by viewing its outputs as
actions in a downstream task and outputs are considered successful if they lead to correct
task feedback. For response-based on-policy learning, we ground a model in a downstream
task for which labelled data has been collected.

Grounded learning has several advantages over supervised learning. First, the indirect su-
pervision signal might be easier or cheaper to obtain than directly supervised data. Second,
it allows the model to search for suitable outputs within the its own output space. Third,
it can alleviate the need for expensive gold targets because it is possible to find multiple,
alternative outputs that lead to positive task feedback. Learning frommultiple positive out-
puts rather than the single gold target, can lead to a more robust system. Fourth, for some
underlyingmodels, it might not be possible to produce the annotated gold target. Response-
based on-policy learning can instead identify a possible alternative that is close to the gold
target, but can be produced by the system, and this alternative can serve as a pseudo-gold
target.

We apply response-based on-policy learning to two different tasks. In the first task, we
aim to tune a machine translation system in a multilingual semantic parsing pipeline for
question-answering. A machine translation system is given a question in a source language
and translates this question into a target language. We assume a semantic parser exists for
this target language and it canmap questions in the target language to a semantic parse. The
parse can then be executed against a database to obtain an answer. The machine translation
system is grounded in this final task of obtaining the correct answer given a question in the
source language. With this grounding, the machine translation system learns to work better
in conjunction with the semantic parser and this raises the overall final task performance.
Concretely, we assume that the machine translation system is given questions in German
from the NLmaps corpus and translates these questions into English. The English question
is then handed to a semantic parser and the resulting parse is executed against the OSM
database.

For this response-based learning scenario on multilingual semantic parsing, we introduce
two algorithms. Both algorithms employ a ramp loss objective (Collobert et al., 2006) that
identifies a hope translation, which we want to encourage, and a fear translation, which we
want to discourage. For both algorithms, we require the existence of the gold answer to ob-
tain feedback. This is advantageous because with an available gold answer, feedback can
be obtained for arbitrarily many model outputs. The first response-based algorithm, called
Ramp, solely utilises binary feedback obtained at the answer level. The second algorithm,
Rebol, additionally leverages feedback derived from comparing the output of the machine
translation system to a correct reference translation. Rebol outperforms Ramp, but requires
the existence of two gold structures, namely the gold answer and a gold reference trans-
lation, which might be too expensive to obtain in praxis. The algorithms are inspired by
Gimpel and Smith (2012), who use similar ramp loss objectives to tune a machine transla-
tion system on the basis of available gold references, but they do not ground their system
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in a final task. Executing a parse and obtaining feedback by comparing it to the gold result,
is inspired by Goldwasser and Roth (2013), who used such a signal to improve a semantic
parser.

In a second task, we directly improve a semantic parser based on the NLmaps v2 corpus
and with an underlying neural network. We assume that an initial parser was trained using
a small amount of supervised question-parse pairs as training data. Further data is only
available in the form of question-answer pairs and the model is guided by comparing the
answers obtained for model outputs to the gold answers. This is a prominent research topic
in the semantic parsing community in recent years (Clarke et al. (2010); Berant et al. (2013);
Pasupat and Liang (2015); Rajpurkar et al. (2016); inter alia) because for many domains it
is significantly easier to obtain gold answers rather than gold parses. For neural semantic
parsing from question-answer pairs, the use of MRT (Liang et al., 2017; Guu et al., 2017),
objectives inspired by the REINFORCE algorithm (Liang et al., 2017; Mou et al., 2017; Guu
et al., 2017) or objectives based on classical structured prediction (Iyyer et al., 2017; Misra
et al., 2018) have been explored.

We lift several ramp loss objectives (Gimpel and Smith, 2012) to neural networkmodels and
compare them to MRT. In experiments we can show that it is crucial to carefully identify a
hope parse and a fear parse which are encouraged and discourage, respectively. Addition-
ally, we analyse why the best ramp loss objective, Ramp, outperforms the MRT objective.
Furthermore, we introduce a novel ramp loss objective, Ramp+T, that operates at the token
level. It can outperform its sequence-level counterpart Ramp by more effectively contrasting
tokens of the hope and fear parses against each other.

For both tasks, response-based on-policy learning requires the existence of at least one gold
target for each input, albeit the weakly supervised gold targets of the downstream task
might be cheaper to obtain than directly supervised gold targets. In the second approach to
learn from feedback, we investigate howwe can learnwithout any expensive gold targets by
leveraging feedback collected for model outputs from user-system interactions instead.

Overview: Response-based On-Policy Learning

In the following we provide an overview of the novelties that our application of response-
based on-policy learning introduces in this thesis and the advantages and disadvantages
this approach offers.

Novelties

• Models are grounded in a downstream task. First, we ground a machine translation
system in a semantic parser for a multilingual semantic parsing pipeline. Second, we
improve a semantic parser using question-answer pairs rather than question-parse
pairs.

• Ramp loss objectives are applied to non-linear neural networks.

• Introduction of a token-level ramp loss objective.
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Advantages

• It is possible to obtain feedback for arbitrarily many output structures.

• The approach allows us to find alternative outputs with positive task feedback, rather
than only learning from one annotated gold target.

• For log-linearmodels, the gold targetmight not be reachable and this approach allows
us to identify and promote an alternative pseudo-gold target.

• The need for expensive gold targets is alleviated because for some tasks it is easier to
obtain a downstream task’s gold target than a gold target for direct supervision. This
is for example the case in semantic parsing for question answering, where in certain
domains gold answers are easier to obtain than gold parses.

Disadvantages

• Although the gold target might be easier to obtain for a downstream task, this ap-
proach still requires at least one gold target per input.

• The approach is potentially slow because for each input several outputs have to be
scored by the feedback function, which might be time consuming.

1.3. Counterfactual Off-Policy Learning

The second approach to learn from feedback is counterfactual off-policy learning. De-
ployed applications can easily and cheaply collect logs of user-system interactions in large
quantities. For such a log, we record the user input, the output of the application’s underly-
ing statisticalmodel and feedback for the presented output,which is elicited either explicitly
or implicitly from the user. Learning from such a log is an interesting endeavour because
the log collection does not incur any cost and the approach does not require the existence
of expensive gold targets.

The log can be used to improve the logging model or any other model. Because the data in
the collected log was not produced by the to-be-improved model, this leads to an off-policy
learning setup (Sutton and Barto (2018), Section 13.3).1 Such amore complex learning scen-
ario could be avoided by improving the logging model while deployed, but we opt against
this course of action for several reasons. In such an approach, the model would be updated
after every interaction, but this can be both dangerous and expensive. A model that evolves
while deployed could degenerate without notice and this would lead to user dissatisfaction
and monetary loss. Further, it could be very expensive or impossible to explore various hy-
perparameters of the model while it is deployed, but this is easily possible for off-policy
methods. Additionally, off-policy learning is safer because models can be validated on sep-
arate test sets before deployment which prevents fielding potentially degenerate models.
1Note that even if we choose to improve the loggingmodel, once a single update has beenmade to its parameters,
we are also faced with an off-policy learning scenario.
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Due to the these advantages, we focus on off-policy learning from a previously collected
log.

Off-policy learning from a collected log of user-system interactions is a complex learning
scenario for several reasons. First, feedback exists only for the one output shown to the user.
This is a bandit learning scenario, because it remains unknown what feedback would have
been obtained if another output was chosen, i.e. other outputs cannot be judged. Second,
the collected log is biased towards the choices of the deployed logging model. This leads
to the following counterfactual question: How would the target model have performed if it had
been in control during logging? Counterfactual estimators (Bottou et al. (2013); Swaminathan
and Joachims (2015a); Thomas and Brunskill (2016); Dudik et al. (2011); inter alia) have
been developed that attempt to answer this question by explicitly correcting the data bias.
Further problems arise during the application of these estimators and these are outlined
below.

Previously introduced counterfactual estimators have so far only been applied to structured
prediction problems with modestly sized output spaces, but sequence-to-sequence NLP
tasks typically have very large output spaces. We apply counterfactual learning to two NLP
tasks, namely machine translation and semantic parsing for question-answering, to show
that it is possible to employ counterfactual estimators on tasks with large output spaces.

Furthermore, theory suggests that the logging model needs to explore the output space
sufficiently to correct the data bias, e.g. by sampling outputs from the model distribution.
But such a setup is dangerous in commercial NLP applications because sampling from the
model distribution carries a high risk of presenting bad outputs to the user, which can lead
to a monetary loss. Consequently, in commercial applications the user is always presented
with themost likely output under the loggingmodel. As a result the logging is deterministic
and it is no longer possible to correct the data bias.

We present a simple estimator based on empirical risk minimisation for deterministic log-
ging. This estimator is extended twice by using control variates which correct deficiencies
in the previous estimators and reduce variance. To show that deterministic logging if feas-
ible for sequence-to-sequence learning in NLP, we compare the deterministic estimators to
stochastic counterparts. This is done on a domain adaptation task for machine translation
where we simulate feedback to be able to draw direct comparisons between deterministic
and stochastic estimators. The experiments show no significant difference between the best
deterministic and the best stochastic estimators and we provide a possible explanation why
deterministic logging is admissible for sequence-to-sequence learning inNLP. Furthermore,
we also present mathematical proofs and intuitive explanations of the deficiencies in two
counterfactual estimators for both their deterministic and stochastic instantiations.

On a semantic parsing task based on the NLmaps v2 corpus, we show that counterfactual
learning is also applicable if the underlying model is a non-linear neural network. State-
of-the-art neural networks for sequence-to-sequence learning are trained using stochastic
gradient ascent2 with small minibatches. However, one important extension of the basic
2Because we formulate our counterfactual estimators as reward estimators, we employ the term gradient ascent,
rather than gradient descent. By negating the rewards, we would recover equivalent risk estimators with which
gradient descent could be performed.
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counterfactual estimator relies on the use of large minibatches, which is not possible for
neural networks due to hardware limitations. We offer an alternative estimator that pre-
serves all important properties and can be applied to stochastic gradient ascent with small
minibatches. Furthermore, we introduce a counterfactual estimator that can incorporate
feedback at the token level. This enables blame assignment within a sequence and facilitates
better learning.

Finally, it is necessary to show that counterfactual learning for sequence-to-sequence tasks is
possible if the feedback in the log is collected from actual human users. Using our semantic
parsing task based on theNLmaps v2 corpus, we set up a corresponding feedback collection
form. Given a question, the semantic parser produces a parse, which is executed against a
database to retrieve an answer and this answer is then shown to the user. However, in most
cases, it will be impossible for the user to judge whether or not the given answer is correct
or not. For example, for the question “How many hotels are there in Paris?”, we cannot expect
a user to verify that “951” is the correct answer. Similarly, we cannot ask the user to verify a
semantic parse because the underlyingMRLwill be unknown to everyday users. Instead,we
propose to automatically convert the parse into a set of human-understandable statements
that can be judged as correct or incorrect by non-expert users.

For this proposed feedback collection method, we recruit 9 human users and we can show
that the collection method is very efficient with the majority of the feedback forms being
filled out in 10 seconds or less.With this feedback, we can show that counterfactual learning
is possible if feedback is collected from human users. Additionally, our proposed feedback
collection method naturally allows us to obtain feedback at the token-level, which enables
us to use superior token-level counterfactual estimators.

By employing the same semantic parsing tasks based on the NLmaps v2 corpus for both
response-based on-policy and counterfactual off-policy learning, we can conclude by draw-
ing a direct comparison between both approaches of learning from feedback.

Overview: Counterfactual Off-Policy Learning

In the following we provide an overview of the novelties that our application of counterfac-
tual off-policy learning introduces in this thesis and the advantages and disadvantages this
approach offers.

Novelty

• First application of counterfactual learning to problemswith large output spaces, namely
to two sequence-to-sequence tasks in NLP: machine translation and semantic parsing
for question-answering.

• Insight that deterministic logging is on par with stochastic logging for sequence-to-
sequence tasks in NLP.

• Insight that counterfactual learning is possible for non-linear neural networks.
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• Introduction of counterfactual estimators that can incorporate token-level feedback.

• Modification of a counterfactual estimator to be suitable for stochasticminibatch gradi-
ent ascent.

Advantages

• The approach is built upon theoretically well-understood policy gradient methods
(see for example (Sutton and Barto, 2018), Chapter 13).

• Gold targets are not required.

• Off-policy learning is safer, more hyperparameters can be explored and models can
be validated against separate test sets before deployment.

Disadvantages

• Feedback is only available for one output structure; feedback for other output struc-
tures cannot be obtained.

• Collected logs are biased towards the logging model, which complicates learning.

• Simple counterfactual estimators suffer from degeneracies and high variance which
need to be countered with more sophisticated estimators.

1.4. Summary of Contributions

The contributions of this thesis can be grouped into three distinct categories and can be
summarised as follows:

Semantic Parsing for Question-Answering

• A QA corpus, NLmaps, consisting of 2,380 question-parse pairs (Haas and Riezler,
2016) and an extension, NLmaps v2, with 28,609 question-parse pairs (Lawrence and
Riezler, 2018).

• A natural language web interface to OpenStreetMap (OSM) (Lawrence and Riezler,
2016).

• Amethod to automatically convert parses into a set of statements which can be easily
and efficiently judged by human users as correct or incorrect (Lawrence and Riezler,
2018).
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Grounded Learning

• Successful grounding of a machine translation system in its downstream task for a
multilingual semantic parsing pipeline (Haas and Riezler, 2016).

• Application of ramp loss objectives to non-linear neural networks, detailed evaluation
and comparison to MRT objectives for semantic parsing (Jehl et al., 2019).

• Introduction of a token-level ramp loss objective (Jehl et al., 2019).

Off-policy Reinforcement Learning

• Definition of deterministic counterfactual estimators: Deterministic Propensity Ma-
tching (DPM), Reweighted Deterministic Propensity Matching (DPM+R), Doubly
Controlled (DC) and ĉDoubly Controlled (ĉDC) (Lawrence et al., 2017b).

• Empirical evidence and intuitive explanation that deterministic logging for counter-
factual learning provides sufficient exploration on sequence-to-sequence tasks in NLP
(Lawrence et al., 2017b; Lawrence and Riezler, 2018).

• Empirical evidence that counterfactual learning can be applied to problemswith large
output spaces (Lawrence et al., 2017b; Lawrence and Riezler, 2018).

• Empirical evidence that counterfactual learning can be applied to non-linear neural
network models (Lawrence and Riezler, 2018).

• Mathematical proofs and intuitive explanations of potential degeneracies in the coun-
terfactual estimators: Inverse Propensity Scoring (IPS), Deterministic Propensity Ma-
tching (DPM), Reweighted Inverse Propensity Scoring (IPS+R) and Reweighted De-
terministic Propensity Matching (DPM+R) (Lawrence et al., 2017a).

• Definition of the estimator One-Step-Late Reweighted Deterministic Propensity Ma-
tching (DPM+OSL), which modifies the Reweighted Deterministic Propensity Ma-
tching (DPM+R) estimator to be applicable for stochastic (minibatch) gradient ascent
(Lawrence and Riezler, 2018).

• Definition of the counterfactual estimator Token-level Deterministic Propensity Ma-
tching (DPM+T), which allows rewards to be decomposed over the tokens of the out-
put sequence (Lawrence and Riezler, 2018).

1.5. Structure

This thesis is a cumulative effort. Consequently significant parts of this thesis have been
previously published in peer-reviewed publications, co-authored with my supervisor and
colleagues. Additionally some sections have previously appeared inmyMaster’s thesis. The
papers are referenced in the introduction of the corresponding chapters of this thesis and
work not done by my person is clearly marked.
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Relevant background knowledge as well as notation used throughout this thesis is presen-
ted in Chapter 2. Part I presents the question-answering task defined on the geographical
database OpenStreetMap (OSM). Chapter 3 details the construction of the QA corpora
NLmaps and NLmaps v2, both of which are used in subsequent chapters to demonstrate
the effectiveness of various algorithms. Two semantic parsing frameworks and their exten-
sions tailored for theNLmaps domain are introduced in Chapter 4. The chapter also presents
the graphical user interface constructed for the natural language interface to OSM, which
connects to a semantic parser in the background.

The first approach to learn from feedback, response-based on-policy learning, is presented
in Part II. It considers scenarioswheremodels are grounded in a downstream task forwhich
gold targets are available and which can provide a weak supervision signal. The approach
is applied to two different model types, linear and non-linear, and to two different tasks. In
Chapter 5, we build amultilingual semantic parser by employing amachine translation sys-
tem and a semantic parser in a pipeline setup. The machine translation system is grounded
in the semantic parsing task and is improved by leveraging final task feedback provided on
the basis of gold answers. In a similar scenario, we assume that only gold answers but no
gold parses are available to improve a semantic parser in Chapter 6.

The second approach to learn from feedback, counterfactual off-policy learning, is presented
in Part III. It assumes that neither immediate gold targets are available, nor is it possible to
ground the system in a taskwith available gold targets. Instead,we assume that a systemhas
been deployed and users interacting with the system provide feedback for the one model
output presented to the user. Aswith the previous approach, this approach is also applied to
two different model types, linear and non-linear, and to two different tasks. In Chapter 7 we
improve a machine translation system in this setup using both deterministic and stochastic
logswhich are createdwith simulated feedback. Chapter 8 presents an approach to improve
a semantic parser by leveraging feedback provided by real human users. We conclude by
drawing a direct comparison between the two approaches based on identical experimental
setups in Chapter 6 and Chapter 8.
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Chapter 2

Background

Semantic parsers and machine translation systems are the focus in this thesis. Both
are sequence-to-sequence tasks and can be cast as structured prediction problems.
Herewe briefly introduce relevant terminology and background information. Sec-
tion 2.1 introduces general notation and a basic overview of the task of struc-

tured prediction. An overview of phrase-based SMT is given in Section 2.3 and an overview
of recurrent neural networks for sequence-to-sequence learning in Section 2.4. Section 2.2
provides an overview of relevant reinforcement learning concepts.

2.1. Structured Prediction

For the scope of this thesis, we are interested in the task of structured prediction conditioned
on some input. Given an input sequence x = x1, x2, . . . x|x| ∈ X, we assume the existence
of a parametric model πw(y|x) with parameters w that defines a conditional probability
distribution over all possible output sequences y ∈ Y(x), where X and Y(x) are the set of
all possible input and output values, respectively. The most likely output sequence under
πw(y|x) is defined as

ŷ = arg max
y∈Y(x)

πw(y|x). (2.1)

The goal of a machine learning algorithm is to find a set of optimal parameters w, so that,
given an input x, πw(y|x) assigns the highest probability to the correct gold target sequence
ȳ = ȳ1, ȳ2, . . . ȳ|ȳ|.

For an input x and corresponding gold target ȳ, we can define a loss function L(ŷ, ȳ)) which
registers a penalty if ŷ 6= ȳ. Assuming a probability distribution p(x, y) that mapsX×Y to
the interval [0, 1], the expected risk is defined as

Lexpected =

∫
x

∫
y

L(ŷ, ȳ))p(x, y)dxdy = E(x,y)∼p(x,y)[L(ŷ, ȳ)]. (2.2)
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As p(x, y) is generally unknown, this distribution needs to be approximated. This can be
done using a training set of size n that is independent and identically distributed (i.i.d.)
with a probability distribution p̃(x, y) and for each input xt a corresponding gold target ȳt
has been collected. Thus the expected risk is approximated using the empirical risk,

Lempirical =
1

n

n∑
t=1

L(ŷ, ȳt). (2.3)

The empirical risk will approach the expected risk as n→∞.

To improve amodel, we can perform empirical riskminimisation. Concretely, in this thesis
we modify the parameters w using gradient descent. The parameters of w are adjusted by
moving in the negative direction of the gradient that results from the differentiation of the
loss function with regards to w. Thus for each input-output pair (x, ȳ), w is updated as
follows:

∆w = −η∇L(ŷ, ȳ), (2.4)

where η is a learning rate to be set separately.

If wewant to employ rewards rather than losses, we can define a reward function instead:

V(ŷ, ȳ)) = −L(ŷ, ȳ). (2.5)

We then use the term gradient ascent instead, with the corresponding update defined as:

∆w = η∇V(ŷ, ȳ). (2.6)

Instead of updating after each seen input-output pair (x, y), we can also operate in a batch
setup where we iterate over the entire training set of size n and average the loss before per-
forming an update. Batch algorithms more closely approximate the expected risk, however
it can be expensive to compute because it requires an iteration over the whole training set
before an update is performed. Alternatively, we utilise minibatches of size m < n. While
minibatches are less accurate due tom < n, it offers a trade-off between the two extremes.

Repeatedly updatingw on the basis of the training set leads to the danger of overfitting to the
training set, which results in bad performance on new, previously unseen data. To prevent
this fromoccurring,we employdevelopment sets.Weperiodically evaluate the performance
on the development set and chose the set of parameters w where the performance on the
development set is highest. The resulting model πw(y|x) is then deployed on a test set and
the resulting performance is used to judge the success of πw(y|x).

We speak of full or direct supervision if data is available that pairs inputs xwith gold targets
ȳ for the task. In the case of machine translation, an input sentence in a source language is
paired with a reference translation in the target language. For semantic parsing, input ques-
tions are paired with a correct parse that by definition executes to the correct answer. We
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Agent Environment

Action

Reward

Figure 2.1.: Schematic view of reinforcement learning.

speak of weak supervision if gold targets are not available and instead feedback to model
outputs y are used as a learning signal. This is elaborated on further in the following sec-
tion.

2.2. Reinforcement Learning

Parts II and III of this thesis employ ideas from reinforcement learning. Here we present
relevant concepts and terminology. For more details see (Sutton and Barto, 2018), which
serves as a basis for this short overview.

In fully supervised learning we are given a training set where inputs x are associated with
gold targets ȳ. As described in Section 2.1, if a system’s most likely output ŷ does not equal
the gold target ȳ, we canmeasure a lossL(ŷ, ȳ) and update the underlying parametricmodel
accordingly. In reinforcement learning, gold targets ȳ are not available. However, we assume
there is an environment or world, to which we can give a chosenmodel output y, also called
the action in reinforcement learning terms, and the world returns a reward δ(y) or, equival-
ently, a loss ∆(y) = −δ(y).3 The environment is otherwise unknown to us and is treated as
a black box. The goal of reinforcement learning is to improve an agent so that the expected
reward on a given task is maximised. See Figure 2.1 for a graphical overview.

We assume that the agent is fully specified by a parametric policy πw(y|x) that defines a con-
ditional probability distribution over all possible outputs y ∈ Y(x) for a given x ∈ X. Out-
puts from πw(y|x) can be generated either stochastically or deterministically. A stochastic
policy draws samples from the output space, e.g. by sampling from the model distribution
πw(y|x). A deterministic policy on the other hand always returns the same output given
the same input. Themost straightforward option is to compute themost likely output under
the current model, i.e. arg maxy∈Y(x) πw(y|x).

Given an output, we assume that the environment can return a reward for this output. If the
environment can evaluate only one output per input and thus only return one reward, we
3Note thatweuse the terms loss and reward interchangeably in this thesis,whereaswe assume that∆(y) = −δ(y)
unless otherwise specified.
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refer to this as a bandit setup (Bubeck and Cesa-Bianchi, 2012). The phrase “bandit” stems
from the analogy of having to choose a slot machine (colloquially referred to as “one-armed
bandit”) amid others. Ideally, the chosen machine obtains the best reward compared to the
reward that any other slot machine would have returned. However, once a machine (or
output) is chosen, it will remain unknown if any of the other machines (or other outputs)
would have led to a better reward. This scenario occurs frequently for deployed systems
where only one output can be presented to a human user and thus feedback can only be
collected for the one output.

To improve our agent, we would like to minimise the expected risk of the model πw(y|x),

L(πw(y|x)) = Ep(x)Eπw(y|x)[∆(y)], (2.7)

where p(x) is the probability distribution over inputs x. This is equivalent to maximising
the expected reward,

V(πw(y|x)) = Ep(x)Eπw(y|x)[δ(y)]. (2.8)

We would like to increase the expected reward using policy gradient techniques (Sutton
and Barto (2018), Chapter 13). Thus, we need to compute

∇wV(πw(y|x)) = ∇wEp(x)Eπw(y|x)[δ(y)]. (2.9)

However, this is not directly possible because the reward function δ(y) is unknown to us
and can consequently not be derived. This problem can be circumvented using the score
function gradient estimator (Fu, 2006):

∇wV(πw(y|x)) = ∇wEp(x)Eπw(y|x)[δ(y)] (2.10)

= ∇w
∫
x

∫
y

δ(y) p(x)dxπw(y|x)dy

=

∫
x

∫
y

δ(y) p(x)dx∇wπw(y|x)dy

=

∫
x

∫
y

δ(y) p(x)dx∇w
πw(y|x)

πw(y|x)
πw(y|x)dy

=

∫
x

∫
y

δ(y) p(x)dx∇w log πw(y|x)πw(y|x)dy

= Ep(x)Eπw(y|x)[δ(y)∇w log πw(y|x)].

The final expectation of Equation 2.10 can be approximated using Monte Carlo simulation.
Observing an input x, we obtain a model output y from πw(y|x) and a corresponding re-
ward δ = δ(y). Based on this, we can formulate the following gradient ascent update rule,
generally known as the REINFORCE algorithm (Williams, 1992), to adjust w:
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∆w = η δ ∇w log πw(y|x), (2.11)

where η is a learning rate to be set separately.

Due to obtaining only one sample, the algorithm can suffer from high variance which can
be reduced by employing control variates (Ross (2013), Chapter 9) and we consider this
further in Chapters 7 and 8.

To effectively learn, a policy needs to explore the output space to find outputs that lead to
high rewards. The most straightforward way to explore the output space is to sample from
the model distribution. But such stochastic policies can be dangerous for real-world setups
where a sampled bad output might lead to dissatisfied users and a monetary loss. The risk
can be reduced by peaking the model distribution, which further increases the probability
of high probability outputs. For example, for a log-linear model,

πw(y|x) =
eαwφ(x,y)∑

y∈Y(x) e
αwφ(x,y)

, (2.12)

we can set a factorα ∈ R+ so that asα→∞we approach a deterministic policy that chooses
the most likely output and thus exploits the current model. If a deterministic policy is used,
learningmight be limited because the policy does not have the chance to explore alternative,
potentially better outputs. Such a deterministic policy would however greatly reduce the
risk for deployed real-world systems. We are faced with the problem of finding a good
exploration-exploitation trade-off. For sequence-to-sequence tasks of machine translation
and semantic parsing, the danger of exploring is particularly high because there are vastly
more bad options to choose compared to an output that would lead to a good reward. In
such setups,wewould like to always choose themost likely output under the currentmodel.
We will investigate in Chapter 7 if deterministic policies are viable for machine translation
or if their lack of explicit exploration poses a problem.

A further complication arises if we want to improve a policy πw(y|x), but outputs y and as-
sociated rewards δ(y) have been produced by another policy µ(y|x). In this scenario, there
is an inherent bias towards the policy µ(y|x) in the collected data. This leads to a counter-
factual setup because we do not know what outputs and associated rewards would have
been collected if πw(y|x) had been in charge during the data collection. This is also referred
to as an off-policy setup in reinforcement learning terms. As a contrast to this, in an on-
policy setup, the agent that is to be improved is also the agent that chooses the outputs.4 In
Part II we are concerned with on-policy setups, whereas in Part a III we consider off-policy
scenarios.
4The definition for on-policy and off-policy follows the definition of (Sutton and Barto (2018), Section 5.4).
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2.3. Phrase-Based Machine Translation

We give a short introduction on phrase-based machine translation which is employed in
Chapters 4, 5 and 7. In particular, we use the hierarchical phrase-based framework Cdec
(Dyer et al., 2010). For an extended discussion of the topic see Koehn (2010), which is also
the source upon which this summary is based.

Given a text segment in a language x, the goal of a machine translation system is to output
the most likely translation of this text segment in language y. For a segment x in language
x, the probability of translating it into a text segment y in language y is p(y|x). In machine
translation, a text segment typically equates a sentence. The probability p(y|x) can be re-
written using Bayes’ rule:

p(y|x) =
p(x|y)p(y)

p(x)
∝ p(x|y)p(y). (2.13)

The highest scoring translation ŷ in the output spaceY(x), which contains all possible sen-
tences of language y, can then be found using

ŷ = arg max
y∈Y(x)

p(x|y)p(y), (2.14)

where the division by p(x) may be omitted as it does not impact the ranking of translation
candidates. Note that calculating the probability for every element y ∈ Y(x) is typically in-
feasible due to the size ofY(x). Thus 2.14 is generally approximated using a greedy search
or a beam search algorithm. The reformulation using Bayes’ rule allows a rudimentary ma-
chine translation system to be split into two components: p(x|y) is the translation table that
assigns probabilities for translating x into y, and p(y) is the language model which judges
how likely sentence y is for language y.

Modelling an entire sentence is difficult, thus sentences are split into smaller units, x =

x1, x2, . . . x|x| and y = y1, y2, . . . y|y|. Units are typically words, but could also be sub-word
units (Sennrich et al., 2016). The translation table is thus typically decomposed into the
chosen smaller unit (here assumed to be words):

p(x|y) =

|y|∏
i=1

p(xi|ya(i)), (2.15)

where a(i) is an alignment function that maps the target language word at position i to to
a source language word at position j, i.e. a : i→ j. Word alignments are learnt in an unsu-
pervised fashion from parallel corpora that have been aligned already at sentence level.
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If either the word alignments or the word translation probabilities were known, it would
be straightforward to estimate the other using maximum likelihood estimation. As neither
are known, a different approach is necessary. Starting out with uniform probabilities of
aligning a source word to any target word, the Expectation-Maximisation (EM) algorithm
can be used to iteratively uncover word alignments andword translation probabilities. In its
expectation step, the algorithm collects counts of co-occurrences betweenwords of both lan-
guages using the current word translation probabilities. In the maximisation step, the word
translation probabilities are updated using the current counts. Once the algorithm has con-
verged, the word translation probabilities and the most likely alignments can be extracted.
This setup is referred to as the IBM 1 model (Brown et al., 1993). Latter extensions to the
model led to further quality improvements, finally accumulating in the IBM5model (Brown
et al., 1993). To obtain more robust alignments, it is also typical to run the EM algorithm for
both translation directions and to heuristically combine the resulting alignments. Various
strategies are possible, for example, the intersection heuristic only retains alignment points
that are present in both alignment directions.

The language model p(y) is trained in an unsupervised fashion using monolingual data of
language y. Given a sequence of n words (called an n-gram), maximum likelihood counts
on the monolingual data can assign a probability for the next word yj given the history of
(n− 1) words:

p(yj |yj−1, . . . , yj−(n−1)) =
count(yj−(n−1), . . . , yj−1, yj)

count(yj−(n−1), . . . , yj−1)
, (2.16)

where the function count(·) counts the number of occurrences in the given monolingual
data for (yj−(n−1), . . . , yj−1, yj) and (yj−(n−1), . . . , yj−1), respectively.

The choice of n is crucial: small n-grams might not take enough context into account but
large n-grams might lead to unreliable estimates because longer sequences occur less fre-
quently. One option is to employ amodelwith a large n but back off to amodel with (n−1) if
a prospective n-gram is not contained in the larger model. Alternatively, the different mod-
els can be interpolated. Additionally, a problem arises if a word has not been seen at all in
the monolingual data because it will obtain a probability of 0. This can be counteracted by
smoothing all counts with some small factor α. Further smoothing methods adjust the em-
pirical counts to make themmore robust, such as Kneser–Ney smoothing (Kneser and Ney,
1995).

Translating a sentence word-by-word can be suboptimal in many cases. For instance, one
word in the source language might be translated into several words in the target language
and vice versa. Alternatively, idiomatic phrases might not be translated correctly if the in-
dividual words in the phrase are translated in isolation. Furthermore, phrases take context
into account and can thus be helpful to resolve word ambiguities. Luckily, parallel phrases
can be directly extracted fromword alignments and this easily allows us tomove fromword-
based models to phrase-based models.

A further extension to the phrase-based approach are hierarchical phrases (Chiang, 2005).
Hierarchical phrases are built from phrase pairs that contain several smaller phrase pairs.
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One or several of the phrase pairs are removed and replaced by a special symbol, e.g. X. Such
discontinuous phrases can handle reordering elegantly. Based on these phrases, a Synchron-
ous Context-Free Grammar (SCFG) can be extracted, which maps non-terminal symbols to
two phrases, one in either language.

[X] → das [X_1] haus ||| the [X_1] house

[X] → kleine ||| small

Listing 2.1: An example for a small SCFG.

For example, given the input “das kleine haus” the grammar from Listing 2.1 can produce the
translation “the small house” even if the phrase “das kleine haus”was never seen in the training
data. In this thesis, we employ SCFGs as part of the hierarchical phrase-based framework
Cdec (Dyer et al., 2010).

The translation and language models are the backbone of any traditional SMT system. Fur-
ther features can be added by employing a log-linear model, also called Gibbs model,

πw(y|x) =
ewφ(x,y)∑

y′∈Y(x) e
wφ(x,y′)

∝ ewφ(x,y), (2.17)

where φ is a feature vector with individual entries representing different feature functions,
such as p(x|y) and p(y), and w is a weight vector that assigns importance weights to the
different features. The weights w are typically tuned in a discriminative setup with the fi-
nal evaluation metric in mind. The most commonly used evaluation metric is the BLEU
(Papineni et al., 2002) score which we also employed in this thesis. It is a precision based
metric that calculates n-gram overlaps of a suggested translation with regards to one or
more reference translations. The BLEU metric as introduced by Papineni et al. (2002) oper-
ates on the corpus level. But for the tuning algorithms, we require sentence-level metrics.
We specifically mention when we use a sentence-level approximation for BLEU (Nakov
et al., 2012). However, final evaluation scores are always calculated using the corpus level
metric.

We employ the tuning algorithmsMert (Och, 2003),Mira (Crammer and Singer, 2003) and
Rampion (Gimpel and Smith, 2012), but they all require that a gold reference translation is
available. In Chapters 5 and 7 we present new algorithms which can incorporate feedback
from other sources, such as from downstream tasks or human users.

2.4. Neural Networks for Sequence-to-Sequence Learning

State-of-the-art recurrent neural networks for both semantic parsing and machine transla-
tion are employed in Chapters 4, 6 and 8. In particular, we use the framework Nematus
(Sennrich et al., 2017), which employs the fast computation framework Theano (Theano
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Development Team, 2016). An extensive review of the topic can be found in Cho (2015) or
Goodfellow et al. (2016), both of which serve as the basis for this overview.

Assume Vx is the set of tokens in the source language x and Vy is the set of tokens in the
target language y. In each set, we include a special token that marks the end of a sequence
and a special token that is reserved for tokens not found in Vx and Vy , respectively. Each
token in Vx is assigned a unique index and a sequence of tokens1 in language x can be
represented by a sequence of indices x = x1, x2, . . . x|x|. Equivalently, each token in Vy is
assigned a unique index and a sequence in language y can be represented by a sequence of
indices y = y1, y2, . . . y|y|.

The neural networks employed in this thesis are based on an encoder-decoder setup (Cho
et al. (2014), Sutskever et al. (2014)), augmented with an attention mechanism (Bahdanau
et al., 2015). At the top level, a neural network can be understood as a parametric model
πw(y|x), which assigns a probability of how likely it is to map an input sequence x to an
output sequence y.

Initially, each xi in the source sequence x = x1, x2, . . . x|x| is converted into a one-hot vector
of length |Vx|where all entries are zero except the entry at positionxiwhich is one. Typically
an additional dimension is added to the one-hot vector. This dimension is always one and
acts as a bias term. For every token xi, a Recurrent Neural Network (RNN) recursively
defines a hidden state hi, i.e.

hi = g(xi, hi−1), (2.18)

where g is some non-linear function and the first state h0 is initialised with 0.

In an RNN, the simplest option for g would be:

hi = σ(Wxi + Uhi−1), (2.19)

where σ is typically the sigmoid function,W is a weight matrix of sizeH×|Vx| 5 withH in-
dicating the number of hidden units and U is an additional weight matrix of size H × H
that can capture context from previous states. However, in state-of-the-art sequence-to-
sequence neural networks g is typically either a Long Short-Term Memory (LSTM) (Ho-
chreiter and Schmidhuber, 1997) (e.g. in Sutskever et al. (2014)) or a Gated Recurrent Unit
(GRU) (Chung et al., 2014) (e.g. in Sennrich et al. (2017)). These are more complex units
which are more adept at handling long distance dependencies and can prevent vanishing
gradients (Cho (2015), Section 4.3.4). Here we introduce GRUs which are used inNematus
(Sennrich et al., 2017), the framework employed in this thesis. Mathematically it is defined
via the following equations:
5|Vx|+ 1 if a bias term is included.
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r = σ(Wrxi + Urhi−1) (2.20)
u = σ(Wuxi + Uu(r � hi−1))

h̃i = σ(Wxi + U(r � hi−1))

hi = (1− u)� hi−1 + u� h̃i,

where � signifies element-wise multiplication and r, u ∈ [0, 1]H. r is referred to as a reset
gate whereas u is called the update gate. Intuitively the larger r is, the more information
from the previous state is used. Similarly, the larger the value of u, the more information
will be kept from the current state. Thus, to capture long dependencies, a high value of u
can ensure that information is retained and a higher value r will indicate that it is time to
use previously captured information.Wr, Ur,Wu and Uu are additional weight matrices of
sizeH×H.

Once a hidden state hi has been computed for every input xi, the hidden states can be com-
pacted into a final representation of the entire input,

c = q({h1, . . . , h|x|}), (2.21)

where q could simply be the last hidden state, q({h1, . . . , h|x|}) = h|x| (Sutskever et al., 2014),
or it is defined to obtain an average, q({h1, . . . , h|x|}) = 1

|x|
∑|x|
i=1 hi, as is the case inNematus.

The vector c represents the encoded input sequence and is hence also referred to as a context
vector. Often the sequence is also reversed, i.e.←−x = x|x|, . . . , x1, and encoded backwards,
leading to a second hidden vector for each token xi. In that case the hidden vectors from the
forward pass are referred to via −→h i and the hidden vectors from the backward pass as←−h i.
An overall hidden representation is then obtained via concatenation, hi = [

−→
h i;
←−
h i].

With the input sequence encoded, the decoder RNN can output tokens in the target lan-
guage. It is initialised by setting s0 = c and at each time step τ the decoder state is updated
via

sτ = z(sτ−1, yτ−1, cτ ), (2.22)

where z is a GRU with an attention mechanism and cτ is a context vector obtained from
the attention mechanism (Bahdanau et al., 2015). With a context vector cτ for each decoder
state, it allows the decoder to attend to different parts of the input sequence with varying
strength depending on its current state. The attention mechanism at each step τ is defined
by

cτ =

|x|∑
i=1

ατihi, (2.23)

where the weight ατi for each input hidden vector hi is computed by a softmax function
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ατi =
e(ετi)∑|x|
k=1 e(ετk)

(2.24)

and ετi = a(sτ−1, hi) is the alignment model that quantifies how important a token xi is at
time step τ . The function a itself defines a further neural network, typically a feed-forward
network, that is trained alongside the other elements in the network. Over all entries i and
τ , ατi defines an alignment matrix over the sequence pair (x, y) once the translation is com-
pleted, where ατi represents the probability that token yτ is aligned to the token xi. This
alignment can be visualised using a heat map. In a heat map the values ατi map to a col-
our depending on their value, whereas colours shift from black to white as the values move
from 0 to 1. For an example see Figure 2.2.

Figure 2.2.: Visualisation of alignment weights between an English sentence and a French
translation. Taken from Bahdanau et al. (2015), Part (a) of Figure 3.

For each decoder state at time step τ , we can now define a probability distribution Yτ over
the output vocabulary Vy :

πw(Yτ |y<j , x) =
e(sτ )∑|Vy|

v=1 e(sτv )
, (2.25)

where πw symbolises the neural networkmodel andw represents all parameters that have to
be learnt and y<j = y1, y2 . . . yj−1. πw(Yτ |y<j , x) is a vector of length |Vy| and each entry Yτo
is the probability for translating the word that maps to the index o in the output vocabulary
Vy . At time τ , the probability of the token that is mapped to index yj is thus:

πw(yj = τo|y<j , x) =
e(sτo)∑|Vy|
v=1 e(sτv )

. (2.26)

The probability of an entire sequence is given by
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πw(y|x) =

|y|∏
j=1

πw(yj |y<j , x), (2.27)

where we shorten yj = τo to yj for notational convenience.

With the network defined, appropriate weights w need to be learnt. This is typically done
using supervised data, i.e. parallel training data where input sequences x are aligned with
gold target sequences ȳ. To begin with, the weight matrices are initialised randomly, e.g. by
drawing numbers fromaGaussian distribution. Applying the network to an input sequence,
we look up the probability the network currently ascribes to the supplied target sequence
ȳ. Given n inputs, we obtain the probability of the n corresponding output sequences and
the network’s parameters are updated so that probability of the training data is increased.
This is possible by defining the followingMaximumLikelihood Estimation (MLE) objective
which increases the probability of the tokens ȳj in the supplied gold target sequence ȳ:

LMLE = − 1

n

n∑
t=1

|y|∑
j=1

log πw(ȳt,j |ȳt,<j , xt). (2.28)

As every function in the network is differentiable, the gradient for the network on the basis
of the above loss can be calculated using partial derivatives and the chain rule ( dzdx = dz

dy ·
dy
dx).

Via this backpropagation technique, the various steps in the RNN can be unrolled until all
weight matrices are updated:

δL
δw

=
δL
δȳ|ȳ|

δȳ|ȳ|

δs|ȳ|
. . .

δh1

δx1
(2.29)

At test time, we want to find the most likely output sequence given an input sequence:

ŷ = arg max
y∈Y(x)

πw(y|x). (2.30)

But for most problems, the space Y(x) is too large to be searched exhaustively. A simple
solution is to greedily generate the most likely token at each time step. Alternatively, one
can employ a beam search or sample a token according to the model distribution.

Instead of using Equation 2.28 to update the parameters w, we use different loss functions
in Chapters 6 and 8 that do not require the existence of gold target sequences, but instead
incorporate feedback from external sources, such as downstream tasks or human users.
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Part I.

A Natural Language Interface to
OpenStreetMap





Chapter 3

Question-Answering Task

The geographical database OpenStreetMap (OSM) contains over 3.4 billions GPS
coordinates with associated information for points of interest all over the world.
But a significant portion of this information cannot be accessed by non-expert
userswith the currently available search functions. Simple string-matchingmeth-

ods are not sufficient to extract complex information. For example, for the question “Where
are 3 star hotels in Paris” or “3 star hotels Paris”, the main search tool6 returns no results, even
though corresponding database objects exist. To be able to find them, it is necessary to is-
sue a complex database query using theOverpass7 query language and this is infeasible for
every day users. Wewant to offer an alternative solution, where non-expert users can query
the database for complex object requirements using natural language.

For a natural language interface to OSM, two components are required. First, we define a
question-answering task and collect a corpus where natural language questions are paired
with parses that can be executed against the database to return the correct, gold answer to
the posed question. Second, we need a semantic parser that learns how to map natural lan-
guage questions to parses. In this chapter, we setup the question-answering task and collect
appropriate data. In the following chapter, we turn to training various semantic parsers on
the basis of the collected corpora.

The first step in formulating the question-answering task, is the definition of an appropri-
ate Machine Readable Language (MRL) for the parses. A good basis is the Overpass query
language, but it is not fine-grained enough for our purpose. Thus, we introduce additional
operators and define a MRL that wraps around the Overpass query language. Later, se-
mantic parsers will learn tomap natural language questions to parses written in the defined
MRL.

In a second step, supervised data needs to be collected. We have the option to either collect
questions and corresponding parses or questions and corresponding gold answers. Many
recent approaches advocate the collection of question-answer pairs (Berant et al. (2013);
Iyyer et al. (2014); Yang et al. (2015); Dunn et al. (2017a), inter alia) because it is easier
to collect answers than complex parses. However, this is not the case in our domain. For
example, to answer the question “How many hotels are there in Paris?”, one would have to
6http://www.openstreetmap.org, 1st September 2018
7https://wiki.openstreetmap.org/wiki/Overpass_API, 1st September 2018
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count 951 hotels. It is highly doubtful that this task can be accomplished without error and
even if so, it would take an unreasonable amount of time. Furthermore, most questions can-
not be answered without resorting to Overpass queries, as is for example the case for the
above mentioned example: “Where are 3 star hotels in Paris”. Finally, answers can change as
the database is updated. By collecting parses, the gold answer can always be obtained for
the up-to-date database. In addition to this, question-parse pairs make learning easier than
question-answer pairs because question-answer pairs only provide indirect, weak supervi-
sion (Yih et al., 2016).

We assemble 2,380 question-parse pairs which results in the NLmaps corpus. The corpus
is the first publicly available corpus for semantic parsing in the OSM domain. Boye et al.
(2014) previously employed the OSM database to build a dialogue system for pedestrian
routing, but no resources were provided. We compare our corpus to two other available
question-parse corpora. The Geoquery corpus (Wong and Mooney, 2006; Kate et al., 2005)
contains questions about a small number of geographical points in the United Sates. It is
compositionally and syntactically rich but has a restricted vocabulary due to its closed do-
main. Free917 (Cai and Yates, 2013) is a corpus operating on the open domain database
Freebase.8 Due to the open domain, it has a significantly larger vocabulary, but questions are
structurally simpler. Our corpus offers a middle ground between the two other corpora.

In a next step, NLmaps is further extended, both manually and with automated means, to
28,609 question-parse pairs, leading to theNLmaps v2 corpus. With either corpus, it is pos-
sible to train semantic parsers that learn to map questions to parses that can be executed
against the OSM database to retrieve answers.

The main contributions of this chapter are as follows:

• Definition of a question-answering task on the basis of the geographical database
OpenStreetMap (OSM).

• Design of a Machine Readable Language (MRL) suitable for the question-answering
task and a corresponding Context-Free Grammar (CFG) that can determine if a parse
is valid under the defined MRL.

• Connecting theMRL to the database query languageOverpass and the OSMdatabase.

• Collection of the NLmaps corpus with 2,380 question-parse pairs.

• Extension of NLmaps to 28,609 question-parse pairs, resulting in the corpus NLmaps
v2.

The structure of this chapter is as follows: In Section 3.1 we introduce the OSM database
and two tools that can query the database. Section 3.2 introduces the Machine Readable
Language (MRL) suitable for the question-answering task. With the MRL defined, we de-
scribe the creation process of the first question-answering corpus, NLmaps, in Section 3.3.
The extension of the corpus, NLmaps v2, is presented in Section 3.4.
8https://developers.google.com/freebase/, 1st September 2018
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3.1 The Geographical Database OpenStreetMap (OSM)

The work presented in this chapter has been previously published in peer-reviewed public-
ations. In particular, Sections 3.1, 3.2 and 3.3 appear in Haas and Riezler (2016) and Section
3.4 in Lawrence and Riezler (2018).

3.1. The Geographical Database OpenStreetMap (OSM)

OpenStreetMap (OSM)9 is an open-source project where volunteers can contribute geo-
graphical knowledge of points of interest in the world to a global database. It counts over
3.4 billions GPS coordinates submitted by more than 2 millions users.10 As such it provides
an unparalleled, publicly available wealth of geographical knowledge.

The database defines three data structures. The most basic structure is a “node”. Next to the
GPS coordinate, every node is given an automatically assigned node ID and, optionally, an
elevation. Defining an ordered list of nodes produces a “way” structure. Should the first
and last element in the list be the same node, the way is also referred to as a “polygon”;
otherwise it is an “open way”. Open ways are typically used to outline rivers or streets. Most
polygons are considered an “area” which can contain any of the other database structures.
Should the concept of containment not be desired, the structure is referred to as a “closed
way” (restricted to circular paths such as a roundabout or barriers). The final structure is a
“relation”whichmay group any number of nodes, ways or further relations together to form
a cohesive unit. Relations can for example be used to delineate boundaries, such as country
outlines, or to indicate that several buildings belong to a common owner, e.g. a company.
An area concept can again be defined, creating in this case a “multi-polygon”.

Any of the three database structuresmay be enrichedwith further information. Information
points in the database are defined via key-value pairs where one key-value pair is referred
to as a tag (e.g. “tourism=hotel” is a tag attached to points of interests that are hotels). These
key-value pairs can be freely defined by the contributor, although the community has a set of
agreed upon common keys and key-value pairs. Which further information the volunteers
supply, is their own prerogative. Consequently, the data maybe be incomplete, biased or
erroneous.

For some database keys, the corresponding value should be chosen freely. This is for ex-
ample the case for keys such “name”, “website” or “phone”. For other keys, it is more suit-
able to have a predefined list of possible values. For example, the key “highway” has a
community-defined set of values that include “motorway”, “residential” or “pedestrian”. These
definitions attempt to keep the use of key-value pairs consistent throughout theworld.How-
ever, the final decision is still left up to the individual contributor. As of December 14th,
2015, there are over 57,000 distinct keys and 76 million distinct tags in the database. Out of
all keys, 186 keys are denoted as common features on the OSMWiki.11 A statistic overview
of the OSM database may be found in Table 3.1.
9http://wiki.openstreetmap.org/, 1st September 2018

10Statistics taken from http://www.openstreetmap.org/stats/data_stats.html, 14th December 2015
11http://wiki.openstreetmap.org/wiki/Map_Features, 1st September 2018
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# users 2,389,374
# objects 3,464,399,738
# nodes 3,139,787,926
# ways 320,775,580

# relations 3,836,232
# tags 1,259,132,137
# distinct tags 76,204,309
# distinct keys 57,159

Table 3.1.: Statistics of the OSM database as of December 14th, 2015.

The database may be searched by visiting the website www.openstreetmap.org (1st
September 2018). The website offers a search box with which one can query the database.
The search query is sent to two separate search tools, GeoNames12 and Nominatim.13 Geo-
Names is a database containing over 11 million place names. It annotates the place names
with further features that may be of use to disambiguate place names, e.g. by annotating
population numbers or alternative spellings. As it contains only place names, it cannot be
used to search for other points of interests in the database, such as train stations or indi-
vidual street names. The second tool,Nominatim, has been specially designed for OSM and
is described in greater detail below.

3.1.1. Search Tool: Nominatim

Nominatim uses string-matching techniques to search values belonging to a certain group
of keys and hand-crafted features to rank the returned list. The keys whose values are in-
dexed are keys pertaining to names and addresses. Next to the “name” key, the group also
includes keys such as “alt_name”, for alternative spellings of a name, or “int_name”, for in-
ternational spelling variants. For addresses, the group includes keys such as “addr:street”
for street names, “addr:housenumber” for house numbers or “addr:city” for city names. In
combination, one can find specific addresses with these fields. For disambiguation, Nom-
inatim defines a hierarchy of importance over the various fields. This is for example useful
for areas that have the same name: an area with a city tag will receive a higher score than
another area by the same name but only a village tag. Next to this string-based search, the
Nominatim tool also supports the search by GPS coordinate as well as performing reverse
geo-coding: given a GPS coordinate, reverse geo-coding attempts to synthetically construct
an appropriate address for this point.

Furthermore,Nominatim employs a special list of terms14 that enables users to search for ob-
jectswith a specific tag. For example,without this list, it would be impossible to search for all
restaurants (i.e. objects with the tag “amenity=restaurant”) in an area. The hand-written list
links English keywords to appropriate OSM tags and a simple lookup allows the conversion
from one to the other. However, this list has several shortcomings. First, being hand-written
12http://www.geonames.org, 1st September 2018
13http://nominatim.openstreetmap.org/, 1st September 2018
14http://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN, 1st September 2018

28

www.openstreetmap.org
http://www.geonames.org
http://nominatim.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN


3.1 The Geographical Database OpenStreetMap (OSM)

it is incomplete and cannot adapt to future user needs. Second, terms need to be entered ex-
actly as defined on the list, so no natural language variation is possible. For example, while
“Pub in Heidelberg” returns objects with the tag “amenity=pub”, the search fails when one
simply types “Pub Heidelberg”. This search only returns objects that have the word “Pub” in
their name. Third, the list is limited to a small subset of tags, largely consisting of tags for
various buildings of public interest. Other, more abstract tags, such as “wheelchair=yes”, are
not covered. But such tags can be of utmost importance to every day users of OSM.

Fourth, the handwritten list offers no composition. For example, while it is possible to search
for restaurants, it is not possible to search for more specific restaurants, such as Italian res-
taurants. Such compositionality at large scale is impossible to achieve with a hand-written
list because enumerating all possible combinations would quickly lead to an exploding
number of entries and would require an unrealistic amount of time to collect. Exactly this
crucial shortcoming can be effectively addressed by employing machine learning to train a
statisticalmodel that acts as a semantic parser. Such a parser can learn to generalise and com-
positionality can be achievedwithout an exorbitant annotation effort. Assume the following
training instances of natural language expression and corresponding OSM are available:

Pub in Heidelberg & amenity=pub

smoking Pub in Heidelberg & amenity=pub, smoking=yes

Restaurant in Heidelberg & amenity=restaurant

Hotel in Heidelberg & tourism=hotel.

Listing 3.1: Possible training instances for a semantic parser.

From this, a semantic parser can induce that “smoking Restaurant in Heidelberg” should map
to “amenity=restaurant, smoking=yes” and “smoking Hotel in Heidelberg” should be conver-
ted to “tourism=hotel, smoking=yes”, even though these exact combinations haven’t been ob-
served. This drastically reduces the required annotation effort.

3.1.2. Query Language: Overpass

To find database objects that satisfy specific constraints, two APIs are available to search
the OSM databse. The main API of OSM is tailored to ease the editing of data. But the
Overpass API offers a comprehensive, programming-like language to filter objects from the
database that fulfil any tag criteria specified, including tag compositions. Furthermore, it
can take the location of objects into account via an area concept. It is also possible to run a
radius search around a specified OSM object. However, writing an Overpass query requires
understanding the underlying language and is thus not suitable for non-expert users. But
with the powerful features it offers, Overpass is a perfect fit as the basis for the Machine
Readable Language (MRL) of the question-answering task. In the following, we review the
key operators that the Overpass language offers and which we plan to use for our MRL:
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tag filtering. After specifying the database object type (node, way or relation), any number
of tags or keys may be specified. Each tag or key has to be surrounded by its own set of
square brackets. For example,

node["amenity"= "restaurant"]["website"];

retrieves nodes with the tag “amenity= restaurant” and ensures that the node has a key
named “website”.

union. Wrapping several tag filters in round brackets creates a union of the individually
retrieved objects. Thus,

(node["amenity"="restaurant"] ["website"];

node["amenity"="bar"]["website"];);

returns a set of both restaurants and bars with a “website” key. It is not always clear if a
restaurant is tagged as a node, way or relation. Thus, to find all restaurants, one should
formulate a union of all three database types:

(node["amenity"="restaurant"]; way["amenity"="restaurant"];

relation["amenity"="restaurant"];);

As a consequence, Overpass queries become quite cumbersome.

area restriction. Often, we want to apply tag filtering to a specific area only, rather than
searching the entire database. This can be done by first specifying an area and binding it to
a variable. The variable can then be called within the tag filter. The query

area["name"="Heidelberg"]->.searchArea;

node["amenity"="restaurant"](area.searchArea);

ensures that only areas called “Heidelberg” are searched for nodes fulfilling the listed re-
quirement.

radius search. It is possible to search for objects using tag filtering in a radius around some
reference point. First, a reference point has to be defined and saved to a variable. Then, the
operator “around” can be used to search in a specified radius around the reference point
for objects with certain tags. For example, to search for restaurants with a “website” key in
a radius of 5km around a street called “Kastellweg”, the following Overpass query can be
formulated:

30



3.1 The Geographical Database OpenStreetMap (OSM)

area["name"="Heidelberg"]["de:place"="city"]->.a;

(node(area.a)["name"="Kastellweg"];

way(area.a)["name"="Kastellweg"];

relation(area.a)["name"="Kastellweg"];)->.b;

(node(around.b:5000)["amenity"="restaurant"]["website"];

way(around.b:5000)["amenity"="restaurant"]["website"];

relation(around.b:5000)["amenity"="restaurant"]["website"];);

out body; >; out skel qt;

Listing 3.2: Example for an Overpass query that returns restaurants in the area “Heidelberg”
and which are within a 5km radius around a street called “Kastellweg”.

Listing 3.2 demonstrates how complex Overpass queries can quickly become. It contains
variables that need to be assigned and re-used correctly and has a stringent definition for
placing brackets as well as semi-colons to indicate the end of a command. The MRL for our
question-answering task should drastically simplify the queries so that semantic parsers can
more easily learn to produce valid parses.

Furthermore, executing anOverpass query returns all available information about OSM ob-
jects that satisfy the constraints outlined in the query. Consequently, using Overpass for the
question-answering task would mean displaying more information to the user than they
requested. For example, assume a user requests all restaurants in an area and the corres-
ponding website links. The correct Overpass query would return all restaurants with web-
site links, but each restaurant entry would be accompanied with all the other information
that is also available for that restaurant. The user would have to scan the returned data
for the information they actually desired, i.e. the website links, which would be tiresome
and time consuming. As an example, Figure 3.1 shows the first database entry found for the
query from Listing 3.2 in XML format. Thus, the aim of the newMRL is to simplifyOverpass
queries and to retrieve more fine-grained information than Overpass can.

The project Overpass TURBO also attempts to make the Overpass query language more ac-
cessible to users. It is a web interface that offers a text editor to enterOverpass queries which
can be executed. Returned database objects can be viewed either as an XML or JSON doc-
ument or on a world map with annotated pins. Similar to the hand-written list for Nomin-
atim, the Overpass TURBO 1web interface offers a wizard where a few key terms in natural
language are automatically expanded into a corresponding Overpass expression. The un-
derlying abbreviation list of the wizard is useful to save time typing Overpass queries in
some instances, but it still requires the use and knowledge of OSM tags and is thus also un-
suitable for non-expert users. Additionally, analogous to the compositionality issue of the
Nominatim list, this key word list is quickly exhausted and offers no options for complex,
compositional queries. Such queries have to be typed out fully in the Overpass language.
Lastly, the Overpass TURBO website offers the option to save Overpass queries. The collec-
ted log15 of these queries serves as the basis for the creation of our question-parse corpus.

15Thanks to Martin Raifer for freely sharing this resource and to the creator of theOverpassAPI, Roland Olbricht,
for pointing this author in the right direction.
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Figure 3.1.: First database entry returned for the Overpass query from Listing 3.2 in XML
format. If a user is only interested in the website address, they have to skim over
all tags for the database entry to find the relevant information.

3.2. Definition of a
Machine Readable Language (MRL)

The MRL for the question-answering task should fulfil a few requirements. First, it should
be easy to recover Overpass queries but they should be shortened and simplified. Second,
once an Overpass query is executed, the MRL should offer additional filtering operators to
extract more fine-grained information. Third, it should be possible to judge whether a parse
is valid under the defined MRL or not. Fourth and finally, it should be possible to tokenise
the MRL so that sequence-to-sequence methods can easily be applied.

We choose to define our MRL as a variable free language that consists of a pre-defined set
of operators. Some operators can take OSM tags or keys as values, others closely resemble
Overpass operators. Each operator can take a set of pre-defined other operators as its argu-
ments and the scope of an operator is delimited using brackets. Concretely, we define the
following operators:

• query. This operator indicates the start of a MRL parse. For the simplest parse, it is
required to take at least the nwr and qtype operators defined below.

• keyval.Thekeyval operator can take anyOSM tag as its argument. Several comma-
separated keyval operators ensure that the database objects fulfil all listed require-
ments. This easily converts to the Overpass tag filtering (see Section 3.1.2).

• nwr. The name nwr indicates the three data types of OSM, namely “node”, “way”
and “relation”. This operator exclusively takes keyval operators as its arguments.
There needs to be at least one such operator, but there may be arbitrarily many. As
explained in Section 3.1.2, it is never clear which data type a desired database object
has. Thus the nwr operator, when converted into Overpass language, automatically
copies its keyval arguments, once each for node, way and relation. These three are

32



3.2 Definition of a Machine Readable Language (MRL)

then grouped into a union so that all data types fulfilling the tag requirement are re-
turned. For example,

nwr(keyval(’amenity’,’restaurant’))

is automatically expanded to

(node["amenity"="restaurant"]; way["amenity"="restaurant"];

relation["amenity"="restaurant"];);.

• area. Similar to nwr, this operator takes at least one keyval as its argument. It dir-
ectly corresponds to the area concept of the Overpass API (see Section 3.1.2).

• around. In the case of a radius search, the around operator is needed. This directly
translates to the around operator of theOverpassAPI (see Section 3.1.2). The around

operator allows us to process fuzzy natural language terms such as “nearby”, “close”
or “within walking distance”. To do this, the around operator takes 3 further operators
to define the search correctly. First, a reference point needs to be defined. Second, the
objects of interest around the reference point. Third, the size of radius to be searched.
The operators for the former two are defined in the subsequent two paragraphs.

The radius size can be one of four pre-definedvariables, namelyWALKING_DIST=1km,
DIST _INTOWN=5km, DIST_OUTTOWN=20km and DIST_DAYTRIP=80km. Fuzzy nat-
ural language terms are mapped to these four types. Consider the questions “Where
are restaurants close to Heidelberg?” and “Where are airports close to Heidelberg?”. The two
questions only differ in the words “restaurant” and “airport”. However, different radii
are implied in the two questions via world knowledge: most people would be willing
to undertake a 80km trip to reach an airport, but this is typically not the case for a visit
to a restaurant. Minock and Mollevik (2013) have also previously investigated this
concept. Annotating this concept in the MRL parses via the radius operator, allows a
later semantic parser to learn to distinguish between these scenarios.

• center. This operator is an argument of around and can itself take the operators
area or nwr as arguments. The specified database object serves as the reference point
of a radius search.

• search. Similar to the center operator, the search operator can also optionally
take an area operator and must take a nwr operator. It defines which objects around
the reference point should be returned in a radius search.

• qtype. To be able to extract more fine-grained information from database entries
returned by anOverpass query, we need to be able to definewhich information should
be extracted. All specifications relevant to this are placed as arguments of the qtype

operator and are detailed in the following paragraphs.

• latlong. Returns the GPS coordinates of all database entries returned by an Over-
pass query.

• count. Returns the number of objects in the set of database objects returned by an
Overpass query.
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• findkey. Takes any OSM key as its argument (e.g. “website”). The corresponding
value (e.g. the concrete website link) is extracted from the database entries returned
by an Overpass query.

• least. Returns either true or false. True, if there are at least x number of objects in
the set of database objects returned by anOverpass query. x can be any positive integer
number and is supplied as the argument of the topx operator defined below.

• topx. This operator is required for the least operator. It can also be used in conjunc-
tionwith latlong and findkey. In that case it returns only the first x elements in the
set of database objects. Furthermore, it can be used as an argument of around where
it indicates that only the x closest elements to the reference point should be displayed.

• dist. The dist operator can calculate the distance between two database objects.
For ways and relations, the mean coordinate of all participating GPS coordinates is
calculated. As an argument, the operator can simply take a query that contains the
around operator. Then the distance between the object defined via center and the
object defined by search is returned. If the search operator returns several database
objects, the closest distance is returned.

Alternatively, the dist operator can take two separate, fully formed query operators,
both of which do not contain the around key word. The dist operator also takes a
further argument, namely the operator unit. If “km” is the argument of unit, then
the calculated distance is presented in kilometres. “mi” displays the distance in miles.
A further, optional argument for dist is the for operator. This operator takes either
“car” (e.g. “Is a car needed. . .”) or “walk” (e.g. “Is it possible to walk. . .”) as its argument.
In this case, the distance value is measured against the variable WALKING_DIST. For
“walk”, the reply is “yes” if the distance is below this value and “no” otherwise. For
“car” the answers are reversed.

• north / east / south / west. These four operators form another group that
helps tomap fuzzy natural language tomachine understandable concepts. It is used in
questions such as “Where are restaurants in the north of Heidelberg?”. These four cardinal
direction operators can wrap around any area operator combined with an nwr oper-
ator. It ensures that the elements returned by theOverpass query are further filtered to
verify that the remaining elements are in the specified cardinal direction of the area.

• nodup. This operator removes duplicates from a list of answers. This is for example
desired in a questions such as “Which cuisines are there in Heidelberg?”. Here, one does
not want to have a cuisine repeated as many types as there are restaurants with that
tag in the city, but rather a set of unique entries.

• *. The wildcard operator *, can be used instead of a value in a key-value pair. It in-
dicates that any value is acceptable. This directly maps to the wildcard principle that
Overpass offers (see Section 3.1.2). This is required to successfullymap certain inform-
ation needs to the particularities of the OSM database. For example, the correct MRL
parse for the question “How many historic sites can be found in Nantes”, should include
“keyval(’historic’,*)”. With the wildcard operator it is possible to search for
any historic place, be it a tower, castle etc.
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• and. The and operator may take two keyval operators as its argument. This is for
example used for questions such as “Where is the closest bank and butcher in Heidelberg?”.
In this case, the and operator is

and(keyval(’amenity’, ’bank’),keyval(’shop’,’butcher’))

and from this two Overpass queries are automatically generated. The first query con-
tains “keyval(’amenity’,’bank’)” and the second “keyval(’shop’,’but-

cher’)”. After the two answers are returned and post-processed, they are concaten-
ated with “and”. Furthermore, this operator can be used as an argument for find-

key to ensure that two pieces of information are retrieved. For example the correct
MRL parse for “Give me the name and website of restaurants in Heidelberg” would contain
“findkey(and (name,website))”.

• or. This operator models the “exclusive or” and is for example needed in a question
such as “Give me the closest bar or restaurant.”. In the resulting Overpass query, this is
first represented using a union (see Section 3.1.2). Once all elements are retrieved, a
post-processing step extracts the closest element in the set, be it a bar or a restaurant.

Using the presented operators, we can formulate theOverpass query from Listing 3.2 in the
condensed form of our MRL. Furthermore, we can extract more fine-grained information
via the tag qtype. The parse in Listing 3.3 retrieves the websites of restaurants in a radius
of 5km around the street Kastellweg in Heidelberg:

query(around(center(area(keyval(’name’,’Heidelberg’)),

nwr(keyval(’name’,’Kastellweg’))),

search(nwr(keyval(’amenity’,’restaurant’))),

maxdist(5000)),qtype(findkey(’website’)))

Listing 3.3: Example for aNLmaps parse that returns the websites of restaurants in a radius
of 5km around the street Kastellweg in Heidelberg.

With 173 characters, the parse in the newly definedMRL is significantly shorter compared to
the correspondingOverpass querywhich contains 352 characters. Yet a simple, deterministic
script can easily convert the relevant sections into fully formed Overpass queries. Further-
more, the additional operators, such as north, have been implemented alongsideOverpass.
Additionally, with the qtype operator, more fine-grained information can be extracted.

All possible allowed combinations of operators can be defined unambiguously in a Context-
Free Grammar (CFG). A condensed form of the CFG can be found in Appendix A. The CFG
can be used to ascertain the validity of any parse produced by a semantic parser. Before the
validity of a parse is checked, all OSM keys and values are replaced by the placeholders
“keyvariable” and “valuevariable”, respectively. This way, the CFG remains concise and keys
and values that are added at a later date do not require an update to the CFG.

By definition, the MRL is structured so that any parse can be presented as a tree. For an
example, see Figure 3.2. Taking a pre-order traversal of the tree, allows us to easily tokenise
a parse. Each node is annotated with a special marker (“@”), followed by the number of
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query
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name Heidelberg

search
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Figure 3.2.: Example of aNLmaps parse represented as a tree for the parse from Listing 3.3.

children (i.e. arguments) it has. The result is a linearised parse where individual tokens are
separated by awhitespace. This representation is introduced byAndreas et al. (2013) for the
GeoQuery corpus (Zelle and Mooney, 1996). With the conversion to individual tokens, the
question-answering task can be treated as a sequence-to-sequence problem. The linearised
parse from Listing 3.3 is with 168 non-whitespace tokens of similar length and can be found
in Listing 3.4:

query@2 around@3 center@2 area@1 keyval@2 name@0 Heidelberg@s nwr@1

keyval@2 name@0 Kastellweg@s search@1 nwr@1 keyval@2 amenity@0

restaurant@s maxdist@1 5000@0 qtype@1 findkey@1 website@s

Listing 3.4: Example for a NLmaps linearised parse that returns the websites of restaurants
in a radius of 5km around the street Kastellweg in Heidelberg.

The requirements we defined at the beginning of the section are all fulfilled. First, the MRL
wraps around Overpass and simplifies the Overpass language. Second, objects returned by
an Overpass query can be filtered further to extract more fine-grained information. Third,
the CFG offers the option to verify whether a parse is valid under theMRL. Fourth, with the
pre-order traversal it is possible to tokenise parses so that sequence-to-sequence methods
can be applied. To connect the newly defined MRL to the OSM database, we implement
corresponding scripts and extend theOverpass project accordingly. It is nowpossible to pass
a parse written in the new MRL to a script which executes the parse against the database
and returns an answer. With the MRL fully implemented, we now turn our attention to
collecting question-parse pairs.
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3.3. Corpus Creation: NLmaps

3.3.1. Question-Parse Pair Generation

The basis for our question-parse corpus, called NLmaps, is the log of saved Overpass quer-
ies from theOverpass TURBOwebsite (see Section 3.1.2). Each Overpass query is manually
converted to an equivalent parse in the NLmaps MRL. Additionally a fitting qtype oper-
ator is defined to capture more fine-grained information. In some cases, users of Overpass
TURBO simply executed their query for the map cut-out that they had currently on their
screen. The information of the map cut-out was not saved and thus another area has to
be selected. In such cases, three separate queries are created: one each for the city areas of
Heidelberg, Edinburgh and Paris. Based on the resulting final query, an appropriate English
question is formulated.

To ensure that the natural language interface can handle important OSM tags, we addition-
ally consulted the list of most common tags, as defined in the OSM Wiki.16 Based on this
list, further question-parse pairs where addedmanually. In total, 2,380 question-parse pairs
were assembled by this author. Together they constitute theNLmaps corpus. A few example
questions can be found in Listing 3.5.

What is the closest bank with ATMs from the Palace of Holyroodhouse in

Edinburgh?

Where are the closest bank and the closest pharmacy from the Rue

Lauriston in Paris?

Give me the name and location of all tourist related activities that can

be accessed with a wheelchair in Heidelberg!

Where is the closest Indian or Asian restaurant from the cinema Le

Cinaxe in Paris?

What are the names of cinemas that are within walking distance from High

Street in Edinburgh?

How many schools in Edinburgh have a bus stop less than 200 meters away?

What is the name of the closest museum or art centre from Notre Dame in

Paris?

How many historic sites are in the east of Nantes?

Where is the closest restaurant or bar from the Hawes Pier in Edinburgh?

Are there any caves in Osterode and if so how many?

Listing 3.5: Example questions from the NLmaps corpus.

3.3.2. Comparison to other Question-Answer Corpora

Corpora for different question-answering tasks have been created in recent years. A stand-
ard corpus in semantic parsing is the GeoQuery corpus (Zelle and Mooney, 1996). It con-
tains questions pertaining to the geography of the United States and the topic is thus loosely
16http://wiki.openstreetmap.org/wiki/Map_Features, 1st September 2018
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NLmaps Geoquery Free917
# sent. 2,380 880 917
tokens 25,906 6,660 6,785
types 1,002 296 2,038
avg. sent. length 10.88 7.57 7.4
avg. NT per sent. 21 16 16
avg. types per sent. 0.42 0.34 2.22
avg. singleton per sent. 0.1 0.1 1.52
FRES 82.18 86.61 83.77

Table 3.2.: Corpus statistics of the question-answering corpora NLmaps, Geoquery and
Free917. NT stands for non-terminal and FRES is the Flesch Reading Ease Score
(Flesch, 1974).

related to the topic ofNLmaps. However, the scope ofGeoQuery is limited to a small number
of landmarks in the United States and a small set of possible features that can be queried,
such as the height of prominent mountains or the population density of states. For many
questions it is unrealistic that a human user would pose them in praxis, e.g. “How many
states border the state that borders the most states?”. Its creation wasmotivated to test a semantic
parser’s capability rather than to emulate questions human users might ask.

A further corpus is the Free917 corpus (Cai and Yates, 2013), which contains questions that
can be answered with the open-domain database Freebase. The corpus contains questions
from 81 different domains and were formulated by native speakers. Questions are often
simple factoid question and typically contain named entities, for example “when was the
iphone introduced”. We compare our NLmaps corpus to both of these corpora.

Other corpora do not provide question-parse pairs and supply question-answer pairs in-
stead, such as the corpora Webquestions (Berant et al., 2013), WikiQA (Yang et al., 2015),
Factoid Questions (Iyyer et al., 2014), inter alia. This introduces the added difficult of hav-
ing to find parses that execute to the correct answers which can cause the quality of the
parser to suffer (Wang et al., 2015; Pasupat and Liang, 2015). Other corpora for question-
answering tasks are TownInfo (Williams and Young, 2007; Mairesse et al., 2009), Regexp824
(Kushman and Barzilay, 2013), WikiTableQuestions (Pasupat and Liang, 2015), inter alia.
Corpora published after NLmaps include TriviaQA (Joshi et al., 2017), SearchQA (Dunn
et al., 2017b), inter alia.

Corpus statistics comparing the corpora NLmaps, Geoquery and Free917, normalised by
the number of sentences, can be found in Figure 3.2. With 2,380 question-parse pairs, the
NLmaps corpus is twice the size of the other two corpora. NLmaps has a higher type count
than Geoquery by a factor of 3, but has only half the amount compared to Free917. This
suggests thatNLmaps has a higher lexical variety compared toGeoquery but less compared
to Free917. This is unsurprising asNLmaps is restricted to the geographical domainwhereas
the Free917 database covers more domains and contains many named entities.

In terms of syntactic complexity, theNLmaps corpus ismore complex than the other two cor-
pora. First, a question from theNLmaps corpus contains on average 3morewords. Second, to
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Figure 3.3.: Histogram of the lengths of correct parses in the NLmaps corpus.

validate this observation, we parse the natural language questions with the Stanford Parser
(Klein and Manning, 2003) and count the number of non-terminal nodes in a sentence.
It requires on average 5 more non-terminals to parse a NLmaps sentence compared to the
other two corpora. This confirms what the average sentence length suggested, thatNLmaps
is syntactically more complex.

With an average of 2.22 new words every sentence, Free917 contains the highest number
of types per sentence. This can be explained by the large number of named entities, which
also cause to the highest number of singletons per sentence. Finally, we report the Flesch
Reading Ease Score (FRES) (Flesch, 1974). It is a score that measures the difficulty of a
text and was invented to identify suitably difficult reading material for students learning to
read. The lower the score, themore difficult the given text.NLmaps receives the lowest score
and can thus be considered more complex than the other two corpora with regards to this
metric.

On the MRL side, we report a histogram of the length of the correct parse for NLmaps (see
Figure 3.3). The vast majority of questions require a parse of at least length 10. Most parses
contain 10 to 20 tokens. Longer parses gradually become more rare, ending with a set of
5 parses of length 36. With an average of 15.5 tokens per parse, parses are longer than the
natural language questions. This indicates that the questions are indeed complex and elab-
orate database operations are required to answer them. Overall, the NLmaps corpus offers
a challenging question-answering task for semantic parsers while also considering the end
goal of building a natural language interface to OSM.

3.4. Corpus Extension: NLmaps v2

To improve the coverage of the natural language interface, we consider two extensions to
the NLmaps corpus. First, we modify the natural language questions of NLmaps to more
closely resemble typical search engine queries. Second, we use the special list of terms17
from Nominatim to automatically generate further question-parse pairs. The list contains
17http://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN, 19th April 2018
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English phrases and corresponding OSM tags. With our automatic extension, we can in-
crease both the number of covered OSM tags and introduce a larger variety of named entit-
ies. Both extensions are concatenated with the original corpus, leading to NLmaps v2 with
28,609 question-parse pairs. Additionally, we provide a set of question-parse pairs were all
named entities are masked by placeholder symbols. This enables the option of handling the
problem of named entities separately from the semantic parsing.

3.4.1. Search Engine Style Extension

First tests with a prototype of the natural language user interface showed that human users
tend to use short, search engine style questions where all non-essential words are omitted.
This is a contrast to the longer, grammatically correct English questions found in theNLmaps
corpus. Thus, we modify the original set of training questions to more closely resemble
such search engine style queries. Furthermore, phrases indicating the answer type were
removed and the answer type on theMRL side is defaulted to latlong. Next, the resulting
corpus was duplicated and the short phrases “where”, “how many”, “is there” and “name”
where prepended to indicate the answer types “latlong”, “count”, “least(topx(1))”
and “findkey(name)”, respectively.Modified counterparts to the example questions from
Listing 3.5, can be seen in Listing 3.6:

closest bank with ATM’s from Palace of Holyroodhouse in Edinburgh

closest bank and the closest pharmacy from the Rue Lauriston in Paris

tourist related activities wheelchair in Heidelberg

closest Indian or Asian restaurant from the cinema Le Cinaxe in Paris

cinemas within walking distance from High Street in Edinburgh

schools in Edinburgh bus stop less than 200 meters away

closest museum or art centre from Notre Dame in Paris

historic sites in the east of Nantes

closest restaurant or bar from Hawes Pier in Edinburgh

cave in Osterode

Listing 3.6: Modified example questions from theNLmaps corpus to resemble search engine
style queries.

3.4.2. Automatic Extension

A list18 of special phrases with English expressions and corresponding OSM tags has been
compiled forNominatim. For example it links “Cycle Renting” to “amenity=bicycle_rental” or
“Petrol Stations” to “amenity=fuel”. The table also includes both singular and plural natural
language expressions. Furthermore, it offers each expression in conjunction with “in” and
“near”,where the followingword is expected to be an appropriate area name.An example of
all table entries for the first tag, “aeroway=aerodrome”, can be found in Table 3.3. In total, the
list contains 2,830 entries which reduce to 421 unique tags. We use this list to automatically
18http://wiki.openstreetmap.org/wiki/Nominatim/Special_Phrases/EN, 1st September 2018
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# Word Key Value Operator Plural
1 Airport aeroway aerodrome - N
2 Airports aeroway aerodrome - Y
3 Airport in aeroway aerodrome in N
4 Airports in aeroway aerodrome in Y
5 Airport near aeroway aerodrome near N
6 Airports near aeroway aerodrome near Y

Table 3.3.: All entries in the Nominatim list for the tag “aeroway=aerodrome”.

generate new question-parse pairs. This increases the number of OSM tags available in the
natural language interface. Additionally, it introduces more named entities, both in terms
of new area names and new points of interests.

Depending on the columns Operator and Plural in the Nominatim table (see also Table 3.3),
different NLmaps MRL parses and natural language skeletons can be automatically filled
with the values from the columns titledWord, Key and Value. In the following, we introduce
the different possible structures using the airport example from Table 3.3. Each structure
contains several placeholders. On both English andMRL side, every structure has the place-
holder $LOCATION for which any area name can be substituted. Database queries that are
not restricted to an area would return aworld-wide list of objects whichwould be very large
formost tags. Thus rows #1 and #2 fromTable 3.3 are not used for the automatic extension.

With the entries of rows # 3 and #4 of Table 3.3, a basic parse can be built. Next to the
$LOCATION placeholder for an area name, there is the additional placeholder $QTYPE. It
expects arguments for the qtype operator on the MRL side and an appropriate English
phrase on the natural language side. Listing 3.7 shows the skeletons constructed for both
question and parse from rows # 3 and #4, respectively:

$QTYPE Airport in $LOCATION

query(area(keyval(’name’,’$LOCATION’)),

nwr(keyval(’aeroway’,’aerodrome’)),qtype($QTYPE))

$QTYPE Airports in $LOCATION

query(area(keyval(’name’,’$LOCATION’)),

nwr(keyval(’aeroway’,’aerodrome’)),qtype($QTYPE))

Listing 3.7: Automatically generated English question andMRL parse with placeholders for
rows #3 and #4 of Table 3.3.

Employing row #6 from Table 3.3 we can generate two separate question-parse pairs. The
first structure assumes that the objects of interest can be found near an area. The second
structure is more complex and assumes that the objects of interests should be found around
a specific point of interest in an area, leading to the placeholder $POI. On both MRL and
natural language side, the $POI placeholder is to be filled with a named entity. The $LOC-

ATION and $QTYPE placeholders are present in both cases. For both structures, we require
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the around operator and a corresponding radius size. The radius size has a placeholder
named $DIST. The two structures built from row #6 can be found in Listing 3.8:

$QTYPE Airports near $LOCATION $DIST

query(around(center(nwr(keyval(’name’,’$LOCATION’))),

search(nwr(keyval(’aeroway’,’aerodrome’))),

maxdist($DIST)),qtype($QTYPE))

$QTYPE Airports near $POI in $LOCATION $DIST

query(around(center(area(keyval(’name’,’$LOCATION’)),

nwr(keyval(’name’,’$POI’))),

search(nwr(keyval(’aeroway’,’aerodrome’))),

maxdist($DIST)),qtype($QTYPE))

Listing 3.8: Automatically generated English questions and correspondingMRLparseswith
placeholders for row #6 of Table 3.3.

Finally, we use row #5 fromTable 3.3 to generate another two question-parse pair structures.
Unlike the plural on the natural language side in row #6, the singular in row #5 implies that
only the closest object with the correct tag should be returned. For the first structure, the
closest object to the $LOCATION placeholder should be returned and for the second struc-
ture it should be the closest object to the $POI placeholder. Analogously to the structures
for row #6, the placeholders $QTYPE and $DIST are also present. The two structure built
from row #5 can be found in Listing 3.9:

$QTYPE closest Airport from $LOCATION $DIST

query(around(center(nwr(keyval(’name’,’$LOCATION’))),

search(nwr(keyval(’aeroway’,’aerodrome’))),

maxdist($DIST),topx(1)),qtype($QTYPE))

$QTYPE closest Airport from $POI in $LOCATION $DIST

query(around(center(area(keyval(’name’,’$LOCATION’)),

nwr(keyval(’name’,’$POI’))),

search(nwr(keyval(’aeroway’,’aerodrome’))),

maxdist($DIST),topx(1)),qtype($QTYPE))

Listing 3.9: Automatically generated English questions and correspondingMRLparseswith
placeholders for row #5 of Table 3.3.

Once the entireNominatim list is converted into this set of structures, the placeholders need
to be filled. Area names for the $LOCATION placeholder are sampled uniformly from a list
of large cities of Germany, France and the United Kingdom. For skeletons containing $POI

placeholders, city-specific lists are created fromwhich we also sample uniformly. Each city-
specific list contains the values from all objects with a “name” key for the specific city. The
sample is drawn from the city-specific list that corresponds to the previously sampled city.

The qtype operator is uniformly sampled from the set {count, latlong, least(topx(

1)),findkey($KEY)}. In the case offindkey($KEY), the placeholder$KEY is filledwith
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NLmaps NLmaps v2
# sent. 2,380 28,609
tokens 25,906 202,088
types 1,002 8,710
avg. sent. length 10.88 7.06
avg. NT per sent. 21 16.63
avg. types per sent. 0.42 0.3
avg. singleton per sent. 0.1 0.2

Table 3.4.: Corpus statistics of the question-answering corporaNLmaps andNLmaps v2. NT
is short for non-terminal.

a key that is sampled from the list of keys of the corresponding object. Such a list is automat-
ically created for each object via a database query that returned all key names for the object
in question. On the natural language side the following terms took the place of $QTYPE,
respectively: How many, Where, Is there and $KEY.

For the placeholder $DIST, we sample uniformly from the set {WALKING_DIST, DIST_IN-

TOWN, DIST_OUTTOWN}. DAYTRIP_DIST is omitted from this set because for many com-
mon tags the resulting answer set would be much too large for this radius of 80 kilometres.
Unfortunately, generating gold answers showed that formany parses with DIST_OUTTOWN,
the resulting answer set is also too large, leading to an out of memory error during execu-
tion. To solve this problem, instances of DIST_OUTTOWN are converted to DIST_INTOWN.
On the natural language side, DIST_INTOWN is assumed to be the default type if there is
no explicit marker for another distance. If WALKING_DIST is chosen, then the phrase “in
walking distance” appears in the English question.

The sampling process is repeated twice and thus there are two occurrences of each entry
with varying elements in the placeholder positions. Next to the set of question-parse pairs
with filled in placeholders, we also maintain an identically shuffled set where the place-
holders $POI and $LOCATION are still present. Using that version, it is possible to treat
the recognition of named entities and the semantic parsing of a sentence as two separate
problems. Such a setup could lead to an overall task improvement and we investigate this
in Section 4.3 of the next chapter. The $POI and $LOCATION masking does not exists for
the remainder of the corpus. But themasking can easily be created by automatically extract-
ing the values in the correct positions on the MRL side. Once the correct phrase has been
retrieved, the same phrase can be masked on the English side as well.

3.4.3. Comparison to NLmaps

Figure 3.4 shows the corpus statistics of the first and the second version of the NLmaps
corpus. With 28,609 question-parse pairs, NLmaps v2 is an order of magnitude larger than
the original version. The vocabulary size of the new corpus is nearly 9 times larger. How-
ever, due to the nature of the extension, first simplifying the English questions and second
automatically creating question-parse pairs from the simpler structures on the Nominatim
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list, it is not surprising that the average sentence length, the average non-terminal per sen-
tence and the types per sentence are lower in NLmaps v2 compared to the first version. But
because NLmaps v2 contains all instances from the original NLmaps corpus, we know that
there are still complex questions in the corpus that are challenging. The additional questions
serve to introduce more natural language variability and more OSM tags. The increase of
average singletons can be explained by the named entities introduced with the automatic
extension.

In Section 4.3.3 of the next chapter we show that training a parser with the training set of
NLmaps v2 leads to better performance on the test set of NLmaps compared to a parser
trained solely on the training data of NLmaps. This confirms that the automatic nature of
the extension is viable.

Conclusion

TheOpenStreetMap (OSM) database is a valuable and freely available geographic resource.
Currently available tools to search the database that can be operated by non-expert users,
are based on string-matching techniques and cannot be used to extract database objects
with more complex specifications from the database. Tools that can do this, require expert
knowledge of the OSMdatabase and its query languageOverpass. We aim to build a natural
language interface for non-expert users where natural language questions are transformed
into parses that can be executed against the database.

In a first step,we set up an appropriate question-answering task for the interface.Wedefined
a new MRL suitable for the task and which wraps around the already existing Overpass
language. The new MRL vastly simplifies the Overpass language, which required the cor-
rect use of variables and bracket structures. Additionally, the MRL can operate on returned
database objects to return more fine-grained information than the Overpass language can.
Lastly, we connected the resulting MRLwith the OSM database so that a parse in the newly
defined MRL can be executed against the database with a simple script call.

With the MRL defined, we collected question-parse pairs for a corpus, called NLmaps. The
collection is based on logs ofOverpass queries from thewebsiteOverpass TURBO. The quer-
ies were converted and extended into NLmaps parses and appropriate English questions
were added. Furthermore, we made sure to include the most common OSM tags. We com-
pared the resulting corpus of 2,380 question-parse pairs to two other corpora, Geoquery
and Free917, and were able to show that NLmaps corpus offers a more challenging task.

Two separate extensions allowed us to create further question-parse pairs, resulting in the
corpus NLmaps v2 which totals 28,609 question-parse pairs. The first extension modified
questions of the original corpus to more closely resemble typical search engine queries,
where any non-essential words are omitted. The second extension utilises a freely available
list that matches common natural language expressions to OSM tags and automatically ex-
tends this list into questions and corresponding parses. With the question-answering task
defined and appropriate data collected, we now turn in a second step to building semantic
parsers which learn a mapping from question to parse.
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Semantic Parsers

For a natural language interface to OSM, we require a semantic parser that can map
natural language questions to parses, which in turn can be executed against the
database to obtain an answer. The semantic parser can be trained using either
version of theNLmaps corpus described in the previous chapter. With a semantic

parser, we can formulate a complete pipeline for the question-answering task, leading from
a natural language question as input to the answer that can be presented to the user. A visual
overview of the complete pipeline can be found in Figure 4.1. This pipeline process can be
connected to a graphical user interface, which allows us to present a first, fully functional
natural language interface to OSM.

We treat semantic parsing as a sequence-to-sequence problem where the input is a natural
language string that is transformed into a corresponding parse. The NLmaps MRL is spe-
cifically designed so that a pre-order traversal of its underlying tree structure can transform
the parse into a linearised structure with individual tokens. These tokens can be seen as
words in theNLmapsMRL, which allows us to view semantic parsing as a machine transla-
tion taskwhere we learn to translate from a natural language into aMRL. This approach has
been considered previously byWong andMooney (2006) and Andreas et al. (2013). In An-
dreas et al. (2013), the phrase-based SMT frameworkMoses (Koehn et al., 2007) is modified
for the corporaGeoquery (Zelle andMooney, 1996) andATIS (Dahl et al., 1995), achieving
state-of-the-art results for Geoquery at the time. Similarly, we modify and extend the hier-
archical phrase-based SMT framework Cdec (Dyer et al., 2010) for theNLmaps corpus. Our
best model can achieve an F1 score of 77.3% on the NLmaps test set.

With a first successful semantic parser available, we next turn our attention to creating a
web-based user interface to provide a platform for users to query the OSM database using
natural language. We offer several extensions to improve user friendliness. First, text-based
answers are linked to corresponding markers on an interactive map. Second, we supply
several options for area detection to restrict the search to areas of interest. Third, we offer
Nominatim19 as a back-off system should our semantic parser fail. Fourth, we further extend
our semantic parsing model with two additional components and report empirical results.
Fifth and lastly, we give users the opportunity to submit feedback once a question has been
processed. To the best of our knowledge, this is the first natural language interface to OSM
19http://wiki.openstreetmap.org/wiki/Nominatim, 1st September 2018
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Figure 4.1.: Pipeline for mapping a natural language question to an answer. The natural lan-
guage question is transformed into a parse in theNLmapsMRLusing a semantic
parser. The parse is converted to appropriate Overpass queries which are ex-
ecuted against the database. The returned set of database objects, which may be
represented in XML format, are then processed to obtain the correct answer.

where no knowledge about OSM tags is required, yet it is possible to run searches that go
beyond string matching.

Next, we investigate a different framework for semantic parsing. Neural networks have
demonstrated often superior performance to linear models in recent years. They have suc-
cessfully been employed for semantic parsing, using both question-parse pairs (Jia and Li-
ang, 2016; Dong and Lapata, 2016) and question-answer pairs (Neelakantan et al. (2017);
Liang et al. (2017); Mou et al. (2017); Guu et al. (2017), inter alia). We show that the RNN-
based sequence-to-sequence framework Nematus (Sennrich et al., 2017), even out-of-the-
box, can outperform the carefully extended Cdecmodels, this time both trained and tested
on NLmaps v2. Extending the Nematus model by handling named entity recognition sep-
arately, we can further improve the performance of our semantic parsing models on the
NLmaps v2 corpus. Our final semantic parsing model can achieve a F1 score of over 90% on
the test set ofNLmaps v2. Finally, we offer an error analysis to better understand which type
of errors the different semantic parsing models make.

Finally, we validate the automatic extension, which constitutes parts of the NLmaps v2 cor-
pus, by showing that a model trained on NLmaps v2 training data performs better on the
NLmaps v1 test set than a parser trained only with NLmaps v1 training data. In accordance,
the experiment also shows that a parser trained onNLmaps v1 training data performs badly
on the NLmaps v2 test set because the NLmaps v1 corpus lacks many OSM tags introduced
by the automatic extension.
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The main contributions of this chapter are as follows:

• Extension of the hierarchical-phrase basedmachine translation frameworkCdec (Dyer
et al., 2010) to suit semantic parsing for linearisable MRL parses.

• Empirical results using the modified Cdec framework for the corpora NLmaps and
NLmaps v2.

• Design of a natural language web interface for OSM and connecting it to a semantic
parsing model.

• Further extensions to the semantic parsing pipeline for a better user experience when
using the web interface.

• Employing theRNN-based sequence-to-sequence frameworkNematus. (Sennrich et al.,
2017) on NLmaps and NLmaps v2.

• Training a Named Entity Recognition (NER) model using Nematus to handle named
entities separately from semantic parsing.

• Error analysis of the models trained on NLmaps v2.

• Empirical validation of the automatic corpus extension.

The structure of this chapter is as follows: Modifications to the hierarchical phrase-based
machine translation system Cdec (Dyer et al., 2010) and experiments using the NLmaps
corpus can be found in Section 4.1. Section 4.2 presents the natural language web interface
to OSM with several extensions that aim to improve user experience. Lastly, Section 4.3
presents results on theNLmaps v2 corpus for both Cdec and the neural network framework
Nematus (Sennrich et al., 2017). It also provides an error analysis of theNLmaps v2models
and an empirical validation of the automatic corpus extension.

The work presented in this chapter has in part been previously published in peer-reviewed
publications. Section 4.1 has been published in Haas and Riezler (2016) and Section 4.2
closely follows Lawrence and Riezler (2016). Parts of Section 4.3 appear in Lawrence and
Riezler (2018).

4.1. Linear Model:
Phrase-Based Machine Translation

Wemodify the hierarchical phrase-based SMT framework Cdec (Dyer et al., 2010) (see Sec-
tion 2.3) and treat semantic parsing as a translation taskwherewe translate fromnatural lan-
guage questions to parses in theNLmapsMRL. Prior to this, we apply a few pre-processing
steps. First, parses are linearised so that splitting the linearised parse at white spaces leads
to individual tokens (see Chapter 3.2), e.g.

query(area(keyval(’name’,’Paris’)),nwr(keyval(’tourism’,

’hotel’),keyval(’wheelchair’, ’yes’)),findkey(’name))
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is transformed into the individual tokens

query@3 area@1 keyval@2 name@0 Paris@s nwr@2 keyval@2

tourism@0 hotel@s keyval@2 wheelchair@0 yes@s findkey@1 name@0.

Second, the natural language questions are pre-processed. All words are lower-cased and
tokenised using a set of regular expressions where a whitespace is inserted before the char-
acters {?, !; } in all instances and before {.} if the fullstop occurs at the end of a sentence.
Lastly, the individual words are stemmed using the NLTK toolkit (Bird et al., 2009), which
ensures that inflected word forms all map to the same stem.

4.1.1. Modifications for Semantic Parsing

With both natural language andMRL sides split into individual tokens, we can employ any
machine translation framework to learn how to translate natural language questions into
parses of theNLmapsMRL. First, we use the alignment tool GIZA++ (Och and Ney, 2003)
on the training data to generate word alignments for both translation directions. The align-
ments from both translation directions can be combined in various heuristic ways (Koehn,
2010, Chapter 4.5.3). Preliminary experiments showed that using the intersect heuristic
leads to the best results. The intersect heuristic only keeps an alignment point if it ap-
pears in both translation directions, which ensures that only the most reliable points are
kept. Next, a target-side 5-gram language model is trained using SRILM (Stolcke, 2002).
The alignments are given to Cdec to generate grammar rules. Cdec’s grammar extractor
standardly uses 12 dense features and extracts SCFGs for test and development sets. The
various features are combined in a log-linear model (see Equation 2.17 in Section 2.3) and
they are weighted by a weight vector w, which can be tuned in a discriminative setup. For
the setup with the standard 12 dense features, we employ the tuning algorithmMert (Och,
2003).

Given an input question, Cdec’s decoder can return an k-best list of parses ordered from
most to least probable parse. However, some linearised parses do not form valid trees and
are thus not valid under the NLmaps MRL. Thus, the k-best list is searched for the first,
highest ranking parse that is a valid tree. Preliminary experiments with the size of the k-
best list showed that a size of k = 100 offers a good trade-off between speed and perform-
ance. Larger lists rarely produce any further valid parses while increasing the time spent
fruitlessly searching.

Once a valid parse is found, it is converted into the original structure of the NLmaps MRL
and executed against the OSM database. An answer is considered correct if it is identical
to the gold answer. Given the percentage of correct answers in a test set, we can measure
the recall of a model. The percentage of correct answers out of all non-empty answers in
the test set, defines the precision of a model. Overall, a model is evaluated by the F1 score
which calculates the harmonic mean between recall and precision, i.e. 2 .0 · precision ·
recall/(precision+ recall).

The described setup allows us to build a first semantic parser using Cdec. However, we
introduce three extensions to this baseline model to further tailor the setup for semantic
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parsing on the NLmaps corpus. First, the 12 standard dense features can be extended with
sparse features. In addition to the dense features, we also extract rule shapes, identifiers
and bigrams from the source and target sentence (Simianer et al., 2012). Using sparse fea-
tures vastly increases the number of features in the log-linear model and consequently the
number of parameters in w that need to be tuned. Mert is not able to handle such a large
number of features. Thus, we use the tuning algorithm Mira (Crammer and Singer, 2003)
in conjunction with sparse features. Models with this feature are marked with +sparse.

Named entities that appear in the natural language question, need to be slotted verbatim
into the correct position in the parse. While named entities seen in the training corpus can
be learnt as a translation rule, this is not possible for previously unseen named entities. This
inhibits the parser’s possibility to generalise to unseen named entities. Our second extension
addresses this problem. Conveniently, Cdec offers the option to pass through words for
which it cannot find a translation rule. However, due to the linearisation, named entities
on the MRL side have an additional suffix, consisting of the marker “@” and a number
which indicates the amount of children of the current node. Named entities that are passed
through from the natural language question would be missing such a suffix. Due to the
definition of theNLmapsMRL, we know that named entities can only appear as leaves and
as the last argument of their parent node. This means they will always require the suffix
“@s”. Thus, the suffix “@s” is appended to anyword that is passed through from the natural
language side. Models with this feature are marked with +pass.

During the traversal of the k-best list, we search for a parse that is a valid tree. But a valid
tree does not automatically guarantee a valid parse under the NLmaps MRL. As a third
extension,we employ theCFG introduced in Section 3.2 to run this additional check.Models
with this feature are marked with +cfg.

4.1.2. Empirical Results

Using the first version of NLmaps, we randomly split the corpus into a training set of 1,500
question-parse pairs and a test set of 880 question-parse pairs. The training data is also used
as the development data to tune the weights w. In all setups we used intersection as
the alignment combination heuristic and stemming on the natural language side. Row #1 of
Table 4.1 gives the results for the standard Cdecmodel using 12 dense feature andMert to
tune w. Due to Mert’s optimiser instability (Clark et al., 2011), experimental results using
Mert are reported averaged over 3 independent runs. With a recall of 62.42%, slightly less
than two-thirds of the questions in the test set are answered correctly. The precision of the
model indicates that if an answer is returned, we can be about 84% confident that it is the
correct one.

Row # 2 of Table 4.1 presents the result for the setup using sparse features and the tuning
algorithm Mira. It can outperform the previous setup by about 2 percentage points in F1
score which is significant at p < 0.05 using an approximate randomisation significance test
(Noreen, 1989). Row # 3 presents the results for the model that uses dense features and the
extensions +cfg and +pass. It can significantly outperform the Cdec base model, but not
the model with additional sparse features. However, combining the sparse features with
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Recall Precision F1 ∆F1
1 Cdec 62.42 84.69 71.87
2 Cdec +sparse 65.80 84.40 73.951 +2.08
3 Cdec +pass +cfg 65.19 89.45 75.411 +3.54
4 Cdec +sparse +pass +cfg 68.3 89.04 77.301−3 +5.43

Table 4.1.: F1 scores on theNLmaps test set for various linear semantic parser settings. Tun-
ing was carried out on the training set. In the case of Mert tuning, the results are
averaged over 3 independent runs due to the randomnessMert introduces. Best
results are indicated in bold face. Statistical significance in terms of F1 of system
differences at p < 0.05 are indicated by experiment number in superscript.

the other two extensions (see Row # 4) leads to the overall highest F1 score and this model
significantly outperforms all others.

Using Cdec with all introduced extensions and the first version of the NLmaps corpus, we
are able to create a semantic parser which can answer more than two-thirds of the test ques-
tions correctly and offers a confidence of about 89% that a non-empty answer is correct.
This is a promising first step for a natural language interface to OSM. Next, we design a
user interface that sends user input to the semantic parser and then presents the returned
answer.

4.2. Extensions for a Web Interface

For a fully functional natural language interface toOSM,we require a user interface through
which users can interact with the semantic parser. We build a web interface, using HTML,
CSS and Javascript. The CSS is supplemented by Bootstrap 3.020 for the dynamic adjusting
of the user interface for various screen sizes, including mobile devices. We employ Python-
basedCGI programming for scripts that transfer questions to the back-end semantic parsing
system and await an answer. A screenshot of the interface with an example question and its
corresponding answer, can be found in Figure 4.2.

The interface should be intuitive and convenient to use for everyday users. To this end, we
first introduce additional components that will supplement the semantic parser introduced
in Section 4.1. Second,we present experiments for two new semantic parsers thatweremod-
ified specifically for the use in conjunctionwith the interface. Finally, we describe a form that
users can fill out to provide feedback once a question is answered. The resulting interface
can be reached via http://nlmaps.cl.uni-heidelberg.de/ (1st September 2018).

4.2.1. Additional Components

Assisted Area Recognition. The best performing Cdec parsing system from Section 4.1
passes unknownwords through, so that named entities, such as town names, can be parsed
20http://getbootstrap.com/, 1st September 2018
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correctly despite never having been seen during training. This feature is of vital importance
for the web interface because OSM is a global database and it would be impossible to have
all named entities in a training set. However, many names occur more than once on the
global map and this can lead to ambiguities. If area names are not disambiguated, then the
search for OSM objects will be performed in all areas with the corresponding name. This is
undesired in the majority of use cases where users are typically only interested in searching
in one area, rather than all areas with a certain name. We offer three different solutions for
this problem and users can easily avail themselves of the solution that is most convenient
to them.

As a first option, we let Nominatim handle the disambiguation. Nominatim is a promising
tool for this problem because it specialises in ranking geographical places based on various
features when given an input string (see Section 3.1.1). Once a question is entered, we first
identify area names in the question. This is done by a simple but effective string-matching
approach. A word is marked as an area if its preceded by one of the following words: “in”,
“around” or “vicinity of ”. Area names identified during this step, are sent to Nominatim,
which returns a ranked list of OSM objects. For example, Nominatim ranks an area with a
city tag higher than an area with a village tag of the same name. Given the ranked list, the
highest ranking area is selected as the target area for the question and this area’s unique
identifier is automatically inserted as a child of the area operator in the later parse.

However, a user might not be interested in the highest ranked area. If “Heidelberg” is sent to
Nominatim, the highest ranked result refers to the city of that name inGermany. This is a con-
flict if the user is instead interested in a village named “Heidelberg” located in Pennsylvania,
USA. Thus, as a second option, we offer an alternative input text area where users can spe-
cifically enter a more fine-grained area name. If a user enters “Heidelberg, Pennsylvania” into
this box, then this information is given to Nominatim. With the additionally provided in-
formation, Nominatim has no problem returning the desired area as the highest-ranked
one.

Finally, we offer a third option which is particularly convenient for the user if they want
to search the area of the city that they are currently residing in. In this case, the user can
simply click a button labelled “Use my location”. After giving their explicit permission to be
located, the Geolocation API21 is called to determine the user’s GPS location. Sending the
GPS location to Nominatim’s reverse geocoding component, we can retrieve all OSM areas
the user is in. The returned areas are annotated with a number that indicates the type of
area and thus the city-level area can be selected.

Answer Presentation. Once a question has been parsed and themost likely parse has been
executed against the database, the text-based answer is handed back to the website via a
CGI script. This answer is returned in a box below the question input box. In addition to the
text-based answer, we also want to provide the user with an interactive map. For this, the
NLmaps extension to the Overpass API is further modified. During the database execution
for the text-based answer, we additionally save eachOSMobject that participates in forming
the text-based answer. For OSM nodes, we record the associated GPS coordinate. For ways
21http://www.w3schools.com/html/html5_geolocation.asp, 1st September 2018
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Figure 4.2.: A screenshot of theNLmapsweb interface.Once a question has beenprocessed, a
text-based answer is presented in a box. If the answer is a list, then the individual
elements contain hyperlinks. Clicking a link will open up information boxes on
the corresponding map markers.

and relations, the centre coordinate is calculated based on the participating nodes and their
coordinates. For each object, amarker is placed on the interactivemap at the recorded or cal-
culated GPS coordinate. To display the interactive map, we connect to an OSM tiles server22
and markers are placed upon the map using Leaflet.23

Every marker on the map can be clicked on, opening a pop-up that provides more inform-
ation about the underlying OSM object. This information is also collected during the single
database execution and supplied to the correct marker using the GeoJSON format.24 First,
if the OSM object has a “name” key, its value is displayed at the top of the pop-up. Further-
more, we display the GPS coordinate of the marker. The GPS coordinate can also be sent
toNominatim to obtain a reverse decoded street address, which we also provide. Lastly, we
present the values of the tags that appear in the executed parse.

For findkey-based parses, the elements of the resulting list of answers are presented as
hyperlinks. If clicked, the pop-ups of the applicable markers are opened automatically. For
example, Figure 4.2 shows a screenshot of the interface for the question “What cuisines are
there in Heidelberg?”. If one clicks on a particular cuisine, such as “malaysian”, the pop-ups
22http://wiki.openstreetmap.org/wiki/Tiles, 1st September 2018
23http://leafletjs.com/, 1st September 2018
24http://geojson.org, 1st September 2018
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Figure 4.3.: Program flow after the user entered a question in the input field for the natural
language interface to OSM.

of all OSM objects with the tag “cuisine=malaysian” are opened. This information is also
repeated alongside the other nuggets of information present on a pop-up.

Back-off System. If the semantic parser cannot find an answer, we would still like to
present the user with some useful information. Thus, should the answer be an empty string,
we pass the question on to Nominatim and present the result returned by Nominatim. This
can be helpful for very short questions, such as “Golden Gate Bridge”, as such questions don’t
appear in theNLmaps corpus, precisely becauseNominatim is capable of handling these.

An overview of the complete process that is started once a manual input has been received,
can be found in Figure 4.3.

4.2.2. Empirical Results

For the natural language interface, we use the the setup cdec +pass +cfg from Section
4.1. The setup using sparse features led to better results, but due to the increase of features,

53



Chapter 4. Semantic Parsers

NLmaps Precision Recall F1 ∆F1
1 Cdec +pass +cfg 89.90 64.02 74.78
2 Cdec +pass +cfg +IDs 88.67 66.17 75.78 + 1.00
3 Cdec +pass +cfg +IDs +SE 89.56 65.67 75.71 + 0.93
SE Precision Recall F1
1 Cdec +pass +cfg 71.56 39.27 50.71
2 Cdec +pass +cfg +IDs 63.32 40.4 49.29 + 1.42
3 Cdec +pass +cfg +IDs +SE 90.86 71.64 80.11 +29.40

Table 4.2.: F1 scores on the NLmaps and SE test sets for various web interface extensions.
Results are averaged over three independent runs because of the randomisation
introduced by Mert. Best results are indicated in bold face.

parsing slows down significantly. As speed is a crucial concern for the interface, we do not
use sparse features here. The results25 on the NLmaps test set for the setup cdec +pass

+cfg can be found in Row #1 of Table 4.2. We add two extensions to this model specifically
tailored for the web interface.

For the first extension, we apply the area recognition described in Section 4.2.1. The string-
matching approach is used to automatically identify locations in the question and Nom-
inatim is used to retrieve the highest ranked OSM object for the identified location. For ex-
ample, the question “Where are restaurants in Heidelberg?” is changed to “Where are restaurants
in 3600285864” where “3600285864” is the unique identifier for the city called Heidelberg
in Germany. This approach works more effectively than relying on Cdec’s pass through fea-
ture for unknown words. Using this extension is indicated by +IDs in Table 4.2. Adding it
to the previous setup leads to a slight increase of 1 percentage point in F1 score.

During an early trial phase, we noticed that users tended to omit non-crucial words in their
question, akin to search engine queries. This leads to shorter, often ungrammatical ques-
tions which differ from the questions found in the NLmaps corpus. Modifying the test set
of NLmaps to resemble such search-engine-style questions leads to the SE test set (also see
Section 3.4.1). Results on this test set are reported in the second half of Table 4.2. Both cdec

+pass +cfg and the +ID extension in row #1 and #2, respectively, show a significant drop
in performance when the model is trained on the training data of the original NLmaps cor-
pus, but tested on the SE test set. To close this gap in performance, we also modify the
training set of theNLmaps corpus leading to the search engine style extension described in
Section 3.4.1. Adding the training data from this extension to the original training data res-
ults in themodelmarkedwith +SE in Row #3 of Table 4.2.With this extension, the parser can
successfully increase its performance on the SE test set. It is this model that was deployed
for the web interface when it went live in 2016.

25The results differ slightly from Table 4.1 as the model has been re-run and the underlying OSM database was
updated.
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Figure 4.4.: A screenshot of the feedback form a user can fill in once a question has been
processed and an answer presented.

4.2.3. Feedback Form

After a user entered a question and received an answer, we provide two options for users to
give feedback. Below the text-based answer box, we ask the user if the answer was helpful
with regards to their question (“Was that helpful?”) and the user can provide a binary answer
by either clicking a “Yes” or a “No” button.

There is an additional button labeled “More” which opens up a more detailed feedback
form that a user can optionally fill in. The questions in this form become progressively more
complex, i.e. they require more expert knowledge. The first two questions (“Did we get the
location right?” and “Did we select the correct question type?”) can be answered by any user. For
the next question (“Did we select the correct OSM tags?”), the user would need knowledge
about the OSMdatabase. The questions after that (“Did we obtain the correct Overpass query?”
and “Didwe obtain the correct theMRL formula?”)would require familiaritywith theOverpass
API and the NLmaps MRL, respectively. A user can either supply the correct answer or
provide binary feedback on whether or not the answer suggested by the system is correct
or not. If a user is able to supply the correct parse, the resulting question-parse pair could
be added to the corpus. But most users would not be able to give this type of feedback. All
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other feedback options can be seen as weaker supervision signals of varying granularity
and could be used to improve the parser.

The online web interface offers users the option of using natural language to parse the OSM
database. The success of this crucially depends on the performance of the underlying se-
mantic parser. Next, we investigate if NLmaps v2 can produce a better semantic parser. Ad-
ditionally, we explore if the neural sequence-to-sequence framework Nematus can achieve
better results than the linear model Cdec.

4.3. Neural Model:
Sequence-to-Sequence Learning

Nematus (Sennrich et al., 2017) is a state-of-the-art, neural-network based sequence-to-
sequence framework employing an encoder-decoder setupwith attention (Cho et al. (2014),
Sutskever et al. (2014), Bahdanau et al. (2015)) as described in Section 2.4. As the natural
language input to the systemwe use the same pre-processing steps as described previously
at the beginning of Section 4.1. The target outputs are again linearised parses. In our exper-
iments we employ 1,024 hidden units and a word embedding of size 1,000. The maximum
output length is 200 and the number of tokens in the training set determine both input and
output vocabulary size. The learning rate optimiser is Adadelta (Zeiler, 2012) with gradi-
ents being clipped to 1.0 should they exceed this value. The batch size is set to 1 and the
training data is shuffled after each epoch.

At regular intervals, a development set is processed, the resulting parses are executed against
the OSM database and the F1 score with regards to the gold answers is measured. The best
model is chosen according to the highest F1 score on the development set. Translations for
development and test set are obtained by employing beam search with a beam of size 12.

4.3.1. Empirical Results

For the experiments using Nematus, we employ NLmaps v2 which subsumes NLmaps. All
test instances ofNLmaps are part of the test set ofNLmaps v2. Keeping the same set ratios as
NLmaps, we splitNLmaps v2 into a training set of 16,172 instances, with an additional 2,000
instances reserved for the development set, and a test set of 10,594 instances. To be able to
draw comparisons betweenNematus and Cdecmodels, we train two newmodels using the
best Cdec setup (+pass +cfg, shortened to +pc in Table 4.3), once with and once without
sparse features, on the NLmaps v2 corpus.

Row #1 in Table 4.3 presents the results usingMert for tuning, whereas row #2 additionally
uses sparse (+sparse) feature and thus tunes using Mira. Analogous to the results for
the original NLmaps, the latter setup performs better. Row #3 presents the results using
the neural network settings described above. Even without any further modifications, the
Nematusmodel significantly outperforms both Cdecmodels by over 3 percentage points in
F1 score.
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The last column in Table 4.3 gives an insight into an additional advantage of usingNematus
overCdec. It reports the number of instanceswhere no validMRLparse can be found. Recall
that both Cdec models use the NLmaps CFG to look for valid NLmaps parses in the k-best
list, whereas the Nematus models simply output the most likely translation after a beam
search with beam size 12. Despite this apparent disadvantage for Nematus, Nematus has a
vastly larger rate of valid parses. For the Cdec models, in about 15% of the cases, no valid
NLmaps parse can be found in the list of the 100 most likely parses. On the other hand, less
than 1% of parses are invalid for the Nematus models where only the most likely output
was considered.

A neural network that does not use sub-word units, cannot produce words that were not
seen in the training set. This is a problem for the generalisation of named entities, such
as town names or names of points of interest. For the task of building a natural language
interface to OSM, generalisation to any town name in the world is paramount. Using a sub-
word unit technique, such as Byte-Pair-Encoding (BPE) (Sennrich et al., 2016), could be
a solution. However, this approach is not ideal because nonsense words can be created.
Copying named entities directly from the question into the correct position in the parse
would be more effective.

To effectively copy named entities, we propose to utilise the version ofNLmaps v2where loc-
ations andpoints of interests aremaskedwith the placeholders$LOCATION (here shortened
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Recall Precision F1 ∆ F1 No parse
1 Cdec +pc 69.04 84.99 76.19 ±0.00 15.10%
2 Cdec +pc +sparse 70.24 85.15 76.98 ±0.00 + 0.79 13.55%
3 Nematus 77.97 82.91 80.36 ±0.11 + 4.17 0.30%
4 Nematus +ner 88.20 92.07 90.09±0.04 +13.90 0.32%

Table 4.3.: F1 scores on theNLmaps v2 test set for various linear and neural semantic parser
settings. “No parse” gives the percentage of instances where the model could not
find a validNLmaps parse. For Cdec, tuning was carried out on the development
set and in the case of Mert tuning (row #1), the results are averaged over three
independent runs due to the randomness Mert introduces. Both Nematus mod-
els are also averaged over three runs. Best results are indicated in bold face. All
models are statistically significant from each other at p < 0.05.

to $LOC) and $POI, respectively (see last paragraph of Section 3.4.2). Using the set of token-
ised questions, such as “hotels in Paris” and their masked counterpart, “hotels in $LOC”, we
train another neural network to identify named entities. The masked sequences are conver-
ted to sequences composed of three types, {O,L, P}, where $LOC is mapped to L, $POI to
P and all other tokens to O. Based on this, we train an NER neural network and we use the
development set to select the model with the best sequence level accuracy, which is 99.13%.
The model is then used to automatically classify and extract all locations and points of in-
terest on the test set.

Alongside the NERmodel, we train a semantic parser where stemmed questions, e.g. “hotel
in pari”, serve as input. The parser learns to map them to masked parses such as

query@3 area@1 keyval@2 name@0$LOC@s nwr@0 tourism@0 hotel@s qtype@1 latlong@0.

The placeholders$LOC and$POI in the linearised parse are then replacedwith the locations
and points of interest identified by the NER model. Consecutive L or P tags are grouped
together and treated as a multi-word location or point of interest. Non-consecutive L or P
tags are treated as separate locations or points of interest and are pasted into parses by order
of occurrence. This procedure cannot introduce any errors because parses are insensitive to
the order of locations or points of interest. Reversing the linearisation of the parse, results
in a fully formed parse that can be executed against the database, i.e.

query(area(keyval(’name’,’Paris’)), nwr(’tourism’,’hotel’),qtype(latlong)).

The results for this approach are presented in row #4 of Table 4.3. Solving the problem of
unknown named entities, our parser can now achieve a F1 score of over 90.00%, significantly
beating all other models. This model serves as the back-end parser for the graphical web
interface as of November 2018.

4.3.2. Error Analysis

For an error analysis, we compare all parses that lead to an incorrect answer to the correct
parses and automatically detect the following error types:
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• OSM tag: An error of this type means that either the first, second or both arguments
of keyval are wrong

• Qtype: This error indicates that one or more arguments of qtype are wrong.

• Wrong Distance: A Wrong Distance error indicates that the radius size was chosen
wrongly (e.g. DIST_INTOWN instead of WALKING_DIST).

• Skeleton: A Skeleton error implies that one of the following operators were either
missing or superfluous in the parse compared to the gold parse: around, area, and,
or or a cardinal direction. If Skeleton errors are identified, the previously mentioned
errors are not checked.

• Invalid Parse: In the case of this error, the model did not return a valid MRL parse.
By definition, the other errors cannot be checked if this error occurs.

Additionally, we split the group OSM tag into the following sub-categories:

• NE: For an NE error, the first argument of keyval is correctly “name”, but the cor-
responding value is wrong, i.e. the model did not pass on the named entity from the
question to the parse correctly.

• Not NE: All other OSM tag errors.

Cdec +pc +sparse Nematus +ner
OSM tag 1,760 1,820 ↑3.43% 3,414 ↑94.00% 1,161 ↓34.04%

NE 971 1,018 ↑4.80% 2,652 ↑172.99% 278 ↓71.38%

Not NE 788 802 ↑1.73% 762 ↓3.34% 883 ↑11.97%

Qtype 148 135 ↓8.78% 196 ↑32.21% 237 ↑60.36%

Wrong Dist. 840 922 ↑9.72% 21 ↓97.50% 42 ↓95.04%

Skeleton 168 142 ↓15.64% 80 ↓52.48% 103 ↓38.61%

Invalid Parse 1,600 1,435 ↓10.31% 131 ↓91.79% 36 ↓97.75%

Total 4,516 4,454 ↓1.38% 3,842 ↓14.94% 1,579 ↓65.04%

Table 4.4.: Overview of which type of errors the NLmaps v2 parsing models make and the
percental in- or decrease with regards to the first model.

Cdec +pc +sparse Nematus +ner
count 9.69% 10.6% 3.6% 3.95%
findkey 35.26% 39.07% 70.05% 73.02%
latlong 48.04% 41.72% 18.99% 16.49%
least 7.01% 8.61% 7.36% 6.54%

Table 4.5.: Percental overview of which type of qtype errors theNLmaps v2 parsing models
make.

In Table 4.4, we present the number of errors in each category for the various models. For
models with randomised components, we report the average number for each error type
over the three independent runs. Startingwith the secondmodel,we also show the percental
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in- or decrease of the error type in comparison to the first model. For the first Cdec model,
we see that the largest number of errors occurs from not being able to find a valid MRL
in the k-best list. This is closely followed by errors stemming from OSM tags whereas the
majority is due to wrongly passed through named entities. The Cdec model with sparse
features shows slight decreases for some error types but increases for others, leading to a
slight overall reduction of errors by 1.38%.

Using the neural network frameworkNematus, leads to amore dramatic shift in error types.
Because the neural network approach effortlessly learns what constitutes a correct NLmaps
parse, we observe a large decrease in the error type Invalid Parse. Similarly, we observe a
decrease in the error types Wrong Distance and Skeleton. However, the vanilla Nematus
model does not have the ability to handle unknown named entities. Thus, we record a large
increase in NE errors.

The number of Qtype errors also increases and we present a percental overview of which
Qtype arguments are parsed wrongly for the different models in Table 4.5. While there is a
percental decrease in count and latlong errors, the rate of findkey error is higher for
the Nematus models compared to the Cdec models. We conjecture that the more restrict-
ive grammar rules of Cdec are an advantage in this instance because they ensure that the
argument of findkey also appears in the input side. Neural networks on the other hand
often tend to focus more on fluency (Tu et al., 2016), which implies that the model is more
concerned in finding a token that conforms to the NLmaps grammar, rather than a token
that is directly motivated by a token in the input question. This is also evidenced by how
well theNematusmodels learn the structure of theNLmapsMRL, which leads to nearly no
Invalid Parse errors. Despite this, in total theNematusmodel can record a decrease in errors
of 14.95% compared to the first Cdec model.

The Nematus +ner model is able to combine the best of both worlds. Similar to the first
Nematus model, the model does not make many errors of the types Wrong Distance and
Invalid Parse. At the same time, it elegantly handles unknown named entities, leading to
a drastically lower count of NE errors than the previous models. Overall, this model can
reduce the errors by 65.04% compared to the first Cdec model.

Train
v1 v2 ∆

Test v1 73.56±0.61 75.49±0.01 + 1.93
v2 28.31±0.25 80.36±0.11 +52.05

Table 4.6.: F1 scores on the NLmaps and NLmaps v2 test sets for neural parsers trained on
NLmaps and NLmaps v2 training sets, respectively. Results are averaged over
three independent runs. Results are statistically significant at p < 0.05.

4.3.3. Empirical Validation of the Automatic Corpus Extension

To empirically validate the usefulness of the automatically created data, we compare two
parsers trained withNematus. The first model is trained using the originalNLmaps training
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data and the second using the training data of NLmaps v2which contains the original train-
ing data and additional synthetic data. Both systems are tested on the originalNLmaps test
data and on the test set ofNLmaps v2. Results may be found in Table 4.6. On the original test
set, adding the automatically generated instances allows the parser to significantly improve
by 3.22 points in F1 score. The parser trained on the original training data performs badly
on the new test set because it is ignorant of many OSM tags that were introduced with the
extension. This is not the case if we employ NLmaps v2 training data.

Conclusion

For a natural language interface to OSM, we require a semantic parser that can map natural
language questions to parses,which can be executed against the database.Wepresented sev-
eral semantic parsers using two different frameworks. The first framework, Cdec, is based
on hierarchical phrase-based machine translation and employs a log-linear model. Using
the NLmaps corpus, we trained a first semantic parser using the standard settings of Cdec.
This baseline parser was improved upon with several extensions. We added sparse features
to the model, enabled the correct passing through for named entities and included a check
that verifies whether a particular parse is a valid NLmaps MRL parse or not. This led to a
parsing model with an F1 score of 77.3% on the NLmaps corpus. Moving to NLmaps v2,
leads to larger training and test sets which include the respective sets of NLmaps. For the
same setup, the semantic parser reaches a comparable score of 76.19% F1 on this data set.

The second framework, Nematus, trains a RNN-based sequence-to-sequence neural net-
work. Even without any extensions, a model trained with Nematus can outperform the
best Cdecmodel. However, thisNematus baseline model cannot handle previously unseen
named entities. Using the NLmaps v2 data, which contains masks for points of interests
and locations (see last paragraph of Section 3.4.2), we trained an additional NER model
to recognise locations and points of interests in a natural language question. This crucial
change drastically improved the performance of the semantic parser, leading to an F1 score
of 90.09%.

We also introduced a web user interface via which users can interact with the semantic
parser. Several components are added to provide a positive user experience. Answers re-
turned by the parser are presented textually as well as interactively on a world map. Once
an answer is presented, the user has several options to provide feedback on the correctness
of the answer. Additionally, we offer several options for area detection to the user. Finally,
Nominatim is queried as a back-off system if the semantic parser is unable to return an an-
swer.
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Part I Conclusion

Our goal was to build a natural language interface to OpenStreetMap (OSM) because cur-
rently available search tools for non-expert users are based on simple stringmatchingmeth-
ods. As a consequence a wealth of information remains inaccessible to every day human
users who do not know the particularities of OSM and its query languages. As a first step
towards our goal, we introduced a new, specifically tailored Machine Readable Language
(MRL) in Chapter 3, which wraps around the Overpass query language designed for ex-
pert users to query the OSM database. Additionally we insured that our MRL can filter
more fine-grained information than Overpass. Second, we assembled large corpus of 28,609
question-parse pairs, calledNLmaps v2. Third, inChapter 4,we introduced various semantic
parsers which can map natural language questions to parses in our defined MRL. Because
we implemented our MRL alongside Overpass, a parse can be executed against the OSM
database with a simple script call to obtain an answer. Our best semantic parser achieves an
answer-level F1 score of over 90%. Fourth, we presented a graphical user interface, which
offers various conveniences to users andwhich can connect to a semantic parser in the back-
ground. Ultimately, these four stepping stones, allowed us to assemble a fully functional
natural language interface to OSM, which allows non-expert users to query the OSM data-
base for complex concepts that go beyond string matching. The interface has been live since
2016 and can be reached via http://nlmaps.cl.uni-heidelberg.de/ (1st Septem-
ber 2018).

So far, we used question-parse pairs to train our semantic parsers. However, question-parse
pairs are expensive to obtain because the specifically tailoredMRL is known to only a hand-
ful of expert users. Because of this, we want to explore alternative, weaker supervision sig-
nals that can be used to improve a semantic parser. To this end, we explore two different
approaches to learn from feedback given to model outputs. In each approach we will re-
turn to improve a semantic parser built upon NLmaps v2. Additionally, each approach is
also applied to a task where a machine translation system is to be improved, showcasing
that the approaches can be applied successfully to differing sequence-to-sequence tasks for
NLP.
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Part II.

Response-Based On-Policy Learning





Chapter 5

Multilingual Question-Answering:
Grounding Machine Translation
in Task Feedback

For some tasks it is more beneficial to employ indirect, weaker supervision than ob-
taining direct gold targets to train a statistical model. Our first approach to learn
from feedback, response-based on-policy learning (see also Section 1.2), can op-
erate in such a scenario by grounding the model in a downstream task for which

gold targets are available. Given an input, the model produces one or several outputs that
are passed on as input to the downstream task. The output of the downstream task can be
compared to the available gold targets. On the basis of this comparison, feedback is sent to
the model with which it can be improved.

We present two scenarios for response-based on-policy learning, one in this chapter and one
in the next chapter. For our first scenario, we are interested in improving the first model in
a pipeline of two statistical models. If these models are trained in isolation, the first model
might produce erroneous outputs from which the later model cannot recover. We employ
response-based on-policy learning to improve the first model by grounding it in the final,
downstream task. The success or failure on that task is used as a feedback signal for learning.
This allows us to update the model distribution to be closer to the reward distribution of
the downstream task that we want to perform well on.

In particular, we are interested in building a multilingual semantic parser. We assume a
semantic parser has been trained to transform English questions into machine-readable
parses. To be able to parse German questions, the questions are first translated into Eng-
lish by a machine translation model and the translation is given to the semantic parser.26
Executing the resulting parse against the database returns an answer. Comparing this an-
swer to the provided gold answer, allows us to judge whether or not the pipeline led to
success or failure. For the machine translation system, a translation is considered correct
if the meaning can be transferred to the semantic parser so that the produced parse leads
to the correct answer. The feedback of whether or not the correct answer was reached, can
26We assume that a German semantic parser would be inferior to an English semantic parser, e.g. because a lot

more training data is available in English.
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Chapter 5. Multilingual QA: Grounding Machine Translation in Task Feedback

be used to update the machine translation system. Grounding the machine translation sys-
tem in the action of the intended downstream task, allows the system to learn how to work
better in conjunction with the semantic parser and this in turn leads to a higher overall per-
formance on the downstream task. A graphical representation of this setup can be found in
Figure 5.1.
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Figure 5.1.: Using extrinsic feedback from the downstream task to improve amachine trans-
lation system for a multilingual QA pipeline.

From the viewpoint of the machine translation system, response-based on-policy learning
offers several advantages compared to learning with gold reference translations. First, a
gold reference might not be reachable. Here, we can try out various translations until one
is found that leads to positive task feedback and this translation can be considered a gold
translation that is guaranteed by definition to be reachable. Second, the need for expensive,
human-generated gold translations is alleviated because allowing the system to test various
translations can lead to multiple correct translations being found. Having multiple correct
translations to learn from,might allow themachine translation system tomore easily distin-
guish between good and bad translations and it can learn about acceptable synonyms and
structural variations. Third, the grounding in the downstream task results in translations
of a different quality compared to a human-generated gold translation that was produced
without the downstream task in mind. For example, for multilingual semantic parsing the
fluency of the translation is secondary as long as the semantic parser can transform the
translation into a correct parse. Finally, such response-based learning can be considered in-
tuitive because it shares analogous concepts to human learning.

In all instances, successful preservation of meaning in a translation is defined by positive
feedback from the downstream task. For each input, we aim to find an output, called a hope
output, that we want to encourage, and another output, called a fear output, that we want
to discourage. Using both hope and fear outputs, a ramp loss objective can be defined to
improve the machine translation system.

Collobert et al. (2006) first introduced a ramp loss objective as a non-convex alternative to
the hinge loss for binary classification. The concept was transferred to structured prediction
by Do et al. (2008), who additionally show that the ramp loss offers a tighter upper bound
of the true loss compared to the hinge loss as a convex alternative. McAllester and Keshet
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5. Introduction

(2011) show that the ramp loss producesmodels that approach the lowest possible task loss
for a given feature set using a linear model with an appropriate regulariser and in the limit
of infinite data. They also note that the ramp loss can be optimised using stochastic gradient
descent and likened this update to the perceptron update (Collins, 2002).

A ramp loss objective has previously been used to tune a machine translation system (Gim-
pel and Smith, 2012), but hope and fear outputs where identified employing references
instead of grounding the system in a downstream task. Grounding a machine translation
system in a downstream task has been previously investigated in the context of cross-lingual
information retrieval (Nikoulina et al., 2012) and in the context of adjusting the system to
human preference for computer-assisted translation (Saluja et al. (2012); Barrachina et al.
(2008); Koehn and Haddow (2009), inter alia).

For semantic parsing, research has been conducted to employ question-answer pairs rather
than question-parse pairs (Clarke et al., 2010; Goldwasser and Roth, 2013; Kwiatkowski
et al., 2013; Berant et al., 2013). In this scenario, the parser, rather than the machine trans-
lation system, is grounded in the downstream task where the result of the parse execution
is compared to the intended gold answer. We combine the idea of using gold answers as a
learning signal with the approach of Gimpel and Smith (2012): we tune a machine transla-
tion system which is grounded in the downstream task of obtaining the correct answer for
a semantic parsing problem. Based on the success or failure to obtain the correct answer,
we define hope and fear translations which are used to improve the machine translation
system.

Concretely, for our task, we employ a general-purpose SMT system and tune it to trans-
late German NLmaps questions into English. To this end, the NLmaps corpus has been
translated into German by the author. We propose two discriminative algorithms, Ramp27
and Response-based Online Learning (Rebol), which employ the feedback obtained from
grounding the proposed translations in the final task to update the parameters of the SMT
system. For both algorithms, each German question requires a corresponding gold answer.
Rebol additionally utilises English reference translations, which are a valuable additional
learning signal. We can demonstrate that the Ramp algorithm improves the machine trans-
lation system so that the overall final task performance rises by about 8 percentage points in
F1 score. The Rebol algorithm achieves an even higher increase of 18 points in F1 score, but
requires two gold targets for each input, whichmight be too expensive to obtain in praxis.

In our setup, we assume that gold answers are available. This stands in contrast to the gold
parses which are available for the NLmaps corpus. However, for many domains gold an-
swers are easier and cheaper to obtain than gold parses and thus we do not use the gold
parses available in the NLmaps corpus in this setup.

The main contributions of this chapter are as follows:

• Re-implementation of the algorithms Rebol and Ramp in Python.

• Translation of the first version of NLmaps into German.

• Experiments with Rebol and Ramp on NLmaps and subsequent error analysis.
27Note that this algorithm is called Exec in Riezler et al. (2014) and Haas and Riezler (2016).
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The work presented in this chapter has previously been published in Riezler et al. (2014),
Haas (2014), Haas and Riezler (2015) and Haas and Riezler (2016). The algorithms were
formulated by Stefan Riezler and a first implementation was coded in Ruby by Patrick Simi-
aner. I employed the algorithm in its Ruby implementation successfully on the Geoquery
corpus (Wong and Mooney, 2006) and on the Free917 corpus (Cai and Yates, 2013). Here,
we apply Rebol and Ramp, now implemented by myself in Python, to the NLmaps corpus.
These NLmaps results were previously published in Haas and Riezler (2016).

The structure of this chapter is as follows: Section 5.1 introduces the ramp loss objective and
the algorithms Rebol (Subsection 5.1.2) and Ramp (Subsection 5.1.1). Section 5.2 details the
experiments performed on the NLmaps corpus and includes an error analysis.

5.1. Objectives

For response-based on-policy learning we adopt the following general notation. We assume
the existence of a model πw(y|x) parametrised by w that, given an input x ∈ X, defines a
probability distribution over all possible outputs y ∈ Y(x). Furthermore, we assume that
it is possible to score every possible output y by employing an external metric δ(y), which
returns a reward that quantifies how suitable it is to produce y given x. In the following,
we define various objectives that can be used to update the parameters w of πw(y|x) by
performing stochastic gradient descent for a loss function L using the update rule

∆w = −η∇wL, (5.1)

where η is a suitably set learning rate. Finally, we denote the most likely output under the
current model πw(y|x) as

ŷ = arg max
y∈K(x)

πw(y|x), (5.2)

whereK(x) is a k-best list obtained via beam search and which is searched instead ofY(x)

becauseY(x) is too large.

The basis for our objectives, is the following general definition of the ramp loss:

LRamp = −

(
1

m

m∑
t=1

πw(y+
t |xt)−

1

m

m∑
t=1

πw(y−t |xt)

)
, (5.3)

where y+ is a hope output that we want to promote and y− is a fear output that we want
to demote. In this chapter, we assume m = 1, i.e. updates are made after each seen input.
Intuitively, y− should be an output with high probability but low reward from the external
metric. Analogously, y+ should be an outputwith a high probability andwith a high reward
from the external metric. Various definitions of y+ and y− lead to different objectives, which
we explore later on.
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Given a gold target ȳ, we can recover the loss of the structured perceptron (Collins, 2002)
from Equation 5.3 by setting y+ = ȳ and y− = ŷ (McAllester and Keshet, 2011), where an
update to w is only performed if ȳ 6= ŷ. However, the structured perceptron update itself is
difficult to apply for SMT because the model might not be able to produce ȳ (Och and Ney,
2002; Liang et al., 2006). In SMT the underlying model πw(y|x) is a log-linear model (see
also Section 2.3, in particular Equation 2.17) that computes a probability distribution over
the output spaceY(x) given an input x:

πw(y|x) =
ewφ(x,y)∑

y′∈Y(x) e
wφ(x,y′)

= ewφ(x,y)/Z, (5.4)

where φ(x, y) is a feature vector for the pair (x, y). Depending on the employed features
of the model, it might not be possible to produce the feature vector for the gold target ȳ,
e.g. if the necessary translation rule does not exist. In such a situation we say that ȳ is not
reachable. Without this feature vector, the perceptron update cannot be performed. Instead,
an external metric can be used to identify the most similar output to the gold target ȳ. This
output’s feature vector can act as a surrogate to the missing feature vector of ȳ.

In praxis, it can be expensive to compute the normalisation constant Z in Equation 5.4 and
thus instead of πw(y|x) only the model scores, which are proportional to the probabilities,
are used, i.e.

sw(y|x) = w φ(x, y). (5.5)

If the model scores sw(y|x) are used in the ramp loss objective (Equation 5.3), then the
update rule takes the following form:

∆w = η(φ(x, y+)− φ(x, y−)). (5.6)

Gimpel and Smith (2012) are the first to employ a ramp loss to tune the parameters of an
SMT system, leading to the Rampion algorithm. Their definitions of a hope translation y+

and a fear translation y− rely on computing the per-sentence BLEU (Nakov et al., 2012). The
per-sentence BLEU score quantifies how close a translation y is to the reference translation
ȳ. Gimpel and Smith (2012) transform this metric into a cost function, i.e. c(ȳ, y) = 1 −
BLEU(ȳ, y). This cost function is employed to the find hope and fear translation in the k-best
listK(x). The translation with highest model score and simultaneously lowest cost becomes
the hope output,

y+ = arg max
y∈K(x)

(sw(y|x)− c(ȳ, y)) (5.7)

= arg max
y∈K(x)

(sw(y|x)− (1− BLEU(ȳ, y))) .
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Chapter 5. Multilingual QA: Grounding Machine Translation in Task Feedback

The fear translation is characterised by a high costwhile also obtaining a highmodel score,

y− = arg max
y∈K(x)

(sw(y|x) + c(ȳ, y)) (5.8)

= arg max
y∈K(x)

(sw(y|x) + (1− BLEU(ȳ, y))) .

With y+ and y− defined, we can formulate the Rampion algorithm. The corresponding
pseudo-code can be found in Algorithm 1. Iterating over the training set, the current model
with parametersw receives an input string x for which it outputs the most likely translation
ŷ. If this translation is identical to the gold translation ȳ, it becomes the hope translation
y+. Otherwise, it becomes the fear translation y−. The missing translation is chosen accord-
ing to Equations 5.7 and 5.8, respectively. A stochastic gradient descent update according to
Equation 5.6 is then performed to the parameters w of the model.

Goldwasser and Roth (2013) employ a similar objective to improve their semantic parsing
task. An English natural language instruction is transformed into a parse in aMachine Read-
able Language (MRL). The parse is executed and the result a is compared the gold result
ā.28 Based on this the following external reward metric can be defined:

δ(y) =

1 if a = ā

0 else.
(5.9)

Using this feedback function, it is possible to improve the semantic parser using only the
comparison to the gold result as a supervision signal. In this scenario the gold parse is never
directly used, only indirectly via the feedback function. Given an input x, the most likely
parse ŷ under the current model parameters w is computed. If δ(ŷ) = 1, then the parse is
added to a set of valid parses for the current input x. If δ(ŷ) = 0, then an update to w is
performed. The concrete update depends on whether or not a parse with positive feedback
has been previously found for x. If no previous parse with positive feedback exists, then
simply all features of ŷ are punished, i.e. y− = ŷ and y+ = {}. If a positive parse has
been previously found, then this parse becomes y+. A corresponding update to w is then
performed.

For our scenario of building a multilingual semantic parser, we use use the external reward
metric defined in Equation 5.9. Once a translation is proposed, it is given to the semantic
parser to produce a parse that can be executed against a database to receive an answer a.
This answer a can then be compared to the gold answer ā. Via the feedback obtained from
the metric of Equation 5.9, we ground the machine translation system and improve its para-
meters. By adjusting the machine translation system with this feedback, it can work better
in conjunction with the semantic parser and consequently a higher final task performance
can be achieved.

We propose two different ramp loss objectives, which mainly differ in the required gold tar-
gets. For successful grounding, each German question needs to have a corresponding gold
28Note that we use the term result rather than answer here because in the task of Goldwasser and Roth (2013)

executed parses are not necessarily answers.
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answer associated with it. This is the only annotation assumption the first algorithm, called
Ramp, makes. The second algorithm, called Rebol, additionally assumes the existence of a
corresponding English gold reference translation for each German question. Requiring two
annotations for each German question is more expensive and might not be attainable in
praxis. But if available, using both annotations in conjunction can provide valuable addi-
tional information for the machine translation system.

Algorithm 1 Pseudo-code for the Rampion algorithm.

Input: Training data of size n with inputs x, gold translations ȳ, cost function c(ȳ, y),
learning rate η
Ref = {}
repeat

for t = 1, . . . , n do
Receive input sequence xt and gold translation ȳt
Predict output sequence ŷt
if ŷt = ȳt then

y+
t = ŷt
Search for y−t

else
y−t = ŷt
Search for y+

t

end if
w = w + η(φ(xt, y

+
t )− φ(xt, y

−
t ))

end for
until Convergence

5.1.1. Ramp

The first algorithm, Ramp, assumes training data where each German question is paired
with a corresponding gold answer. A translation is considered to successfully transfer the
correctmeaning if the parse produced by the semantic parser executes to the correct answer.
Thus, the hope translation is defined as themost likely translation in the k-best listK(x) that
obtains positive task feedback, i.e.

y+ = arg max
y∈K(x):δ(y)=1

sw(x, y), (5.10)

where δ(y) is the feedback function defined in Equation 5.9. The fear translation is analog-
ously the most likely translation in the k-best list K(x) that obtains negative task feedback,
i.e.

y− = arg max
y∈K(x):δ(y)=0

sw(x, y). (5.11)
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Algorithm 2 presents the pseudo-code for Ramp. Iterating over the training set, the current
model with parameters w receives an input string x for which it outputs the most likely
translation ŷ. If this translation receives positive task feedback, i.e. δ(y) = 1, then the trans-
lation becomes the hope translation y+. It is also stored as a hope translation for the corres-
ponding input x for future use. The k-best list is then traversed to find the highest scoring
translation that does not obtain positive task feedback, i.e. δ(y) = 0. Should the most likely
translation ŷ receive negative task feedback, it becomes the fear translation y−. If there is
a hope translation recorded for the input x from a previous epoch, then this hope transla-
tion is re-used. Otherwise, the k-best list is traversed to find the most likely translation that
achieves positive task feedback. A stochastic gradient descent update is then performed
to the parameters w of the model. If either y− or y+ cannot be computed, the example is
skipped without an update being performed.

Algorithm 2 Pseudo-code for the Ramp algorithm.

Input: Training data of size n with inputs x and gold answers ā, the latter of which is
employed in the task feedback function δ(y), learning rate η
Ref = {}
repeat

for t = 1, . . . , n do
Receive input sequence xt and gold answer āt
Predict output sequence ŷt
Receive task feedback δ(ŷt) ∈ {1, 0}
if δ(ŷt) = 1 then

y+
t = ŷt
Ref[xt] = ŷt
Search for y−t
if y−t not found then

Skip to next input sequence
end if

else
y−t = ŷt
if Ref[xt] then

y+
t = Ref[xt]

else
Search for y+

t

if y+
t not found then
Skip to next input sequence

end if
end if

end if
w = w + η(φ(xt, y

+
t )− φ(xt, y

−
t ))

end for
until Convergence
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5.1.2. Rebol

Algorithm 3 Pseudo-code for the Rebol algorithm.

Input: Training data of size n with inputs x, gold answers ā and gold translations ȳ, re-
ward function δ(y) which employs ā, cost function c(ȳ, y), learning rate η
Ref = {}
for t = 1, . . . , n do

Receive input sequence xt and gold translation ȳt
Ref[xt] = [ȳt]

end for
repeat

for t = 1, . . . , n do
Receive input sequence xt and gold answer āt
Predict output sequence ŷt
Receive task feedback δ(ŷt) ∈ {1, 0}
Receive references Ref[xt]
if δ(ŷt) = 1 then

y+
t = ŷt
Ref[xt]+ = ŷt
Search for y−t
if y−t not found then

Skip to next input sequence
end if

else
y−t = ŷt
if any reference r in Ref[xt] is reachable then

y+
t = r

else
Search for y+

t

if y+
t not found then
Skip to next input sequence

end if
end if

end if
w = w + η(φ(xt, y

+
t )− φ(xt, y

−
t ))

end for
until Convergence

The second algorithm, Rebol, assumes that for each German question both a corresponding
gold answer and gold translation are available. With gold translations available, following
Gimpel and Smith (2012), we can incorporate per-sentence BLEU (Nakov et al., 2012) in
the objective as a cost function. Thus, Rebol defines the hope translation as the translation
with highest score, but lowest possible loss and positive task feedback, i.e.

y+ = arg max
y∈K(x):δ(y)=1

(sw(x, y)− (1− BLEU(ȳ, y))) . (5.12)
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Analogously, the fear translation achieves a high score, but also a high loss and receives
negative task feedback, i.e.

y− = arg max
y∈K(x):δ(y)=0

(sw(x, y) + (1− BLEU(ȳ, y))) . (5.13)

Algorithm3presents the pseudo-code forRebol. It closely follows the pseudo-code ofRamp,
with the notable difference that each input string x immediately receives a valid reference
translation in the form of the available gold translation. When new hope translations are
found, they are appended to the list of reference translations for the corresponding input x.
All per-sentence BLEU scores are then calculated on the basis of the entire set of available
reference translations.

5.2. Empirical Results

We apply Ramp and Rebol to theNLmaps corpus. We translate all questions of NLmaps into
German. These German questions serve as the input to an SMT system (see Section 2.3)
trained with Cdec (Dyer et al., 2010). The English question is then transformed into a parse
using the semantic parsing setup introduced in Section 4.1. Concretely, we use the model
of row # 3 of Table 4.1, which employs the modifications +cfg and +pass. Additionally
using sparse features (Simianer et al., 2012) would give a better semantic parser, but sparse
features slow down the parsing process and we thus omit them for the sake of speed.

For themachine translation system on the other hand, we use both Cdec’s standard features
and sparse features. To obtain word alignments and a 5-gram language model we use the
Common Crawl29 (Smith et al., 2013) corpus. The initial weights for the different features
are manually chosen. This model serves as the baseline and as the starting point for learn-
ing with the ramp loss objectives. Because the Rebol algorithm additionally assumes the
existence of gold translations, we also compare it against the Rampion algorithm (Gimpel
and Smith, 2012), which uses only the gold translations but not the gold answers to identify
hope and fear translations.

We set the size of the k-best list that is searched for hope and fear translations to 100. In
preliminary experiments, this value proved to offer a good trade-off between accuracy and
speed. A larger k-best list rarely includes a previously unseen hope translation while signi-
ficantly increasing the time spent fruitlessly searching.

The main evaluation measure is the F1 score as measured on the downstream task by com-
paring answers produced by the pipeline to gold answers. The F1 score is calculated as the
harmonic mean of recall and precision. Recall is the number of correct answers divided by
the number of answers in the underlying set and precision divides the number of correct
answers by the number of answers that are non-empty strings. As a secondary metric, we
report corpus-level BLEU scores (Papineni et al., 2002). Results may be found in Table 5.1.
Significances between system differences are measured using an approximate randomisa-
tion test (Noreen, 1989).
29http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz, 1st September 2018
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Ramp can improve the baseline system by 7.86 percentage points in F1 score by grounding
it in the pipeline’s final task. Even though it is not targeted directly, the BLEU score also in-
creases by about 2.5 points. Both results are statistically significant compared to the baseline.
The result successfully demonstrates that overall task performance can be increased if the
first system in a pipeline setup is specifically tailored to perform well on the intended final
task by leveraging the feedback given by it.

method P R F1 ∆F1 BLEU ∆BLEU
1 Baseline 67.8 24.89 36.41 38.3
2 Ramp 75.2 31.36 44.271 + 7.86 40.851 + 2.55
3 Rampion 78.21 38.75 51.821,2 +15.41 51.821,2 +13.52
4 Rebol 80.76 41.02 54.411,2,3 +18.00 51.881,2 +13.58

Table 5.1.: F1 scores on the NLmaps v2 test set for various response-based on-policy object-
ives. Best results are indicated in bold face. Statistical significance of system dif-
ferences at p < 0.05 are indicated by algorithm number in superscript.

If gold targets is also available for the first system in the pipeline, then the performance
increase over the baseline is larger. With gold translations available to improve the machine
translation system, Rebol can significantly outperform the baseline system by 18 points in
F1 and by 13.5 points in BLEU.Rampion does not have the feedback of the final task, i.e. gold
answers, available. As a result, it falls a significant 2.59 points short in F1 score compared to
the Rebol system. This re-affirms the importance of tailoring the first system in the pipeline
towards the final task goal. As both Rebol and Rampion update their underlying models
based on a per-sentence BLEU metric, it is not surprising that they reach near identical
improvements in BLEU.
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Figure 5.2.: F1 performance on the test set after each epoch for various response-based on-
policy objectives.
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We conclude that best performance is obtained if gold targets for both tasks are available.
However, this assumption is likely too expensive to realise in praxis. Should only gold tar-
gets for the downstream task exist, a significant improvement can still be obtained over the
baseline. But in either scenario, with or without gold translations available, the gold targets
are a valuable learning signal. They can significantly improve the communication between
models in a pipeline setup, which leads to an overall higher final task performance.
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Figure 5.3.: BLEU performance on the test set after each epoch for various response-based
on-policy objectives.

Finally, we present the learning curve over epochs as measured on the test set in Figure 5.2
for F1 and in Figure 5.3 for BLEU. Ramp converges quickly after about 15 epochs while the
curves forRampion andRebol are slightlymore erratic. At all times,Rebol stays numerically
above Rampion in terms of F1 whereas the BLEU scores are very similar between the two.

error type Perfect EN Baseline Ramp Rampion Rebol
OSM tag 42 125↑198% 133 ↑6% 129 ↑3% 103 ↓18%

Qtype 35 59↑69% 51 ↓14% 61 ↑3% 55 ↓7%

Wrong Dist. 5 0↓100% 1 ↑n.a. 2 ↑n.a. 2 ↑n.a.
Skeleton 36 33↓8% 40 ↑21% 39 ↑18% 33↓0%

Invalid Parse 209 525↑151% 464 ↓12% 398 ↓24% 397 ↓24%

Total 327 742↑127% 689 ↓7% 629 ↓15% 590 ↓20%

Table 5.2.: Error Analysis: The column titled “Perfect EN” shows which type of errors the
semantic parsing model makes on the basis of the correct English questions. The
column titled “Baseline” indicateswhich errors aremade by the semantic parsing
model if the German questions are translated with the baseline system. The per-
cental change is with regards to the first column. The remaining columns give the
error type count for the translation systems trained with Ramp, Rampion and Re-
bol, respectively. The percental change is with regards to the “Baseline” column.
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5.2.1. Error Analysis

The semantic parser is not perfect. Thus, even correct English questions do not always lead
to the correct answer. Using the English questions produced by the machine translation
system, causes a further drop in performance. If the parsingmodel is given the set of correct
English questions, it obtains an F1 score of 75.41%. Using the baseline’s translations, this
performance drops down to 36.41%. We give an analysis of what type of errors (as defined
in Section 4.3.2) the semantic parsing model makes. Comparing the mistakes made on the
perfect English translation to the mistakes made using the translations from the baseline
system, allows us to identify which errors occur due to inferior translations. The results can
be found in the first two columns of Table 5.2.

The largest numerical increase of errors occurs for the category Invalid Parse; it more than
doubles. This suggests that translations are often missing crucial terms or a coherent struc-
ture that the semantic parser requires to formulate a correctNLmaps parse. The largest per-
cental increase is observed for OSM tag errors. This indicates that the translation system
does not choose the correct words, which the semantic parsingmodel has learnt to associate
with OSM tags. Similarly, the Qtype errors also increase, albeit not as dramatically. Unlike
the correct English questions, the imperfect translations seem to cause noWrong Distance
errors. On closer inspection, this implausible result can be explained: Instances that led to
a parse with a wrong distance using the correct English question, become invalid parses
when using the translated English equivalent. The slight reduction in Skeleton errors can
be explained analogously.

Next, we analyse which type of errors the various algorithms, Ramp, Rampion and Rebol,
are able to fix compared to the baseline. The results can be found in the last three columns
of Table 5.2, where the percental changes are measured with regards to the baseline. Over-
all, Ramp exhibits an error reduction rate of 7%. The largest numerical reduction occurs
for Invalid Parse errors which suggests that the answer feedback is able to guide the ma-
chine translation towards producing translations that conform to what the semantic parser
expects. Ramp can also reduce the number of Qtype errors, but for the other three error cat-
egorieswe observe a slight increase. It is likely that some parses that were previously invalid
are now valid but contain other errors. Consequently, the reduction of invalid parses is the
reason of Ramp’s success.

The reduction of Invalid Parse errors is even greater for both Rampion and Ramp and sim-
ilar value. OSM tag errors are only reduced for the Rebol system, which suggests that it is
important to leverage both gold translations and gold answers to reduce this type of error.
Rebol, like Ramp, exhibits a reduction of Qtype errors, whereas Rampion makes more er-
rors than the baseline system. This suggests that for this type of error, the gold answers are
important. Overall, Rebol can reduce the number of errors made by 20% compared to the
baseline.

Finally, we contrast some translations produced by the different systems. Table 5.3 gives
examples of translations produced by Ramp that got positive feedback, whereas the transla-
tions produced by the baseline system did not get positive feedback. An additional column
also lists the original English question. In line 1, the translations differ in the lexical word
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original EN baseline Ramp

1 What are the abandoned
theme parks called?

What the deserted parks? What the abandoned
parks?

2 What is the Wikipedia
page of the town hall in
Heidelberg?

What is the Wikipedia
page in Heidelberg?

What is the Wikipedia
page of the town hall in
Heidelberg?

3 Can I play tennis any-
where in Paris?

Can I play somewhere in
Paris?

Can I play tennis some-
where in Paris?

4 Where in the south of
Heidelberg are drinking
water locations?

Where there is water in
the south of Heidelberg?

Where in the south of
Heidelberg are there
drinking water?

5 At how many places can I
rent a bike in Paris?

At many places in Paris
can I rent a bike?

In how many places in
Paris can I rent a bike?

Table 5.3.: Example translations produced by baseline and Rampwhere the former receives
negative feedback and the latter positive, along with the original English ques-
tion.

choice of “abandoned” versus “deserted”. The latter term never occurs in the training data of
the semantic parser, thus it does not know to which OSM tag the term should be mapped
to. Getting negative feedback for this question, allows the machine translation to adjust and
propose “abandoned” instead which leads to positive feedback.

For the examples in line 2 and 3, the baseline neglects to translate a crucial word (“ town
hall” and “tennis”, respectively). With these expressions missing, the semantic parser lacks
the necessary words that could trigger the correct OSM tag. In line 4, the baseline makes a
similar mistake. Here, the expression “Trinkwasser” (meaning “drinking water”) is only par-
tially translated with the word “water” while the term “drinking” is missing. Again Ramp is
able to learn the correct expression via the answer-level feedback. For the example of line
5, the baseline translation seems closer to the original question at first glance, but it’s miss-
ing the crucial word “how” to indicate the correct question type. Ramp finds an alternative
translation that contains the word and can obtain positive feedback.

Table 5.4 presents examples produced by Rebol that obtain positive feedback whereas the
Rampion counterparts do not. Akin to line 2 and 3 fromTable 5.3, in line 1 theRampion trans-
lation is missing a crucial word in the translation. Without the word “well” in the question,
the correct OSM tag, “man_made=water_well”, cannot be determined. Using answer-level
feedback, Rebol can learn that the word “well” is crucial to obtain the correct OSM tag. Sim-
ilarly, in line 2 the word “book” is missing from the Rampion translation to complete the
expression “book stores”.

Line 3 presents an example of awrong lexicalword choice forRampion: thewords “port” and
“harbour” imply different OSM tags (“landuse=port” and “landuse=harbour”, respectively).
This distinction can only be learnt with the answer-level feedback that Rebol receives.
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5. Conclusion

original EN Rampion Rebol
1 Are there any water wells

in Heidelberg?
Are there any water in
Heidelberg?

Are there water wells in
Heidelberg?

2 How many book stores
does Paris have?

How many shops are
there in Paris?

How many book shops
are there in Paris?

3 Where can harbours be
found in Edinburgh?

Where in Edinburgh are
ports?

Where in Edinburgh are
harbours?

4 Would you give me the
location of a tennis court
in Heidelberg please?

Would you call me the
location of a tennis court
in Heidelberg?

Would you give me the
location of a tennis court
in Heidelberg call?

5 Where are camp sites in
Paris?

Where are campsites in
Paris?

Where are camping sites
in Paris?

Table 5.4.: Example translations produced byRampion andRebolwhere the former receives
negative feedback and the latter positive, along with the original English ques-
tion.

In line 4, the answer-level feedback helps to fix an ambiguity occurring in theGerman source
word. Depending on context, “nennen” can be translated as “give” or “call”. Rampion cannot
determine the correct context and chooses the wrong translation (“call”), whereas Rebol
can learn the correct translation (“give”).

Finally, line 5 presents an example where Rampion’s translation should also parse because
it is a valid alternative translation. However, “campsites” is unknown to the semantic pars-
ing model which has only seen “camp sites” previously. Rebol finds a translation containing
“camping sites” which, once stemmed, maps to the same form as “camp sites”. Here, the fault
clearly lies with the semantic parser. However, this example demonstrates why it is import-
ant to adjust earlier models in a pipeline setup to perform well in conjunction with later
models.

Conclusion

In our first scenario for response-based on-policy learning, we improved the first model in
a two-model pipeline setup by grounding it in the final, downstream task. In particular,
we showed this on the task of multilingual semantic parsing. German questions are trans-
lated into English by a machine translation system and the English translations are sent to a
semantic parser that converts the English question into a parse. The parse can be executed
against a database and the resulting answer is compared to the gold answer that theGerman
question is accompanied by. This comparison can be used as a feedback signal to improve
the machine translation system, which in turn leads to a better performance of the entire
pipeline on the task.

We introduced two algorithms which employ ramp loss objectives. The first algorithm,
Ramp, assumes that each German question has a corresponding gold answer. This allows us
to ground the machine translation system in its final task. The machine translation system
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learns to translate the German questions in such a way that the semantic parser can under-
stand them and produces a parse that leads to the correct answer. The second algorithm,
Rebol, additionally assumes that for each German question a corresponding English gold
translation is available. Combining both sources of information results in a stronger learn-
ing signal and Rebol can outperform Ramp. However, requiring two gold annotations for
every input could be expensive to obtain in praxis.

Both algorithms were employed on the NLmaps corpus for which the English questions
were previously translated into German by the author. Ramp is able to tune the machine
translation system so that the overall task improves by a significant 7.86 percentage points
in F1 score over the baseline. This indicates that it is crucial to adjust a statistical model in
a pipeline setup for the downstream task. Having two learning signals available, Rebol can
further improve, achieving an increase of 18 points in F1 score over the baseline.

Rebol is also measured against a competitive algorithm, Rampion, which assumes that only
gold translations, but no gold answers are available. Rampion falls a significant 2.59 points
short on F1 score compared to Rebol. This showcases the importance of grounding the
earlier model in the final task. Additionally, we showed in an error analysis which errors
the various algorithms are able to fix by adjusting the translation that is given to the se-
mantic parser. Finally, we finished with a few qualitative examples that concretely contrast
successful translation from Ramp or Rebol compared to the baseline and Rampion, respect-
ively.

In these experiments, the semantic parser was not modified. In our second scenario for
response-based on-policy learning, we want to improve a semantic parser instead. We ex-
plore if comparing a suggested parse’s answer to the gold answer can also be used as a
feedback signal to directly improve the semantic parser. Simultaneously, we move to non-
linear neural network models and investigate whether the ramp loss objective of Ramp, as
well as other ramp loss objectives, can also be applied in this setting.
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Chapter 6

Question-Answering:
Grounding Semantic Parsing
in Answer Feedback

Grounding a statistical model in a downstream task with corresponding down-
stream gold targets can provide a supervision signal that is easier to obtain
than gold targets for direct supervision. This is most prominently the case
for many domains in semantic parsing for question-answering (Clarke et al.

(2010); Berant et al. (2013); Pasupat and Liang (2015); Rajpurkar et al. (2016); inter alia).
Often the parses are highly complex and in aMachine Readable Language (MRL) that only
a few experts have a knowledge of. In contrast to this, it is easier to ask crowd-source work-
ers to provide the correct gold answer. With gold answers available, learning can proceed
as follows: A semantic parser produces parses, each parse can be executed to obtain a cor-
responding answer and this answer can then be compared to the collected gold answer.
On the basis of this comparison, feedback can be sent to the semantic parser and it serves
as the learning signal to guide the parser towards producing correct parses. This ground-
ing of a semantic parser in the downstream answer is our second scenario for which we
employ response-based on-policy learning (see also Section 1.2). The setup is represented
graphically in Figure 6.1.

Neural networks are the state-of-the-art models for sequence-to-sequence tasks. In the pre-
vious chapter, we employed response-based on-policy learning to improve linear models.
Here, we apply our approach to neural semantic parsing. Neural networks are tradition-
ally trained using the MLE objective (see Equation 2.28 in Chapter 2). However, with gold
answers rather than gold parses available, the MLE objective is not directly applicable. In-
stead, we incorporate the feedback from the answer comparison into various objectives as
an external metric.

For neural semantic parsing with question-answer pairs, such metric-augmented objectives
have been explored in the context of Minimum Risk Training (MRT) (Liang et al., 2017;
Guu et al., 2017),30 as objectives inspired by REINFORCE (Liang et al., 2017; Mou et al.,
30Note that Liang et al. (2017) refer to their objective as an instantiation of REINFORCE, however they build an

average over several outputs for one input and thus the objective more accurately falls under the heading of
MRT.
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Question x 
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Parses 
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Answers 
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ComparisonComparison

Figure 6.1.: Setup for training a semantic parser where gold answers are available but gold
parses are missing.

2017; Guu et al., 2017) and other objectives based on classical structured prediction (Iyyer
et al., 2017; Misra et al., 2018). Misra et al. (2018) are the first to compare several objectives
for neural semantic parsing and they find that objectives employing structured prediction
losses perform best. Similar objectives that incorporate different external metrics, have also
been explored for neural models on other tasks, such as machine translation (Ranzato et al.,
2016; Shen et al., 2016; Edunov et al., 2018; Wu et al., 2018), summarisation (Edunov et al.,
2018; Arumae, 2018), reading comprehension (Choi et al., 2017; Yang et al., 2017) or image
captioning (Rennie et al., 2017).

With gold answers rather than gold parses available, we operate in a weak supervision set-
ting where it might be difficult to find parses that execute to the correct answer. To more
effectively guide the semantic parser, we propose to not just encourage parses that lead to
the correct answer, but to also discourage parses that lead to awrong answer. This allows the
parser to more effectively learn what distinguishes a good parse from a bad one. We refer
to objectives that incorporate this idea as bipolar objectives. The bipolar idea occurs natur-
ally in ramp loss objectives (Collobert et al., 2006), which we have already encountered in
the previous chapter. In a ramp loss objective, a hope and a fear output are identified and
promoted and demoted, respectively.

We lift the ramp loss objective from the previous chapter, Ramp, to neural models, as well
as two further ramp loss objectives introduced in Gimpel and Smith (2012), namely Ramp1
and Ramp2. We compare these objectives toMRT, which, in a second step, we alsomodify to
incorporate the bipolar principle. Conceptually, the ramp loss objectives are similar to the
best performing objective ofMisra et al. (2018), but their negative output is chosen based on
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margin violation with regards to a pseudo-gold parse, whereas in our ramp loss objectives
negative parses are identified independently.

Furthermore, wemodify theRamp objective to operate on a token level, leading to the object-
ive Ramp+T. By operating at the token level, this objective can more effectively target which
parts in a fear parse are wrong. With a comparison to the hope parse, it can acknowledge
the parts that are correct in the fear parse and perform a more accurate update in which
only incorrect tokens are discouraged. Additionally, this objective more accurately imitates
the behaviour of the ramp loss when applied to linear models, where features are only up-
dated if they differ in the hope and fear output. Finally, this objective allows us to directly
manipulate tokens as the MLE objective does, but which is not available in scenarios with
no direct supervision.

Concretely, we train a semantic parser using theNLmaps v2 corpus and the neural sequence-
to-sequence framework Nematus (Sennrich et al., 2017). We assume a small amount of
question-parse pairs are available to train an initial neural semantic parser. Further data is
only available in the form of question-answer pairs, with which we want to further improve
the semantic parser.31 Our experiments show that the bipolar ramp loss objective Ramp+T
significantly outperforms all other objectives and improves the baseline semantic parser by
over 12 percentage points in F1 score. Furthermore, we give a detailed analysis of why the
sequence-level Ramp objective is superior to MRT.

The main contributions of this chapter are as follows:

• Definition of a token-level ramp loss objective.

• Implementation of the ramp loss objectives in Nematus.

• Application of implemented objectives to semantic parsing on theNLmaps v2 corpus
and subsequent error analysis.

• Identification of the bipolar principle which is crucial for successful objectives. This
principle was discovered together with Laura Jehl who ran corresponding experi-
ments on machine translation tasks.

Thework presented in this chapter has been previously compiled in Jehl et al. (2019), which
is currently under submission. My co-author, Laura Jehl, has applied the same objectives as
presented in this chapter to machine translation tasks. The result, that a bipolar objective is
crucial for success, is also confirmed by my colleague on weakly supervised domain adapt-
ation experiments for machine translation.

The structure of this Chapter is as follows: First, we present all relevant objectives in Sec-
tion 6.1, where Section 6.1.1 covers MRT, Section 6.1.2 the ramp loss objectives and Section
6.1.3 the token-level ramp loss objective. Second, we present empirical results in Section 6.2,
which we conclude with an error analysis.
31Due to the nature of the domain, for NLmaps it is harder to obtain gold answers than gold parses. This is often

not the case for other domains, hence we assume that only a small amount of question-parse pairs are available
to investigate the type of scenario where question-answer pairs are easier to obtain.
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6.1. Objectives

For convenience, we repeat here the general notation introduced in the previous chapter for
response-based on-policy learning: We assume the existence of a model πw(y|x) paramet-
rised by w that, given an input x ∈ X, defines a probability distribution over all possible
outputs y ∈ Y(x). Furthermore, we assume that it is possible to score every possible output
y by employing an external metric δ(y), which returns a reward that quantifies how suitable
it is to produce y given x. In the following, we define various objectives that can be used to
update the parameters w of πw(y|x) by performing gradient descent for a loss function L
using the update rule ∆w = −η∇wL. In contrast to the previous chapter, we assume here
that updates are made on the basis of minibatches of size m. Finally, we denote the most
likely output under the current model πw(y|x) as

ŷ = arg max
y∈K(x)

πw(y|x), (6.1)

whereK(x) is a k-best list that is searched using beam search because Y(x) is too large.

6.1.1. Minimum Risk Training (MRT)

We compare our ramp loss objectives to MRT (Smith and Eisner, 2006; Shen et al., 2016).
Given an input xt, r outputs are sampled from the model distribution and updates are per-
formed based on the following objective:

LMRT = − 1

m

m∑
t=1

1

r

r∑
s=1

πw(yt,s|xt) (δ(yt,s)− b(xt)) , (6.2)

where δ(yt,s) is the reward returned for yt,s by an external metric and b(xt) is a baseline
computed by sampling r′ outputs y′t from the model distribution,

b(xt) =
1

r′

r′∑
s′=1

δ(y′t,s′). (6.3)

The pseudo-code for this objective is presented in Algorithm 4.

6.1.2. Sequence-Level Ramp Loss

The ramp loss objectives in this chapter can be formulated in the generalised form intro-
duced in the previous chapter (see Equation 5.3), here repeated for convenience:

LRamp = −

(
1

m

m∑
t=1

πw(y+
t |xt)−

1

m

m∑
t=1

πw(y−t |xt)

)
, (6.4)
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Algorithm 4 Pseudo-code for the MRT objective.

Input: Training data with inputs x and gold answers ā, the latter of which is employed
in the task feedback function δ(y), minibatch size m, number of samples r, number of
samples r′ for the baseline , learning rate η, initial policy πw
repeat

yavg = None
for t = 1, . . . ,m do

Receive input sequence xt and gold answer āt
Sample r′ output sequences y′t
Compute b(xt) = 1

r′

∑r′

s′=1 δ(y
′
t,s′)

Obtain r output sequences yt and their probabilities πw(yt|xt)
if m = 1 then

yavg = 1
r

∑r
s=1 πw(yt,s|xt) (δ(yt,s)− b(xt))

else
yavg+ = 1

r

∑r
s=1 πw(yt,s|xt) (δ(yt,s)− b(xt))

end if
end for
w = w + η ∇w 1

m

∑m
t=1 yavg

until Stopping Criterion Reached

Name y+ y−

Ramp arg maxy∈P(x) πw(y|x) arg maxy∈N(x) πw(y|x)

Ramp1 ŷ arg maxy∈N(x) πw(y|x)

Ramp2 arg maxy∈P(x) πw(y|x) ŷ

Table 6.1.: Formulation of three ramp loss objectives for semantic parsing. We abbreviate
P(x) = K(x) : δ(y) = 1 and N(x) = K(x) : δ(y) = 0.

where y+ is a hope output that we want to promote and y− is a fear output that we want
to demote. Intuitively, y− should be an output with high probability but low reward from
the external metric. Analogously, y+ should be an output with a high probability and with
a high reward from the external metric.

The exact definitions of y− and y+ depend on the underlying task. In semantic parsing for
question answering, natural language questions are mapped to machine readable parses.
Such a parse y can be executed against a database, which returns an answer a that can be
compared to the gold answer ā and the following metric can be defined:

δ(y) =

1 if a = ā

0 else.
(6.5)

Adopting the definition of Ramp from Chapter 5, y+ is defined as the most probable output
in the k-best list K(x) that leads to the correct answer, i.e. where δ(y) = 1. In contrast, y−
is defined as the most probable output in K(x) that does not lead to the correct answer,
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Algorithm 5 Pseudo-code for the Ramp objective with mini-batches.

Input: Training data with inputs x and gold answers ā, the latter of which is employed in
the task feedback function δ(y), minibatch sizem, learning rate η, initial policy πw
repeat

hope = [ ]
fear = [ ]
for t = 1, . . . ,m do

Receive input sequence xt and gold answer āt
Obtain output sequence ŷt and its probability πw(ŷt|xt)
Receive task feedback δ(ŷt) ∈ {1, 0}
if δ(ŷt) = 1 then

Search for y−t and get its probability πw(y−t |xt)
if y−t is found then

hope += πw(ŷt|xt)
fear += πw(y−t |xt)

end if
else

Search for y+
t and get its probability πw(y+

t |xt)
if y+

t is found then
hope += πw(y+

t |xt)
fear += πw(ŷt|xt)

end if
end if
y+
avg = 1

m

∑m
t=1 hopet

y−avg = 1
m

∑m
t=1 feart

w = w + η ∇w(y+
avg − y−avg)

end for
until Stopping Criterion Reached

i.e. where δ(y) = 0. If y+ or y− are found, the parse is cached as a hope or fear output,
respectively, for the corresponding input x. If at a later point y+ or y− cannot be found
in the current k-best list, then previously cached outputs are accessed instead. Should no
cached output exist, the corresponding sample is skipped.

Following Gimpel and Smith (2012), we define two further ramp loss objectives: Setting the
hope to be the most likely output, i.e. y+ = ŷ, leads to Ramp1 and setting the fear to be the
most likely output, i.e. y− = ŷ, leads to Ramp2. The overview of the three objectives can be
found in Table 6.1 and the pseudo-code is presented in Algorithm 5.
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6.1.3. Token-Level Ramp Loss

For models that decompose over tokens, we can also formulate a token-level ramp loss ob-
jective. To be able to adjust individual tokens, we move to log probabilities, so that the se-
quence decomposes as a sumover individual tokens and it is possible to ignore tokenswhile
encouraging or discouraging others. This leads to the Ramp-T objective:

LRamp+T =−

 1

m

m∑
t=1

|y+t |∑
j=1

τ+
t,j log πw(y+

t,j |y
+
t,<j , xt) (6.6)

− 1

m

m∑
t=1

|y−t |∑
j=1

τ−t,j log πw(y−t,j |y
−
t,<j , xt)

 ,

where yt,<j = yt,1, yt,2 . . . yt,j−1 and where τ+
t,j and τ−t,j are set to 0, 1 or −1 depending on

whether the corresponding token y+
t,j/y

−
t,j should be left untouched, encouraged or discour-

aged, respectively. Concretely, we define:

τ+
t,j =

0 if y+
t,j ∈ y−

1 else
(6.7)

and

τ−t,j =

 0 if y−t,j ∈ y+

−1 else.
(6.8)

With this definition, tokens that appear in both y+ and y− are left untouched, whereas
tokens that appear only in the hope output are encouraged and tokens that appear only
in the fear output are discouraged. This contrast allows the model to distinguish between
a good and a bad output on a more fine-grained level than the sequence-level objectives
can.

Note that all ramp loss objectives are naturally bipolar, whereas MRT objectives are only
bipolar if the metric assigns negative scores for bad outputs.

6.2. Empirical Results

Our experiments are conducted on theNLmaps v2 corpus (Lawrence and Riezler, 2018) and
we use the sequence-to-sequence neural network package Nematus (Sennrich et al., 2017),
which follows the setup outlined in Section 2.4. For each question, the NLmaps v2 corpus
provides both gold parses and gold answers. We take a random subset of 2,000 question-
parse pairs to train an initial model πw with an MLE objective (see Equation 2.28), where
parses are split into individual tokens by taking a pre-order traversal of the original tree
structure (see Listing 3.4 in Section 3.2). A further 1,843 and 2,000 instances of the corpus
are retained for development and test set, respectively. For the remaining 22,766 data points
we assume that no gold parses exist and only gold answers are available. With the gold
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m % F1 ∆

1 Baseline 57.45
2 MRT 1 63.60±0.02 + 6.15
3 Ramp1 80 60.50±0.01 + 3.05
4 Ramp2 80 64.22±0.00 + 6.77
5 Ramp 80 69.03±0.04 +11.58
6 Ramp+T 80 69.87±0.02 +12.42

Table 6.2.: F1 scores on the NLmaps v2 test set for various response-based on-policy object-
ives. Results are averaged over two independent runs. m is the minibatch size.
The best result is indicated in bold face. All models are statistically significant
from each other at p < 0.01, except the pair (2, 4).

answers as a guide, the initial model πw is further improved using the objectives outlined
in Section 6.1.

Themodel has 1,024 hidden units andword embeddings of size 1,000. The optimal learning
rate for SGD was chosen in preliminary experiments on the development set and is set to
0.1. Gradients are clipped if they exceed a value of 1.0 and the sentence length is capped at
200. In the case of the MRT objectives, we set r = r′ = 10. For the Ramp objectives the size
of the k-best list K is 10. For objectives with minibatches, the size of a minibatch ism = 80

and validation on the development set is performed after every 100 updates. For objectives
where updates are performed after each seen input, the validation is run after every 8,000
updates. The highest evaluation score on the development set determines the stopping point
and results are reported on the test set. Each experiments is run for 30 validations or 30 days,
whichever occurs first.32

For validation and at test time, the most likely parse is obtained after a beam search with a
beam of size 12, and this parse is executed against the database to retrieve its corresponding
answer. We define recall as the percentage of completely correct answers divided by the set
size and precision as the percentage of correct answers out of the set of answers with non-
empty strings. The harmonic mean of recall and precision constitutes the F1 score which
is the evaluation measure we report in our experiments. Statistical significance between
models is measured using an approximate randomization test (Noreen, 1989).

Results using the various ramp loss objectives as well as MRT can be found in Table 6.2.
MRT can outperform the baseline by about 6 percentage points in F1 score. Ramp1 performs
worse thanMRT but can still significantly outperform the baseline by 3.05 points in F1 score.
Ramp2 performs better than Ramp1, but cannot significantly outperform MRT. In contrast
to this, by carefully selecting both a hope and fear parse, Ramp achieves a significant further
5.43 points in F1 score over MRT.

By incorporating token-level feedback, our novel objective Ramp+T outperforms all other
models significantly and beats the baseline by over 12 points in F1 score. Compared toRamp,
Ramp+T can take advantage of the token-level feedback, which allows amodel to determine
32The 30 day mark was only hit by Ramp2 which had to execute more parses looking for a correct one than the

other models, which causes a significant slowdown. This is most likely because it sets the most likely parse,
which is often already good, as the fear parse, i.e. y− = ŷ.
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6.2 Empirical Results

m % F1 ∆

1 Baseline 57.45
2 MRT 1 63.60±0.02 + 6.15
3 MRT+neg 1 65.93±0.16 + 8.48
4 Ramp m=1 1 66.78±0.21 + 9.33
5 Ramp 80 69.03±0.04 +11.58

Table 6.3.: F1 scores on the NLmaps v2 test set for the Ramp and the MRT objectives as well
as two further objectives, which help crystallise the difference between the two
former objectives. Results are averaged over two independent runs.m is the min-
ibatch size. All models are statistically significant from each other at p < 0.01,
except the pair (3, 4).

which tokens in the hope output are instrumental to obtain a positive reward but aremissing
in the fear output. Analogously it is possible to identify which tokens in the fear output lead
to an incorrect parse, rather than also punishing the tokens in the fear output which are
actually correct.

We want to investigate why Ramp performs better than MRT. To this end, we introduce the
objectiveMRT+neg : itmodifies the feedback for parseswith awrong answer to be−1 rather
than 0, which resembles the fear output that is discouraged in the Ramp objective. With this
change, the MRT objective incorporates bipolar supervision as it now actively discourages
wrong parses. With this modification, MRT+neg can significantly outperformMRT by 2.33
points in F1 score (see Table 6.3). This showcases the importance of employing bipolar su-
pervision and it constitutes an important finding compared to previous approaches (Liang
et al., 2017; Misra et al., 2018), where the feedback is defined to lie in the range of [0, 1].

However, MRT+neg still falls short of Ramp by 3.1 points in F1 score. There is one further
crucial difference between MRT+neg and Ramp: the MRT objective uses r = 10 outputs per
input in the update, whereas the Ramp objectives only update with regards to two outputs
(the hope and the fear output) per input. Consequently, the MRT objectives take up more
valuable RAM memory on a GPU per input. This leads to a trade-off between using more
outputs per input or calculating an average over several inputs. To investigate how import-
ant it is to calculate an average over several inputs, we set the minibatch size of the Ramp
objective to 1. This objective, Ramp m=1, obtains a lower F1 score than Ramp (see Table 6.3),
which showcases the importance of calculating an average over several inputs. Its F1 score
is in fact on par with the MRT+neg objective, which suggests that no benefit is gained from
calculating an average over outputs for one input if one carefully chooses an appropriate
hope and fear output.

Finally, Figure 6.2 reports results on the test set at every validation point for the best two
ramp loss objectives,Ramp andRamp+T, as well asMRT and theMRT+neg. At all points the
ramp loss objectives significantly lie above both MRT objectives. Ramp+T lies significantly
above Ramp at nearly all times, particularly at the later validation points.

To summarise, Ramp can attribute its success to two factors: First, it discourages parses that
receive a wrong answer rather than ignoring them as MRT does. Second, it calculates an
average over inputs rather than an average over the outputs of one input. Finally, further
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Figure 6.2.: F1 performance on the test set at the validation points for the objectives MRT,
MRT+neg, Ramp and Ramp+T.

performance gains can be obtained by employing the token-level objective Ramp+T. These
results also concur with weakly supervised domain adaptation experiments for machine
translation conducted by my colleague, Laura Jehl.

Baseline MRT Ramp Ramp+T
OSM tag 1,248 1,071 ↓14.18% 864 ↓30.77% 717 ↓42.55%

Qtype 135 113 ↓16.3% 101 ↓25.19% 93 ↓31.11%

Wrong Dist. 3 4 ↑33.33% 5 ↑66.67% 7 ↑133.33%

Skeleton 70 62 ↓11.43% 181 ↑158.57% 256 ↑265.71%

Invalid Parse 7 7 →0.0% 7 →0.0% 22 ↑214.29%

Total 1,463 1,255 ↓14.22% 1,101 ↓24.74% 1,093 ↓25.29%

Table 6.4.: Overview of which type of errors the baseline makes and the percental in- or
decrease with regards to the baseline for the objectives MRT, Ramp and Ramp+T.
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6.2 Empirical Results

6.2.1. Error Analysis

Following the error analysis setup introduced in Section 4.3.2, we present the type of errors
made by the baseline model, as well as the models produced by the objectives MRT, Ramp
and Ramp+T in Table 6.4.33

The MRT model achieves its largest numerical decrease in OSM tag errors and the largest
percental decrease occurs for errors of the type Qtype. Overall, this model can reduce the
total number of errors by 14.22% compared to the baseline. TheRampmodel records a larger
decrease in OSM tag and Qtype errors than the MRT model, but also observes a large in-
crease of Skeleton errors. However, the reduction of errors outweighs, leading to a 24.74%
decrease in overall errors compared to the baseline. The trend of Ramp is exacerbated for
the Ramp+T model: compared to Ramp it has a lower count of OSM tag and Qtype errors,
but at the same time an even higher count of Skeleton errors. With 25.29% less errors than
the baseline model it overall reaches a slightly higher error reduction rate than Ramp.

For both Ramp and Ramp+T, the increase of Skeleton errors is largely due not producing
the operator around where it would be required to form a correct parse.34 In detail, this for
examplemeans that for the natural language question “Gas Stations near Résidence de l’Abbaye
de Roseland in Nice”, instead of the correct parse,

query( around(center( area(keyval(’name’,’Nice’)),

nwr(keyval(’name’,’Résidence de l’Abbaye de Roseland’))),

search( nwr(keyval(’amenity’,’fuel’)) ),

maxdist(DIST_INTOWN)) ,qtype(latlong)),

Rampwrongly produces the parse

query(area(keyval(’name’,’Nice’)),

nwr(keyval(’amenity’,’fuel’)), qtype(latlong)).

For Ramp, the loss of the around operator causes 144 out of 181 Skeleton errors (83.7%)
and for Ramp+T it is 212 out of 256 (89.8%). In contrast, for MRT the issue of the missing
around operator occurs only 15 out of 62 times (27.4%). However, removing the instances
of the missing around operator, Ramp and Ramp+T retain only 37 and 44 Skeleton errors,
respectively,which is lower than the Skeleton errors recorded for the baseline (70) andMRT
(62). Despite the frequent loss of the around operator, Ramp and Ramp+T still correctly use
the around operator in the majority of instances. Out of 891 instances in the test set where
the around operator is required to formulate the correct parse, Ramp correctly produces it
747 times (83.83%) and Ramp+T 680 times (76.31%).

We would like to understand why the ramp loss objectives develop the issue of not pro-
ducing the operator around where it would be required. We conjecture that it is harder to
find a hope parse if a correct parse requires the around operator because these parses are
longer and more complex than parses without the around operator.
33Errors are reported averaged over both independent runs and values are rounded to the nearest integer.
34Note that without the around operator, the correct answer cannot be reached, except for rare cases of spurious

parses. Spurious parses are parses that do not correctly represent the meaning of the associated question but
by coincidence evaluate to the correct answer.
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To investigate this, we first analyse the set of gold parses that we do have available for the
NLmaps v2 training data, even though we do not employ them in our experiments. This
shows that in 43.3% of the cases, the correct parse requires the use of the around oper-
ator. However, analysing the log file of one Ramp experiment, shows that only 17% of found
hope parses contain the around operator. This discrepancy indicates that parses with the
around operator are drastically under-represented in updates for the ramp loss objectives,
as instances are skipped if no hope can be found. Consequently, the loss of the around oper-
ator could be a case of overfitting on parses without the around operator for the ramp loss
objectives. As the reduction in the error types OSM tag and Qtype outweighs this increase,
this effect cannot be caught by choosing the highest evaluation score on the development
set. One possible alternative to explore in the future, could be to specifically oversample
instances that contain the around operator and for which hope parses, i.e. correct parses,
have been found previously.

Conclusion

For many domains of semantic parsing for question-answering, it is too expensive to obtain
gold parses for direct supervision because the underlying MRL is only known to a few ex-
perts. Instead, it is easier to collect gold answers. We used such gold answers in a response-
based on-policy learning setup to ground the semantic parser in this downstream, weak
supervision. We considered the following scenario: we trained a baseline neural semantic
parser on a small subset of the NLmaps v2 using question-parse pairs and assumed that
all further training data is only available in the form of question-answer pairs. When only
question-answer pairs are available, it is not possible to apply the usual MLE objective to
train the neural network. Instead, we employ metric-augmented objectives, where our met-
ric is defined on the basis of whether a parse produced by the model leads to the correct
answer or not.

To more effectively help a model to find correct parses, we proposed to not just encourage
parses that lead to the correct answer, but to also discourage parses that lead to the wrong
answer. We call objectives incorporating this idea bipolar. Specifically, we investigated vari-
ous ramp loss objectives, which naturally incorporate this bipolar principle. Next to the
ramp loss objectives Ramp1 and Ramp2, we also revisited the objective Ramp from the previ-
ous chapter. Ramp losses define a hope and a fear parse, which are promoted and demoted,
respectively. For Ramp, the hope parse for an input question is the parse that has the highest
probability while executing to the correct answer. On the other hand, the fear parse has the
highest probability while resulting in a wrong answer. Ramp1 uses the same fear definition,
but sets the hope to be the most likely output. In contrast, Ramp2 sets the fear to be the most
likely output and uses the same hope definition as Ramp1.

The ramp loss objectives were compared to MRT, which does not incorporate the bipolar
principle and instead ignores incorrect parses. We showed that Ramp outperforms all other
sequence-level objectives because it can contrast a hope and fear parse. Additionally, its
procedure to identify the hope and fear parses is more effective than the procedures of the
other two ramp loss objectives, Ramp1 and Ramp2.
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6. Conclusion

We also introduced a token-level variant of Ramp, called Ramp+T. This objective outper-
forms all other objectives because it can better distinguish between a good and a bad parse
by comparing them at the token level. Via a comparison to the hope parse, Ramp+T can
ensure that tokens in a fear parse are only punished if they are incorrect, i.e. they do not ap-
pear in the hope parse. At the same time it ensures specifically that the tokens in the hope
parse, but not in the fear parse, are promoted. With this more fine-grained contrasting of
hope and fear parse, this objective significantly outperforms all other objectives.

In an attempt to analyse the usefulness of the bipolar principle further, we modified MRT
to punish, instead of ignore, parses that lead to an incorrect answer. The resulting objective,
MRT+neg, can significantly outperform the original objective, but still falls short of reach-
ing the performance of sequence-level Ramp. We were able to identify that the remaining
performance difference is due to MRT’s approach to compute an average over several out-
puts for one input. Instead, Ramp computes an average over inputs, for each of which only
two outputs - a hope and a fear parse - are required. In an experiment, we showed that it’s
more important to compute such an average over inputs rather than an average over outputs
for one input, hence explaining the superiority of Ramp over MRT.

Similar conclusions can be drawn forweakly supervised domain adaptation experiments for
machine translation conducted by my colleague, Laura Jehl. In these experiments, Ramp+T
is also the best objective and MRT can only improve upon the baseline if the augmented
metric is modified to punish, rather than ignore, bad outputs.

Part II Conclusion

Response-based on-policy learning leverages feedback obtained from grounding a model
in a downstream task. With this approach, feedback for arbitrarily manymodel outputs can
be obtained and outputs that lead to positive task feedback can be discovered. It is possible
to find several successful outputs, which can lead to more robust learning. Furthermore, in
the case of linear models, gold targets might not be reachable and response-based on-policy
learning allows us to find surrogate gold targets that can be produced by the model.

We successfully employed the approach to two NLP sequence-to-sequence tasks. In a first
task, we tuned a linear machine translation model to work well in conjunction with a se-
mantic parser for a multilingual semantic parsing pipeline. Additionally, response-based
on-policy learning alleviates the need for direct-supervision gold targets in scenarios where
it is easier to obtain downstream gold targets. We explored this setup in second task: we im-
proved a neural semantic parser in a scenario where input questions are paired with gold
answers, rather than gold parses, because gold answers are easier to obtain for many do-
mains.

Together, the results from Chapter 7 and Chapter 8 show that response-based on-policy
learning is very effective and leads to significant improvements on both tasks. But ulti-
mately response-based on-policy learning still requires the gold targets of the downstream
task, which might also be too expensive to obtain. This is for example the case for the OSM
domain. Gold parses are expensive to obtain because the underlying MRL is only known
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to a handful of experts. However, gold answers for most questions are outright impossible
to acquire from humans because the answer sets can be open-ended, fuzzy or too large to
enumerate without error or within reasonable time constraints. Thus, we next explore an
approach where no gold targets are required for learning.
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Counterfactual Off-Policy Learning





Chapter 7

Machine Translation:
Learning from Deterministic Logs
with Bandit Feedback

Machine-learnt statistical models have increasingly become the core of vari-
ous online applications, such as information retrieval, ad placement, auto-
matic machine translation and question-answering systems. Our second
approach to learn from feedback, counterfactual off-policy learning (see

also Section 1.3), assumes that such a model is deployed in a production system. User-
system interactions are logged and used to improve the deployed model or another model.
For every interaction, the context or user input to the model is recorded in conjunction with
the output that the model produces. For each such pair, corresponding feedback is elicited
implicitly or explicitly from the user and recorded. Unlike gold-labelled data for supervised
learning, this type of data is cheap to collect and plentiful. Developing methods to learn
from such data is consequently an interesting endeavour for industrial online systems.

Learning from logged data is considerablymore challenging compared to learning from su-
pervised data. Because no gold targets are available, feedback for the output has to be collec-
ted directly from users. Consequently the feedback is subjective and might be wrong. This
can lead to a very noisy data set for learning. Furthermore, the feedback is only available
for one system output and no other output can be judged. Finally, as the output is chosen
by the deployed model, the resulting log is biased towards the choices of the model.

A setup where feedback is only available for one output is referred to as a bandit learning
setup (Bubeck and Cesa-Bianchi, 2012). It borrows its terminology from choosing one slot
machine, a “one-armed bandit”, among others: a slot machine (or output) is chosen before
the reward is revealed and it remains unknown what reward would have been obtained if
another slot machine (or output) had been chosen. Bandit learning can be seen as a spe-
cial problem of reinforcement learning (Sutton and Barto, 1998) and has been investigated
for structured prediction problems previously by Sokolov et al. (2016) and Kreutzer et al.
(2017). In both works, models were updated on-policy (see Figure 7.1), where the term
policy is used as a synonym for model in reinforcement learning literature and which we
adopt in the following.
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Figure 7.1.: Graphical view of on-policy learning. During on-policy learning, the system
presents an output to a user and receives a reward with which the system’s
parameters are immediately updated.
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Figure 7.2.: Graphical view of off-policy learning. During off-policy learning, the system
presents an output to a user and receives a reward. Together with the input, the
information is saved to a log. Later on the log is used to update a system, which
can but doesn’t have to be the system that produced the log.

In contrast, our work assumes that a sufficient amount of data is collected in a log first
and the log is then used in an off-policy setting to update the policy (see Figure 7.2). This
scenario has for example been explored by (Bottou et al., 2013) on the task of response
prediction for displaying advertisement online. It has also been studied in the context of
contextual bandits (Langford et al. (2008); Strehl et al. (2010); Dudik et al. (2011); Li et al.
(2015), inter alia), reinforcement learning (Sutton and Barto (1998); Precup et al. (2000);
Jiang and Li (2016); Thomas and Brunskill (2016), inter alia), and structured prediction
(Swaminathan and Joachims (2015a,b); Joachims et al. (2018), inter alia).

We choose to update models offline, i.e. not while they are deployed, for several reasons.
First, updating a deployed system could cause the system to deteriorate without notice
which would result in showing inferior outputs to the user and cause a monetary loss. This
danger is heightened if a user recognises that they can influence the application and in-
tentionally gives malicious feedback. Second, in an offline setting it is possible to test vari-
ous algorithms and hyperparameter settings. Third, the resulting new policy can be valid-
ated against separate test sets to ensure satisfactory performance before deployment. The
safety that offline learning provides, is essential for real-world applications where deterior-
ated models bear a significant risk (Bottou et al., 2013; Swaminathan and Joachims, 2015a;
Thomas et al., 2015) and it is one possible approach of safe reinforcement learning (García
and Fernández, 2015; Abbeel et al., 2009).
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7. Introduction

Algorithm 6 Pseudo-code for collecting stochastic logs.

1: Logging policy µ
2: D = {}
3: for t = 0, . . . , T do
4: Observe xt
5: Sample yt ∼ µ(y|xt)
6: Obtain feedback δt
7: D ∪ {xt, yt, δt, µ(yt|xt)}

While offline learning is the safer choice, it introduces a complication. The outputs recorded
in the log are chosen by the logging policy and are thus biased towards this policy. Using
the log to learn a new policy presents a problem because the new policy would have chosen
different outputs if it had been in control during logging. For this reason, off-policy learning
is also referred to as counterfactual learning. The data bias in the log can be corrected us-
ing importance sampling. For this, we additionally record the logging policy’s probability
for the chosen output, i.e. the propensity score. Using the inverse propensity score (Rosen-
baum and Rubin, 1983), it is possible to use the log to obtain an unbiased estimate of the
average reward a new policywould procure. The resulting Inverse Propensity Scoring (IPS)
estimator can be used as the objective in a gradient ascent setup to improve a policy, i.e. for
policy learning. Alternatively, the estimator can be used for policy evaluation, where it
estimates the expected average reward of another policy.

The IPS estimator suffers from high variance which can lead to problems in praxis. Two ex-
tensions have been suggested previously to dealwith this issue. One approach reweights the
importance sampling ratio (Precup et al. (2000); Jia andLiang (2016); Thomas andBrunskill
(2016)), leading to the Reweighted Inverse Propensity Scoring (IPS+R) estimator. Swam-
inathan and Joachims (2015b) showed that, from the perspective ofMonte Carlo simulation,
this can be seen as using amultiplicative control variate (Kong (1992)). But both the IPS and
IPS+R estimator can suffer from degenerate behaviour for real-valued positive rewards. We
give an analysis and a corresponding proof regarding this behaviour in this chapter.

Another approach to reduce the variance of the IPS estimator is the Doubly Robust (DR)
estimator (Dudik et al. (2011); Jia and Liang (2016); Thomas and Brunskill (2016)). For
this estimator, IPS is combined with a Direct Method (DM) reward predictor which can
predict rewards for any input but suffers from high bias. This can be seen as extending the
IPS estimator with an additive control variate (Ross (2013), Chapter 9). In previous work,
the linear interpolation parameter between IPS and DM has simply been set to 1. We extend
this by empirically calculating the optimal value for this scalar (Ross (2013), Chapter 9),
leading to the ĉDoubly Robust (ĉDR) estimator.

In order for any of these counterfactual estimators to work well, the output space needs to
be explored sufficiently by the logging policy (Langford et al., 2008; Strehl et al., 2010). This
condition can easily be satisfied if a policy samples an output from the underlying distribu-
tion, leading to stochastically created logs (see Algorithm 6). However, in many scenarios
such sampling can result in inferior outputs, which in turn lead to user dissatisfaction and
monetary loss. This danger is particularly high for sequence-to-sequence tasks in NLP be-
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Algorithm 7 Pseudo-code for collecting deterministic logs.

1: Logging policy µ
2: D = {}
3: for t = 0, . . . , T do
4: Observe xt
5: yt = arg maxy∈Y(xt) µ(y|xt)
6: Obtain feedback δt
7: D ∪ {xt, yt, δt}

cause all but a small number of outputs would be incorrect. For example, in machine trans-
lation, a commercial system can typically only present one translation to the user. To avoid
the risk of showing a bad output to a user, sampling is avoided and only the most likely
translation under the current policy is presented.

The strategy of showing only the most likely output leads to deterministic logging (see
Algorithm 7). In this setup, the propensity score becomes 1 and as a consequence, the im-
portance sampling of the inverse propensity score approach is disabled. Furthermore, for
deterministic logging, explicit exploration is missing, which makes it unclear if the out-
put space is sufficiently explored. To this end, we define deterministic estimators which are
counterparts to the introduced stochastic estimators. Using these estimators, we design an
experiment that aims to discern if deterministic logging is feasible for sequence-to-sequence
learning in NLP.

In particular, our goal is the domain adaptation of a machine translation system, which
uses the linear SMT framework Cdec (Dyer et al., 2010). We can show empirically on two
separate domains and language pairs that the best deterministic estimator is up to par with
the best stochastic estimator. With improvements of up to 2 BLEU, we can demonstrate that
it is possible to use counterfactual learning for the sequence-to-sequence task of machine
translation. In the next chapter, we also apply counterfactual learning to another sequence-
to-sequence task, namely semantic parsing for question-answering.

Counterfactual learning has previously been typically applied to problems with small out-
put spaces. Its success on amachine translation task, shows that the approach is also applic-
able to problems with large output spaces. Even though explicit exploration is missing for
deterministic logging, we give a possible explanation why implicit exploration is sufficient
for sequence-to-sequence tasks.

The main contributions of this chapter are as follows:

• Application of counterfactual policy evaluation and learning to a problemwith a large
output space, namely machine translation.

• Definition of deterministic estimators: Deterministic PropensityMatching (DPM), Re-
weighted Deterministic Propensity Matching (DPM+R), Doubly Controlled (DC)
and ĉDoubly Controlled (ĉDC).

• Implementation of all estimators for the framework Cdec.

• Analysis and proofs of degeneracies in the estimators IPS, DPM, IPS+R and DPM+R.
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• Empirical evidence that deterministic logging performs as well as stochastic logging
in a machine translation domain adaptation task.

• Intuitive sketch of why implicit exploration is sufficient for deterministic logging on
sequence-to-sequence tasks.

The work presented in this chapter has been previously published in (Lawrence et al.,
2017b) and (Lawrence et al., 2017a). Artem Sokolov defined the DR and ĉDR estimators
(Section 7.1.4) for stochastic policies. Furthermore, he wrote the script to generate logs for
the SMT framework Cdec and created the baseline systems as well as the oracle systems.
He allowed me to re-use functions from the mentioned script to implement the counter-
factual policy learning algorithms introduced in this chapter for Cdec. Additionally, Stefan
Riezler and Pratik Gajane advised me on the best presentation and structure for the proofs
presented in Section 7.2.

The structure of this chapter is as follows: Section 7.1 introduces various counterfactual
estimators for stochastic and deterministic logging. Some of the estimators exhibit degener-
ate behaviour. This is analysed formally and intuitively in Section 7.2. Section 7.3 presents
empirical results for both policy evaluation and policy learning and we discuss a possible
explanation of why deterministic logging is as successful as stochastic logging.

7.1. Counterfactual Estimators

In the counterfactual setup for sequence-to-sequence learning, we assume an input x ∈ X

that is mapped to an output y ∈ Y(x) by a parametrised model, in reinforcement learning
terms also called policy. Furthermore, there exists a feedback function δ(x, y) that assigns a
reward in the range of [0, 1] to (x, y) pairs. A logging policy µ chooses an output y given the
input x. Obtaining a reward δ(x, y), a log of triplets can be collected: D = {(xt, yt, δt)}nt=1,
where yt is an output produced by the policy µ given an input xt and δt is the corresponding
feedback.

For stochastic logging (seeAlgorithm6),we additionally record the propensity scoreµ(y|x),
i.e. the probability of y being chosen given x by the logging policy µ. In the case of determ-
inistic logging (see Algorithm 7), the policy µ always chooses the most likely output y and
thus the propensity score is µ(y|x) = 1. We are interested in formulating counterfactual es-
timators that can estimate the average reward for another parametric policy πw based on the
logD. This estimate can be used either for the policy evaluation of πw or for policy learning
to improve πw.

In this chapter, we introduce four estimators for stochastic policies and their counterpart
estimators for deterministic policies. The stochastic estimators can be used for policy eval-
uation. Policy evaluation using deterministic estimators is not recommended because they
cannot counter the bias present in the log. Using counterfactual estimators for policy evalu-
ation is a promising technique to replace costly A/B tests. In A/B tests one typically diverts
a random subset of users to a new system B, whereas the remainder of the users continue
to use system A. Comparing the behaviour of users of system A to the behaviour of users of

101



Chapter 7. MT: Learning from Deterministic Logs with Bandit Feedback

system B, it is then possible to infer whether or not system B should replace system A per-
manently and for all users. In such a setup only a limited number of alternative systems can
be tested and the tests themselves can be time intensive. Using counterfactual estimators to
estimate the average reward of a policy can be a time efficient alternative and opens up the
possibility of testing many more alternative systems concurrently.

For policy learning, deriving the various counterfactual estimators V leads to a variety of
learning algorithms when applying a gradient ascent update rule35,

∆w = η∇V(πw). (7.1)

Algorithm 8 gives the pseudo-code for counterfactual off-policy learning.

Algorithm 8 Pseudo-code for batch off-policy learning from logs.

1: Input: collected log D of size n, learning rate η, initial policy πw
2: repeat
3: for t = 0, . . . , n do
4: Receive input-output pair (xt, yt) from the log D
5: Calculate πw(yt|xt)
6: end for
7: Calculate V(πw)
8: w = w + η∇wV(πw)
9: until Stopping Criterion Reached

7.1.1. Inverse Propensity Scoring (IPS)

Outputs are chosen by the loggingpolicyµ and thus the resulting logD is biased towards the
choices of µ. This bias can be corrected using importance sampling. The Inverse Propensity
Scoring (IPS) (Rosenbaum and Rubin, 1983) estimator employs importance sampling to
obtain an unbiased estimate of the expected reward for a different parametric policy πw:

VIPS(πw) =
1

n

n∑
t=1

δt
πw(yt|xt)
µ(yt|xt)

(7.2)

≈ Ep(x)Eµ(y|x)[δ(y)
πw(y|x)

µ(y|x)
]

= Ep(x)Eπw(y|x)[δ(y)].

35Becausewe formulate our counterfactual estimators as reward estimators, we employ gradient ascent, rather than
gradient descent. By negating the rewards, we would recover equivalent risk estimators with which gradient
descent could be performed.
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7.1.2. Deterministic Propensity Matching (DPM)

Choosing themost likely output under the logging policy µ, leads to deterministic logs with
µ(y|x) = 1. Modifying the IPS estimator accordingly, leads to the Deterministic Propensity
Matching (DPM) estimator:

VDPM (πw) =
1

n

n∑
t=1

δtπw(yt|xt). (7.3)

In this setup it is no longer possible to correct the data bias andwe are restricted to useVDPM
for empirical rewardmaximisation, which is equivalent to empirical risk minimisation if we
set LDPM (πw) = −VDPM (πw).

Both IPS and DPM can suffer from high variance because both will overfit to the outputs
present in the log. This can be combated by defining appropriate control variates which
lower the variance (Johnson and Zhang (2013); Wang et al. (2013); Defazio et al. (2014);
Greensmith et al. (2004); Schulman et al. (2015); Ranganath et al. (2014); inter alia). A lower
variance leads to faster convergence which has also been linked to improved generalisation
(Hardt et al., 2016). We introduce two different control variates in the following.

7.1.3. Multiplicative Control Variate: Reweighting

Assume the existence of a randomvariableX . The variance ofX can be reduced by choosing
a suitable, i.e. positively correlating, control variate Y with an expectation Ȳ = E[Y ] that is
knownor easily computed. In the case of amultiplicative control variate,we can formulate

E[X] ≈ E[
X

Y
]Ȳ . (7.4)

Note that this method introduces a bias, as E[XY ] 6= X
E[Y ] (Swaminathan and Joachims,

2015b). But in praxis, the benefits from the reduced variance typically outweigh the down-
side of the introduced bias. The variance of r = X

Y can be expressed as (Kong, 1992):

Var(r) ≈ 1

n
(r2Var(Y ) + Var(X)− 2rCov(Y,X)). (7.5)

Equation 7.5 indicates that E[XY ]Ȳ will exhibit lower variance than E[X] if the covariance
between Y and X is sufficiently high.

If X = 1
n

∑n
t=1 δtρw(yt|xt), then ρw(yt|xt) = πw(yt|xt)

µ(yt|xt) recovers the IPS estimator. To reduce
the variance of the IPS estimator, we choose Y = 1

n

∑n
t=1

πw(yt|xt)
µ(yt|xt) with expectation (Swam-

inathan and Joachims, 2015b)
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Ȳ =
1

n

n∑
t=1

∫
xt

∫
yt

πw(yt|xt)
µ(yt|xt)

µ(yt|xt)p(xt)dytdxt =
1

n

n∑
t=1

∫
xt

p(xt)dxt = 1, (7.6)

where p(xt) indicates the probability of observing xt.

With Y chosen, we arrive at the Reweighted Inverse Propensity Scoring (IPS+R) estim-
ator:

VIPS+R(πw) =

1
n

∑n
t=1 δt

πw(yt|xt)
µ(yt|xt)

1
n

∑n
t=1

πw(yt|xt)
µ(yt|xt)

(7.7)

=

n∑
t=1

δtρ̄w(yt|xt).

The estimator has been used previously (Precup et al. (2000), Jiang and Li (2016), Thomas
and Brunskill (2016)), although the link to control variates was not made explicit until
Swaminathan and Joachims (2015b). Unlike IPS, IPS+R is bound by the range of δ be-
cause the reweight variable defines a probability distribution over the log and consequently
ρ̄w(yt|xt) ∈ [0, 1]. This is a contrast to the IPS estimator where estimates can lie outside the
range defined by δ. However, an estimate in the range of δ is crucial for policy evaluation.

Setting ρw(yt|xt) = πw(yt|xt), we can define the deterministic counterpart to IPS, namely
Reweighted Deterministic Propensity Matching (DPM+R):

VDPM+R(πw) =
1
n

∑n
t=1 δtπw(yt|xt)

1
n

∑n
t=1 πw(yt|xt)

(7.8)

=

n∑
t=1

δtρ̄w(yt|xt).

7.1.4. Additive Control Variate: DM Predictor

Additive control variates are another option to reduce variance. Given a random variable
X , we can use an appropriate second random variable Y with expectation Ȳ = E[Y ] as an
additive control variate to reduce the variance of X :

E[X] = E[X − Y ] + Ȳ . (7.9)

The variance of (X − Y ) can be written as (Hoffman (2015); Ross (2013), Chapter 9.2):

V ar(X − Y ) = V ar(X) + V ar(Y )− 2Cov(X,Y ). (7.10)
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Using Equation 7.10, we can formulate under which condition (X−Y ) has a lower variance
than X :

V ar(X − Y ) < V ar(X) (7.11)
V ar(X) + V ar(Y )− 2Cov(X,Y ) < V ar(X)

V ar(Y ) < 2Cov(X,Y )

1

2
V ar(Y ) < Cov(X,Y ).

Equation 7.11 implies that the additive control variate will lower the variance if 1
2V ar(Y ) <

Cov(X,Y ), i.e. Y should have a low variance while exhibiting a high covariance with X . A
solution to ensuring that the condition of Equation 7.11 is always fulfilled, is to multiply Y
and Ȳ with a scalar ĉ (Hoffman (2015); Ross (2013), Chapter 9.2), leading to:

E[X] = E[X − ĉY ] + ĉȲ . (7.12)

The variance of (X − ĉY ) is (Ross (2013), Chapter 9.2):

V ar(X − ĉY ) = V ar(X) + ĉ2V ar(Y )− 2ĉCov(X,Y ). (7.13)

Similar to before, we can use Equation 7.13 to formulate under which condition (X − ĉY )

has a lower variance than X :

V ar(X − ĉY ) < V ar(X) (7.14)
V ar(X) + ĉ2V ar(Y )− 2ĉCov(X,Y ) < V ar(X)

ĉ2V ar(Y ) < 2ĉCov(X,Y )

1

2
ĉV ar(Y ) < Cov(X,Y ).

We can ensure that the condition from Equation 7.14 is always met by setting ĉ optimally
(Hoffman (2015); Ross (2013), Chapter 9.2). Taking the derivative of Equation 7.13 with
regards to ĉ gives

∇ĉ
(
V ar(X) + ĉ2V ar(Y )− 2ĉCov(X,Y )

) (7.15)
= 2ĉV ar(Y )− 2Cov(X,Y ).

Setting Equation 7.15 to 0 and solving for ĉ leads to
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ĉ =
Cov(X,Y )

V ar(Y )
. (7.16)

Substituting Equation 7.16 in Equation 7.14 gives

1

2

Cov(X,Y )

V ar(Y )
V ar(Y ) < Cov(X,Y ) (7.17)

1

2
< 1

Equation 7.17 is always true, thus using the optimal value for the scalar ĉ will guarantee a
variance reduction. The amount of variance reduction is directly related to the correlation.
This can be seen by dividing the variance V ar(X − Y ) by the original variance V ar(X)

(Hoffman, 2015):

V ar(X − Y )

V ar(X)
=
[
V ar(X) + ĉ2V ar(Y )− 2cCov(X,Y )

]
/V ar(X) (7.18)

= 1 +
ĉ2V ar(Y )

V ar(X)
− 2cCov(X,Y )

V ar(X)

= 1 +
Cov2(X,Y )V ar(Y )

V ar(X)V ar2(Y )
− 2Cov2(X,Y )

V ar(X)V ar(Y )
Eq. 7.16

= 1− Cov2(X,Y )

V ar(X)V ar(Y )

= 1− corr2(X,Y ),where corr(X,Y ) =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

.

Equation 7.18 shows that the variance reduction effect increases with a higher correlation
between X and Y .

LetX = δt and Y = δ̂t, where δ̂t is a Direct Method (DM) predictor trained using the logD.
Given pairs (x, y) as input, a model is fitted to predict δ as closely as possible. Once trained,
the model can also deliver predictions for pairs (x, y) not present in the log D. Thus, the
expectation of Y can be approximated empirically as:

Ȳ =
∑

y∈Y(xt)

δ̂(xt, y) πw(y|xt). (7.19)

The advantage of being able to predict a reward for all pairs (x, y) is off-set by a high bias
from which DM predictors typically suffer. Thus, Dudik et al. (2011) combine the IPS es-
timator with a DM predictor to trade-off the high variance of IPS against the high bias of a
DM predictor, so that together a more robust estimate can be reached. From the perspective
of control variates, combining IPS and a DM predictor in an additive control variate setup
reduces variance if there is a high enough positive correlation between X and Y and the
variance of Y is correspondingly low enough (see the condition in Equation 7.11). With
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∇VIPS/DPM = 1
n

∑n
t=1 δtρw(yt|xt)∇ log πw(yt|xt).

∇VIPS+R/DPM+R = 1
n

∑n
t=1[δtρ̄w(yt|xt)(∇ log πw(yt|xt)

−
∑n
u=1 ρ̄w(yu|xu)∇ log πw(yu|xu))].

∇VĉDC/ĉDR = 1
n

∑n
t=1[(δt − ĉδ̂)ρ̄w(yt|xt)(∇ log πw(yt|xt)

−
∑n
u=1 ρ̄w(yu|xu)∇ log πw(yu|xu))

+ĉ
∑
y∈Y(xt)

δ̂(xt, y)πw(y|xt)∇ log πw(y|xt)].

Table 7.1.: Gradients of various counterfactual estimators.

ρw(yt|xt) = πw(y|x)
µ(y|x) we define the Doubly Robust (DR) estimator for stochastic logging and

with ρw(yt|xt) = πw(y|x) we define the Doubly Controlled (DC) estimator for deterministic
logging:

VDR/DC(πw) =
1

n

n∑
t=1

[
(δt − δ̂t) ρ̄w(yt|xt) +

∑
y∈Y(xt)

δ̂(xt, y) ρw(y|xt)
]
. (7.20)

In this estimator, ĉ equals 1 and the condition V ar(X − Y ) < V ar(X) from Equation 7.11
may or may not be fulfilled. We modify these estimators by setting ĉ = Cov(X,Y )

V ar(Y ) . This en-
sures that V ar(X − ĉY ) < V ar(X) from Equation 7.14 is fulfilled if V ar(Y ) and Cov(X,Y )

are known. However, in praxis V ar(Y ) and Cov(X,Y ) have to be estimated empirically,
which introduces a bias. Again for stochastic logs, we set ρw(yt|xt) = πw(y|x)

µ(y|x) and for de-
terministic logs, we set ρw(yt|xt) = πw(y|x). This leads to the ĉDR and ĉDC estimators for
stochastic and deterministic logging, respectively:

VĉDC/ĉDR(πw) =
1

n

n∑
t=1

[
(δt − ĉδ̂t) ρ̄w(yt|xt) + ĉ

∑
y∈Y(xt)

δ̂(xt, y) ρw(y|xt)
]
. (7.21)

Gradients for the various estimators can be found in Table 7.1 and were be obtained using
the score function gradient estimator (Fu, 2006) (also see Section 2.2). For a more detailed
derivation see Appendix B.
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7.2. Degeneracy Analysis

7.2.1. IPS & DPM

Next to suffering from high variance, the IPS and DPM estimators have an inherent issue
that can lead to degenerate behaviour during policy learning. The estimators can be max-
imised by simply setting all logged outputs to probability 1, i.e. πw(yt|xt) = 1, ∀(yt, xt, δt) ∈
D. Obviously, this is undesired as the probability for low reward outputs should not be
raised.

Theorem 1. maxπ VIPS and maxπ VDPM if ∀(yt, xt, δt) ∈ D : π(yt|xt) = 1 ∧ δt > 0.

Proof. For abbreviation, we set πt = πw(yt|xt) and µt = µ(yt|xt). We need to show that the
value of VIPS with πt = 1 for ∀(yt, xt, δt) ∈ D = {(xt, yt, δt)}nt=1 is greater than the value
of VIPS with ∃(xt, yt, δt) with πt ∈ [0, 1). W.l.og. assume that (xn, yn, δn) is the tuple with
πt ∈ [0, 1).

n∑
t=1

δt
µt

>

n−1∑
t=1

δt
µt

+
δnπn
µn

, (7.22)

δn
µn

>
δnπn
µn

,

1 > πn,

which is true for πn ∈ [0, 1). Because DPM is a special case of IPS with µt = 1 for ∀(yt, xt) ∈
D, the proof also holds for DPM.

As a consequence, IPS and DPM cannot discriminate between outputs and are only con-
cerned with overall probabilities. If a small constant c is added to every probability πw(y|x)

for the entries in the log D,36 the overall value of the estimator increases. The resulting new
policy is considered better than the original policy even though the new policy cannot dis-
tinguish any better between outputs that have good rewards and outputs that have bad
rewards.

In Figure 7.3, a toy example visualises the problem. Assume there are two samples in the
log. The first sample has a propensity score of µ1 = 0.1 and a reward δ1 = 0.9 and the
second sample has µ2 = 0.001 and δ2 = 0.3. For simplicity, lets assume that new policies can
only assign the following probabilities for the two samples: π1 = π2 = {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0}. This gives rise to 100 possible combinations. Their IPS estimates can
be seen in Figure 7.3. The differing values on the diagonal illustrate the problem of a policy
gaining a higher estimate by adding the constant value c = 0.1 to all probabilities in the
log. Additionally, because of the division by the propensity score, none of the estimates are
within the range of the reward defined by the log (here [0.3, 0.9]). The policy with the best
estimate is obtained when π1 = π2 = 1.0. This is not a desired solution because the second
sample has a low reward of 0.3 and this sample’s probability should not be increased.
36We assume that the value c is sufficiently small so that no probabilities result in a value higher than 1.
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Figure 7.4.: IPS+R estimates for a small toy log containing two samples with µ1 = 0.1, δ1 =
0.9 and µ2 = 0.001, δ2 = 0.3. Assume that the new policy can only assign the
probabilities π1 = π2 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Presented are
all possible 100 combinations and the corresponding IPS+R estimate. Red back-
grounds mark the highest value, grey backgrounds mark the diagonal.

Figure 7.3.: IPS estimates for a small toy log containing two samples with µ1 = 0.1, δ1 = 0.9
and µ2 = 0.001, δ2 = 0.3. Assume that the new policy can only assign the prob-
abilities π1 = π2 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Presented are all
possible 100 combinations and the corresponding IPS estimate. Red background
marks the highest value, grey backgrounds mark the diagonal.

One solution to the problem is to choose an appropriate learning rate and perform early
stopping on a held out data set. The learning process is stopped before the undesired state
can be reached. A more sophisticated solution is to use the IPS+R and DPM+R estimat-
ors, for IPS and DPM, respectively. The reweighting defines a probability distribution over
the log D. Now, increasing the probability of a low reward output takes away probability
mass from the higher reward output. This decreases the value of the estimator, andwill thus
be avoided in learning. Increasing all probabilities by a small constant c, leads to the same
estimates under IPS+R and DPM+R. This is visualised in Figure 7.4 using the same toy ex-
ample introduced previously, but calculating the IPS+R estimates. The diagonal illustrates
that the estimate remains constant as all probabilities are increased by c = 0.1, i.e. it is not
possible any longer to obtain an higher estimate by simply increasing all probabilities. At
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the same time, all estimates are now bound by the range of the reward as defined by the
log.

A closely related issue for IPS has been noted by Swaminathan and Joachims (2015b). They
demonstrate that adding a small constant c to all rewards δ in the log does not lead to the
same increase by c in the IPS estimate. In other words, the IPS estimator is not equivari-
ant with regards to the geometric translation of rewards. This issue is also fixed by using
reweighting as a multiplicative control variate.

7.2.2. Reweighted Estimators

While IPS+R and DPM+R solve the degeneracy of IPS and DPM, they suffer from a degen-
eracy themselves. To show this, we define the set Dmax that contains all tuples that receive
the highest reward δmax observed in the log, and we assume δmax > 0, leading to a cardin-
ality of Dmax of at least one.

Definition 1. Let Dmax = maxδ D, then D = Dmax ∪ D\Dmax.

We will show that the estimators can be maximised by simply setting the probability of
at least one tuple in Dmax to a value higher than 0, while leaving all other tuples in Dmax
at their original probabilities in range [0, 1], and setting the probability of tuples in the set
D\Dmax to 0. Clearly, this is undesired as outputs with a reward close to δmax should not re-
ceive a probability of 0. Furthermore, this learning goal is easy to achieve since a degenerate
estimator only needs to be concerned about lowering the probability of tuples in D\Dmax
as long as there is one tuple of Dmax with a probability above 0. This is visualised in Figure
7.4: The maximum value is achieved if the lower reward sample has a probability of 0 and
the higher reward sample has any probability higher than 0.Wewant to prove the following
theorem:

Theorem 2. maxπ VIPS+R ∧maxπ VDPM+R if ∃(xt, yt, δmax) ∈ Dmax : πt ∈ (0, 1]

∧∀(yt, xt, δt) ∈ D\Dmax : πt = 0.

We introduce a definition of data indices belonging to the sets Dmax and its complement in
D:

Definition 2. Let

VIPS+R(πw) =

∑n
t=1 δt

πt
µt∑n

t=1
πt
µt

=
δmax

∑s−1
t=1

πt
µt

+
∑n
t=s δt

πt
µt∑n

t=1
πt
µt

,

where w.l.o.g. indices (1 . . . (s− 1)) refer to tuples in Dmax and indices (s . . . n) refer to indices in
D\Dmax. Thus, Dmax = {(xt, yt, δmax)}s−1

t=1 and D\Dmax = {(xt, yt, δt)}nt=s.

Proof. We need to show that the value of VIPS+R where πt = 0 for ∀(yt, xt, δt) ∈ Dmax is
lower than the value of VIPS+R where ∃(xt, yt, δmax) ∈ Dmax with πt ∈ (0, 1]. Then
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∑n
t=s δt

πt
µt∑n

t=s
πt
µt

<
δmax

∑s−1
t=1

πt
µt

+
∑n
t=s δt

πt
µt∑n

t=1
πt
µt

, (7.23)

0 <
δmax

∑s−1
t=1

πt
µt∑n

t=1
πt
µt

,

where the last line is true for δmax > 0 as long as ∃(xt, yt, δmax) ∈ Dmax with πt > 0 as
µt ∈ (0, 1] by definition.

Furthermore, we need to show that the value of VIPS+R where ∃(yt, xt, δt) ∈ D\Dmax with
πt ∈ (0, 1] is lower than the value of VIPS+R with πt = 0 for ∀(yt, xt, δt) ∈ D\Dmax.

From the above, it is clear that ∃(xt, yt, δmax) ∈ Dmax with πt ∈ (0, 1], thus δmax
∑s−1
t=1

πt
µt∑s−1

t=1
πt
µt

is
defined. W.l.o.g. assume that (ys, xs, δs) ∈ D\Dmax is the tuple with πs ∈ (0, 1]. Then

δmax
∑s−1
t=1

πt
µt

+ δs
πs
µs

+
∑n
t=s+1 δt

0
µt∑s

t=1
πt
µt

+
∑n
t=s+1

0
µt

<
δmax

∑s−1
t=1

πt
µt

+
∑n
t=s δt

0
µt∑s−1

t=1
πt
µt

+
∑n
t=s

0
µt

= δmax, (7.24)

δmax

s−1∑
t=1

πt
µt

+ δs
πs
µs

< δmax

s∑
t=1

πt
µt
,

δmax

s−1∑
t=1

πt
µt

+ δs
πs
µs

< δmax

s−1∑
t=1

πt
µt

+ δmax
πs
µs
,

δs
πs
µs

< δmax
πs
µs
,

δs < δmax.

The last line of Equation 7.24 is true as δs < δmax by Definition 1 . As DPM+R is a special
case of IPS+R with µt = 1 for ∀(yt, xt) ∈ D = {(xt, yt, δt)}nt=1, the proof also holds for
DPM+R.

While employing stochastic gradient ascent, IPS+R and DPM+R can be prevented from
reaching their degenerate state by performing early stopping on a development set. How-
ever, one cannot control what happens to the probability mass that is freed when lowering
the probability of a logged output. The freed probability mass could be allocated to outputs
that receive a lower reward than the logged output which would create a system that is
worse than the logging system.

The estimators DR, DC, ĉDR and ĉDC successfully solve this problem. The DM predictor
takes the whole output space into account and thus assigns rewards to any output. The
objective will now be increased if the probability of outputs with high estimated reward is
increased, and decreased for outputs with low estimated reward. For this to happen, high
reward outputs other than the ones with maximal reward will be considered, even if the
outputs have not been seen in the log. This will shift probability mass to unseen data with
high estimated reward, which is a desired property in learning.
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7.3. Empirical Results

We test the counterfactual estimators for both policy evaluation and policy learning on a
domain adaptation setup for machine translation. In machine translation the output space
is defined by the vocabulary size of the target languageVy and the maximum possible sen-
tence length s, leading to Vs

y possible combinations. For example, a target vocabulary of
90, 000 and a maximum sentence length of 200 leads to an output space of size 90, 000200.
Machine translation is thus an ideal problem to demonstrate that counterfactual policy eval-
uation and learning is possible for problems with a large output space.

For domain adaptation, an out-of-domain system is trained and used to translate in-domain
data. We distinguish between deterministic and stochastic logging. In the case of determ-
inistic logging, the policy chooses the most likely translation and a propensity score of 1 is
recorded. For stochastic logging, the policy samples from the underlying probability distri-
bution for the current input. With the help of the true references, we simulate correspond-
ing feedback for the chosen translations using sentence-level BLEU (Nakov et al., 2012). In
such a simulated setup, a direct comparison between stochastic and deterministic logging is
possible andwill allow us to draw a conclusionwhether deterministic logging provides suf-
ficient exploration to keep up with stochastic logging. This would be a great advantage for
deployed machine translation services which want to always present the most likely trans-
lation of the current system to the user. However, for policy evaluation only stochastically
logged data is suitable and thus we assume that for policy evaluation a small amount of
data can be logged using a stochastic scheme.

Previously, counterfactual estimators have only been used in conjunction with linear mod-
els. Thus, we will also employ a linear model in these experiments. As the SMT framework
we use Cdec (Dyer et al., 2010) which employs a log-linear model (see Equation 2.17 in
Section 2.3),

πw(y|x) =
eαwφ(x,y)∑

y∈Y(x) e
αwφ(x,y)

, (7.25)

where φ is a vector of different features of the model and α is a hyperparameter to be set.
For high α, the distribution becomes increasingly peaked. As α → ∞, the distribution ap-
proaches the deterministic case where y = arg maxy∈Y(x). The derivative of this model is

∇ log πw(y|x) = α
(
φ(x, y)−

∑
y∈Y(x)

φ(x, y)πw(y|x)
)
, (7.26)

and it can easily be plugged into the gradients from Table 7.1. The weight vector w can be
updated using the gradient ascent update rule ∆w = η∇V(πw).

We define two separate domain adaptation tasks which differ in language pair and target
domain. The first task uses the German-to-English Europarl corpus (Koehn, 2005) with the
goal to adapt a system trained on it to the domain of transcribed TED talks using the TED
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TED DE-EN News FR-EN
train 122k 30k
development 3k 1k
test 3k 2k

Table 7.2.: Number of sentences for in-domain data splits of the train, development, and test
data.

parallel corpus (Tiedemann, 2012). The second task uses the French-to-English Europarl
datawith the goal of domain adaptation to news articles with theNews Commentary corpus
(Koehn and Schroeder, 2007). We split off two parts from the TED corpus to be used as
development and test data for the learning experiments. As development data for theNews
corpus we use the splits provided at the WMT shared task37, namely nc-devtest2007 as
development data and nc-test2007 as test data. An overview of the splits and their sizes
can be seen in Table 7.2.

As a baseline, an out-of-domain system is built usingCdec (Dyer et al., 2010)with dense fea-
tures (10 standard features and 2 for the languagemodel). After tokenizing and lowercasing
the training data, the data were word aligned using Cdec’s fast_align. A 4-gram language
model is built on the target languages for the out-of-domain data using KenLM (Heafield
et al., 2013). ForNews, we additionally assume access to in-domain target language text and
train another in-domain language model on that data, increasing the number of features to
14 for News. We peak the distribution of the log-linear model by setting α = 5 (see Equa-
tion 7.25), which we found to work well on development data. By setting α > 1, we can
encourage to learn a model that is suited to producing one-best translations, which is what
the model will be asked to produce when deployed. All models are evaluated using the
corpus-level BLEU metric (Papineni et al., 2002).

7.3.1. Direct Method (DM) Predictor

For the estimators DR, ĉDR, DC and ĉDC, we need a DM predictor. We build a regression
model using a random forest of decision trees. The model is trained using scitkit-learn
(Pedregosa et al., 2011) and uses 10 trees.

The input for the scitkit-learn model is a vector of decoder features φ(x, y) from Cdec for
the given source sentence x and logged translation y. The target value is the true reward
δ recorded in the log. To measure the performance of the random forest predictor, we em-
ploy 5-fold cross validation on D. Each 5-fold cross validation is performed 10 times due to
random initialisations and the average of the underlying micro and macro average is repor-
ted. We present the micro average between estimated and true reward, which quantifies the
expectation of how much a random sample will differ from the true target:
37http://www.statmt.org/wmt07/, 1st September 2018
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Micro :=
1

n

∑
|δ(xi, yi)− δ̂(xi, yi)|. (7.27)

Additionally, we report the macro difference which calculates the difference of the average
estimated and the average true reward on the entire held-out fold:

Macro := | 1
n

∑
δ(xi, yi)−

1

n

∑
δ̂(xi, yi)|. (7.28)

The results for both deterministic and stochastic logging can be found in Table 7.3. The DM
models that the various estimators employ, are trained on the entire training set.

Deterministic Stochastic
Micro Macro Micro Macro

TED 15.02 0.66 14.18 0.65
News 10.86 0.22 10.69 0.22

Table 7.3.: 5-fold cross validation: Macro and micro difference for deterministic and
stochastic logging for a random forest regression model as the DM predictor.

7.3.2. Policy Evaluation

Policy evaluation can only be performed using stochastically logged data. If we were to use
deterministically logged data, we could not correct the bias of the logging policy and this
is essential for policy evaluation. Thus, we assume that for a small percentage of users, the
system outputs are chosen stochastically. Based on this data, we perform policy evaluation
using the estimators IPS+R, DR and ĉDR. IPS is omitted because it does not return values
in the permissible range of rewards. A log Deval of 10,000 instances is created using the
baseline out-of-domain translation system µ. The goal is to estimate the performance of an
in-domain system πw.

To obtain the in-domain system, the weights of the baseline system are tuned with Mert
(Och, 2003) using supervised in-domain data. Due to the random component in Mert, the
final weights are the average of three runs. To measure the true performance of the result-
ing in-domain system, it also translates the source sentences of the logDeval and returns the
most likely translation. This set of translations can be scored against the references to obtain
the true BLEU score. Using Deval, we estimate the expected reward with estimators IPS+R,
DR and ĉDR. Comparing the estimated BLEU score to the true BLEU score, allows us to de-
termine the best estimator for policy evaluation. The differences between estimated and true
BLEU score are presented in Table 7.4. Due to the randomness in the stochastic sampling
scheme, 5 separates logs were created and we report average and standard deviation.

For the News corpus, IPS+R underestimates the system by nearly 8 BLEU and DR overes-
timates the system by nearly 7 BLEU. Setting ĉ optimally, balances out the estimate which

114



7.3 Empirical Results

IPS+R DR ĉDR

TE
D average estimate +4.00 +7.98 +6.07

standard deviation 0.64 3.83 2.06

N
ew

s average estimate -7.78 +6.63 +0.95
standard deviation 0.97 4.13 2.33

Table 7.4.: Policy Evaluation: Macro averaged difference between estimated and ground
truth BLEU on 10k stochastically logged data. Results are averaged over five in-
dependent runs.

now overestimates the system by only about 1 BLEU. For the TED corpus, the IPS+R estim-
ator already overestimates the system by 4 BLEU. This overestimation is exacerbated further
by the DR estimator, which stems from the fact that the random forest DM predictor tends
to overestimate. Again ĉDR can improve uponDR but it does not do so in a sufficient way.

7.3.3. Policy Learning

For policy learning, we use the entire log D. The initial policy πw that we aim to improve is
the out-of-domain baseline and logging policyµ. For deterministic logging,we testDPM+R,
DC and ĉDC and for stochastic loggingwe use IPS+R, DR and ĉDR. All estimators are used
to improve the policy πw by hypergraph re-decoding. Due to the large output space, we
normalise the 1,000 most likely outputs and search this k-list for the translation recorded in
the log. Hyperparameters are minibatch sizes of either 10k or 30k samples and the learning
rate η is chosen on the development set from the set {1e− 4, 1e− 5, 1e− 6} or, alternatively,
Adadelta (Zeiler, 2012), which sets the learning rates on a per-feature basis.

We also considered a simpler, alternative option to learning from the logged data by using a
Bandit-to-Supervised (B2S) approach. In this setup, either 2,000 randomor the 2,000 highest
reward instances are chosen from the log.38 This data is then treated as a supervised data
set and the parameters of the logging policy are adjusted using Mert. The weights of all
Mert experiments are averaged over three runs due to its randomised component. Finally,
the in-domain model trained on supervised in-domain data from the policy evaluation can
be seen as an oracle model in this context. It conveys the best possible improvement over the
baseline model that is attainable. Statistical significance between the out-of-domain system
and all other systems is measured on the test set using an approximate randomisation test
(Noreen, 1989; Riezler and Maxwell, 2005). Results can be found in Table 7.5.

For the B2S baseline, we observe some small gains in some cases and no improvements at
all in others. This is the case for both deterministic and stochastic logging, although the B2S
approach seems to work slightly better for the stochastic log. For the deterministic counter-
factual estimators, DPM+R can improve significantly upon the baseline on both corpora.
DC can improve upon this result further, doubling the improvements compared to DPM+R
in the case of the TED corpus. Setting ĉ optimally in the ĉDC estimator, leads to the largest
38Note that it is not possible to use a data set as large as the entire log D in conjunction with Mert, which is why

we use a subset of 2,000 instances from D.
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deterministic
TED News

dev test dev test
1 out-of-domain 22.39 22.76 24.64 25.27
2 B2S top 2k + 0.00 + 0.00 + 0.00 + 0.50
3 B2S random 2k + 0.00 + 0.00 + 0.00 + 0.50
5 DPM+R + 0.59 + 0.67∗ + 0.62 + 0.94∗
6 DC + 1.50 + 1.41∗ + 0.99 + 1.05∗
7 ĉDC + 1.89 + 2.02∗ + 1.02 + 1.13∗
8 in-domain 25.43 25.58∗ 27.62 28.08∗

stochastic
TED News

dev test dev test
1 out-of-domain 22.39 22.76 24.64 25.27
2 B2S top 2k + 0.28 + 0.20∗ + 0.31 + 0.72∗
3 B2S random 2k + 0.02 + 0.03 + 0.00 + 0.49∗
5 IPS+R + 0.57 + 0.58∗ + 0.71 + 0.81
6 DR + 1.92 + 2.04∗ + 1.00 + 1.18∗
7 ĉDR + 1.95 + 2.09∗ + 0.71 + 0.95∗
8 in-domain 25.43 25.58∗ 27.62 28.08∗

Table 7.5.: Policy Learning: BLEU increases over the out-of-domain baseline on dev and test
sets for various counterfactual objectives. Out-of-domain is the baseline system
and in-domain is the oracle system tuned on in-domain data with references.
Best results are indicated in bold face. Results marked with ∗ are significant at
p ≤ 0.002 to the out-of-domain system.

improvement of about 2 BLEU on the TED corpus. The difference between DC and ĉDC for
TED is significant at p = 0.0017.

The gain from DC over ĉDC is less strong on the News corpus. This can be explained by
looking at the values of ĉ. In the case of the TED corpus, ĉ reaches an average value of
1.35 whereas on the News corpus it has a maximum value of 1.14, which is very close to
setting ĉ = 1.0 and would be equivalent to using DC. It is thus not surprising that ĉDC
cannot significantly outperform DC. The in-domain, oracle systems can increase about 3
BLEUpoint over the out-of-domain system for both corpora.With an increase of about 2 and
1 BLEU for TED and News, respectively, the best counterfactual estimator, ĉDC, can close
this gap impressively despite the considerable difference of available information compared
to the supervised data available to the oracle system.

For stochastic logging, we observe very similar results. Significance tests between determin-
istic estimators and their stochastic counterparts yield only a significant difference between
DC and DR on the TED corpus. However, the DR result does not significantly outperform
the best deterministic estimator ĉDC. For all other deterministic-stochastic pairs, the p val-
ues lie above 0.1. With this, our experiments attest that deterministic logging is just as ef-
fective as stochastic logging for machine translation.
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Figure 7.5.: BLEU performance on the TED corpus test set after every iteration for various
counterfactual objectives.39

This result is also re-affirmed by the learning curves on the test set which can be found in
Figures 7.5 and 7.6 for the TED and News corpora, respectively. Deterministically logged
objectives are displayed using filled out symbols while their stochastic counterparts use
the same symbol, but only its outline. Except for ĉDC versus ĉDR on the News corpus
and DC versus DR on the TED corpus, the deterministic estimators can reach the same
or higher peaks than their stochastic counterpart. Additionally, the deterministic estimat-
ors reach their peak before their stochastic counterpart does. Overall, the performance of the
deterministic estimator is a great result for production systemswhere deterministic logging
is paramount. In the following, we give an intuition why deterministic logging explores the
output space sufficiently so that stochastic logging is not necessary.

7.3.4. Implicit Exploration

To be able to learn, reinforcement learning algorithms must explore the action space suf-
ficiently. If an algorithm always chooses the most likely action (exploitation), then it can
never discover actions that might lead to a higher reward (exploration). Consider a policy
that selects adverts to be shown on awebsite. Simply displaying themost likely advert is not
sufficient (Chapelle and Li, 2011). Without exploration, this policy would always display
the same advert. The policy needs to sample to explore different adverts and to find adverts
that lead to a higher click-through rate.

The situation changes if a policy is conditioned on some input. If the policy for advert selec-
tion is conditioned on some user context vector, then exploration is induced by the context.
Chapelle and Li (2011) show in corresponding experiments that this exploration induced
39Note that the first evaluation for DR and ĉDR occur later and less frequently because in contrast the other ob-

jectives, the batch size for these estimators is 30k, which was chosen on the development.
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Figure 7.6.: BLEU performance on the News corpus test set after every iteration for various
counterfactual objectives.40

by context allows their deterministic setup to outperform a random baseline, but not the
stochastic approach. This result is consistentwith Langford et al. (2008), who state that a de-
terministic policy is feasible, as long as all actions are explored sufficiently. Similarly, Bastani
et al. (2017) prove for a two-armed contextual bandit that a greedy policy can achieve op-
timal asymptotic regret if the input context is diverse enough.

The context diversity that is needed for deterministic policies to succeed, is naturally given
for sequence-to-sequence task in NLP. The natural language sentences that serve as inputs,
can be decomposed into individual tokens. As a consequence, identical input tokens can
result in different output tokens because the choice of the output token is also conditioned
on the other tokens appearing in an input sequence. Across the entire log, this inherently
produces a natural exploration caused by the input tokens.

The exploration is further amplified because the output structure can also be decomposed,
which stands in contrast to outputs of other tasks, e.g. adverts cannot be further decom-
posed. Because the same output token can appear in different output sentences, this token
will obtain a series of varying sentence-level rewards across the collected log. As a result,
it is possible to learn in which context this token is appropriate and in which it isn’t. The
diversity at both input and output token level, induces enough exploration for deterministic
logging to perform as well as the stochastic scheme for sequence-to-sequence tasks in NLP.
We confirmed this intuition empirically in Section 7.3.3.

40Note that the first evaluation for DC occurs later and less frequently because in contrast the other objectives, the
batch size for this estimator is 30k, which was chosen on the development.
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Conclusion

In a counterfactual off-policy learning setup, a deployed system logs user input, system
output and an associated reward. The resulting log can be used to either evaluate a different
model or to improve a model. To this end, counterfactual estimators have been formulated
in previous literature. This offline approach is safer than modifying a system while it is
deployed because it could deterioratewithout notice and causemonetary loss. Furthermore,
in the case of policy evaluation, more policies can be tested than in a typical A/B test setup.
For policy learning, it is possible to test various hyperparameters and settings and verify
the final policy on separate test sets before deployment.

However, all previous counterfactual estimators assume that the log was created by a stoch-
astic process that samples from the policy’s underlying distribution. This is unfortunately
not a feasible strategy for deployed sequence-to-sequence systems such as machine trans-
lation. In such scenarios, showing an output other than the most likely under the current
system is dangerous and could lead to user dissatisfaction and monetary loss. This res-
ults in deterministic logs, which stand in contradiction with the theoretical assumption that
logs need to be created stochastically to have sufficient exploration of the output space. To
investigate this issue, we presented new estimators for a deterministic setup. Using simu-
lation experiments allowed us to directly compare these deterministic estimators with their
stochastic counterparts.

Experiments were conducted on a domain adaptation scenario for machine translationwith
two separate language pairs and target domains. Policieswere improved in a hypergraph re-
decoding setup for a linear SMTmodel using either deterministic or stochastic logswith cor-
responding counterfactual estimators. All estimators were able to learn new policies which
significantly outperform the out-of-domain baseline that created the logs. The best determ-
inistic and the best stochastic estimators showed no significant difference in the resulting
policies. This seeming contradiction can be explained with implicit exploration that natur-
ally occurs in sequence-to-sequence tasks forNLP and is a great positive result for industrial
production systems. We were also able to show that counterfactual learning is possible for
complex structured prediction problems with large output spaces, such as machine trans-
lation.

For both the stochastic and the deterministic case, we showed intuitively and with a math-
ematical proof that the IPS and DPM estimators exhibit degenerate behaviour. This degen-
eracy can be resolved by defining a probability distribution over the underlying log using
a reweighting multiplicative control variate. However, the resulting new estimators, IPS+R
and DPM+R, suffer from a different degenerate behaviour, for which we also give both an
intuitive explanation and amathematical proof. This degenerate behaviour can be solved by
introducing aDMpredictor as an additive control variatewhich results in the estimators DR
and DC. These latter estimators can be further optimised by setting the linear interpolation
scalar ĉ optimally. It is these final estimators, ĉDR and ĉDC, that perform best for stochastic
and deterministic logging, respectively.

Our experiments show promising results for using counterfactual learning in production
setups. However, there are still two issues. First, state-of-the-art models for sequence-to-
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sequence tasks are non-linear neural networks, but counterfactual learning has so far only
been applied to linear models. Second, the feedback in these experiments is merely simu-
lated. A production systemwould not have gold targets available to simulate feedbackwith.
The feedback needs to be elicited directly from human users instead. We aim to solve both
issues in the following chapter. We also move from machine translation to the question-
answering task defined by the NLmaps corpus.
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Chapter 8

Question-Answering: Learning
from Human Bandit Feedback

Obtaining reliable feedback from human users is a crucial aspect for counter-
factual learning (see also Section 1.3) in a real-world scenario. We introduce a
setupwhere such human feedback can be collected efficiently to improve a se-
mantic parser for the Question-Answering (QA) task defined by theNLmaps

v2 corpus.We assume a small amount of supervised data is available to train an initial parser
and this parser is then used to parse further questions. Given a question, the initial parser
returns a parse which can be executed against a database to obtain an answer. The answer
is presented to the user and we would like to elicit feedback from the user which can then
be used to improve the parser in a counterfactual off-policy learning setup.

However, it is often not easily possible for the user to verify the correctness of an answer.
For example, the correct answer to the question “How many hotels are there in Paris?” would
be 951 hotels and it would be too cumbersome to verify this number by manually counting.
Similarly, we cannot obtain feedback for the parse because a non-expert user does not know
the underlying MRL. Instead, we present a novel approach: the parse is automatically con-
verted into a set of human-understandable statements. Each statement can easily be verified
as correct or incorrect by non-expert users. We show that counterfactual learning is possible
using this setup to collect feedback from human users.

The described feedback setup can easily be integrated into virtual personal assistants that
employ a semantic parsers. Collecting feedback from users is for example also employed for
the task of machine translation by Google Translate41, where users can suggest a different
translation and, once submitted, this data is “used to improve the translation quality” (see
Figure 8.1). Alternatively, our feedback setup could be used in a crowd worker setup for
QA tasks where both the annotation of parses as well as the collection of gold answers
are impractical. For example, in the OSM domain, the underlying MRL is only known by
experts and answer sets can be open-ended, fuzzy or too large to enumerate without error
or within reasonable time constraints. However, using our feedback collection method, a
human can easily provide feedback for a question-parse pair. In the vast he majority of the
41translate.google.com, 1st September 2018
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cases, feedback for one question-parse pair can be provided in less than 10 seconds, which
shows that our method is very efficient.

Figure 8.1.: Google Translate interface for editing a translation which is “used to improve
the translation quality”, Screenshot taken on 1st September 2018.

Neural networks are the state-of-the-art models for sequence-to-sequence tasks. In the pre-
vious chapter, we applied counterfactual learning to linear models. Here, we show that
counterfactual learning is also possible if the underlying model is a non-linear neural net-
work.42 Butwith themove to neural networks,we can no longer employ batch updates based
on the entire training data due to hardware limitations. Instead, neural networks are trained
using stochastic gradient ascentwithminibatches.However, theDPM+Restimator assumes
batch updates after the entire training data as beenprocessed.We introduce a newestimator,
One-Step-Late Reweighted Deterministic PropensityMatching (DPM+OSL), which retains
all advantages of DPM+R and is applicable to stochastic (minibatch) gradient ascent. In
experiments we can show that in a stochastic gradient ascent setup with small minibatches
DPM+OSL is superior to DPM+R.

Additionally,wemodify theDPMestimator to decompose over tokens, leading to the Token-
level Deterministic Propensity Matching (DPM+T) estimator. This is a natural extension
for neural networks as they produce output sequences token by token. It also enables us
to take advantage of the feedback collection setup where a parse is broken up into a set of
statements. Each statement is produced by a specific set of tokens in the parse. An estimator
that decomposes over tokens is thus able to assign different rewards to different tokens.
This allows us to assign blame correctly in an incorrect parse and enables us to learn from
partially correct parses.

Finally, combining both new estimators leads to the Token-Level One-Step-Late Reweighted
Deterministic PropensityMatching (DPM+T+OSL) estimator. This estimator is able to out-
perform the baseline semantic parser by nearly 1 percentage point in answer F1 score using
feedback collected from human users. To show that our approach scales to larger amounts
of feedback, we also present a large-scale experiment with simulated feedback where we
can gain 7.45 points in F1 score over the baseline. In both cases, this estimator is able to out-
42The feasibility of employing counterfactual learning on neural networks has been shown contemporaneously by

Joachims et al. (2018) on a separate task.
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perform the strong Bandit-to-Supervised (B2S) baseline, where the subset of fully correct
question-parse pairs are treated as a supervised data set.
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Figure 8.2.: Graphical overview of two semantic parsing setups, once with gold answers
available and once without. Left: Common semantic parsing setup where both
questions and gold answers are available. The parser attempts to find correct
parses by producing multiple parses, obtaining corresponding answers, and
comparing them against the gold answer. Right: In our setup, a question does
not have an associated gold answer. The parser outputs a single parse and the
corresponding answer is shown to a user who provides some feedback. Such
triplets are collected in a log which can be used to train a parser.

The success of neural networks for semantic parsing has previously been demonstrated us-
ing either question-parse pairs (Jia and Liang, 2016; Dong and Lapata, 2016) or question-
answer pairs (Neelakantan et al., 2017). If only question-answer pairs are available, the se-
mantic parser has to suggest parses which are then executed against a database and the
resulting answer is compared to the gold answer. Based upon this comparison, parses are
assigned rewards and the semantic parser is updated accordingly (see left half of Figure
8.2). We explored this scenario in Chapter 6.

In contrast to the setup in Chapter 6, in this chapter our counterfactual setup assumes that
no gold answers are available. Furthermore, only one output of the parser can be judged
because rewards are obtained from users who interact with only one output. The obtained
reward, together with the associated question-parse pair, is collected in a log and updates
to a parser are performed off-policy (see right half of Figure 8.2). In semantic parsing, it is
crucial that the chosen parse is the most likely parse under the logging policy of the parser
because typically only one or a small number of parses lead to the correct answer. Since
we showed in the previous chapter that implicit exploration is sufficient for sequence-to-
sequence tasks in NLP, we focus only on deterministic logging in this chapter.

Using weak feedback to improve a semantic parser has previously been shown to be suc-
cessful (Goldwasser and Roth (2013); Artzi and Zettlemoyer (2013); inter alia). Our work
most closely resembles the work of Iyer et al. (2017), who make the assumption of only
being able to judge one output. They improve their parser using simulated and real user
feedback. Parses with negative feedback are given to experts to obtain the correct parse.
Corrected parses and parses with positive feedback are added to the training corpus and
learning continues with a MLE objective (see Equation 2.28 in Chapter 2). In contrast to
this, we show that such a bandit-to-supervision approach can be outperformed by off-policy
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bandit learning from partially correct parses. Similar to our feedback collectionmethod, Yih
et al. (2016) proposed a user interface for the Freebase database that enables a fast and easy
creation of parses. However, in their setup the worker still requires expert knowledge about
the Freebase database, whereas in our approach feedback can be collected freely and from
any user interacting with the system.

The main contributions of this chapter are as follows:

• Application of counterfactual policy learning to a non-linear neural network for a QA
task using bandit feedback from human users.

• Modification the DPM+R estimator to be applicable for stochastic (minibatch) gradi-
ent ascent, leading to the DPM+OSL estimator.

• Definiton of the new counterfactual estimator DPM+T where rewards can be decom-
posed over the tokens in the output sequence. Combined with the DPM+OSL estim-
ator, we also formulate the DPM+T+OSL estimator.

• Implementation of the estimators:
DPM, DPM+R, DPM+OSL, DPM+T and DPM+T+OSL in Nematus.

• Designing an user interface to collect real human bandit feedback for counterfactual
learning.

Thework presented in this chapter has previously been published in (Lawrence andRiezler,
2018).

The structure of this chapter is as follows: In Section 8.1 we introduce extensions to the DPM
estimator, namely DPM+OSL, DPM+T and DPM+T+OSL. The experimental setup to col-
lect bandit token-level feedback from human users is presented in Section 8.2. The human
feedback collection and empirical results for policy learning using the human feedback can
be found in Section 8.3. This section also includes an experiment using large-scale simu-
lated feedback, an error analysis, a comparison between DPM+R and DPM+OSL and an
analysis of the optimal one-step-late strategy. Finally, comparing results from this chapter
and Chapter 6, we conclude by drawing a direct comparison between response-based on-
policy and counterfactual off-policy learning.

8.1. Counterfactual Estimator Extensions

For convenience, we repeat here the general notation of the counterfactual learning setup
introduced in the previous chapter: We assume an input x ∈ X that is mapped to an output
y ∈ Y(x) by a parametrised policy. Furthermore, there exists a feedback function δ(x, y)

that assigns a reward to (x, y) pairs. Based on the logging policy µ, a log of triplets can
be collected: D = {(xt, yt, δt)}nt=1, where yt is an output produced by µ given an input xt
and δt is the corresponding feedback. Note that on the QA task presented here, we assume
that rewards are either one or zero, i.e. δt ∈ {0, 1}. As a consequence of this restriction, the
degenerate behaviour described for DPM in Section 7.2 cannot occur here: all rewards δt > 0
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are rewards of 1 and thus the corresponding sample should always be reinforced and have
its probability raised. This makes DPM a viable estimator in this setup.

8.1.1. One-Step-Late (OSL) Reweighting

DPM+R employs a multiplicative control variate Y to reduce the variance of DPM. In addi-
tion to the variance reduction, the reweighting over the logD can be seen as defining a prob-
ability distribution over the log. Consequently, during policy learning, the DPM+R estim-
ator avoids allocating probability mass to low reward outputs of the log because this takes
away probability mass from high reward outputs. Due to these two advantages, DPM+R
promises to be a better estimator than DPM, even though the degenerate behaviour of DPM
does not occur for the QA task due to δt ∈ {0, 1}.

Unfortunately, theDPM+Restimator cannot be used in stochasticminibatch learning,which
is used to train neural networks. The multiplicative control variate Y introduces a bias of
order O( 1

n ) that decreases as n increases (Swaminathan and Joachims, 2015b). To keep the
bias as low as possible, the empirical estimate of Y should be based on the entire log D of
size n, i.e. Y = 1

n

∑n
t=1 πw(yt|xt). Defining the reweighting variable Y only over a small

minibatch of sizem, withm� n, is not sufficient because the introduced bias is too high. In
fact, this naive application of DPM+R in a minibatch setup, results in a worse performance
than not employing the multiplicative control variate at all (see corresponding experiment
in Section 8.3.4). At the same time, minibatches that would be large enough are infeasible
for large neural networks due to hardware limitations.43

We present a new estimator that will retain all desirable properties of DPM+R, but can be
applied to stochastic learning with small minibatches. Updates are performed using min-
ibatches of size m and these minibatches are reweighted by a control variate Y that is es-
timated on the entire training data of size n. By ensuring that Y is updated regularly, both
advantages of the DPM+R estimator can be preserved. Updating Y after every minibatch
m would be quite costly, thus we propose to update Y asynchronously. Using some past
parameters w′, Y is estimated on the entire log:

Y =
1

n

n∑
t=1

πw′(yt|xt). (8.1)

An analogous strategy has previously been presented by Green (1990) for EM algorithms
and inspired by their name, we refer to our new estimator as One-Step-Late Reweighted
Deterministic Propensity Matching (DPM+OSL):

43For example, for counterfactual learning with linear models (see Chapter 7) we employ minibatch sizes of 10k
and 30k, whereas for a typical sequence-to-sequence neural model at most minibatches of size 200 fit on a GPU
with 8GB of RAM.
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VDPM+OSL(πw) =
1

m

m∑
t=1

δtπ̄w,w′(yt|xt) (8.2)

=
1
m

∑m
t=1 δtπw(yt|xt)

1
n

∑n
t=1 πw′(yt|xt)

.

The gradient for optimizing the DPM+OSL estimator with respects to w may be found in
Table 8.1 (also see Appendix B) and corresponding pseudo-code in Algorithm 9.

Algorithm 9 Pseudo-code for minibatch off-policy learning from logs with OSL reweight-
ing.

1: Input: collected log D, minibatch size m, learning rate η, initial policy πw, OSL update
counter ō

2: o = 0
3: repeat
4: for t = 0, . . . ,m do
5: Sample input-output pair (xt, yt) from log D
6: Calculate πw(yt|xt)
7: o + = 1
8: if o % ō = 0 then
9: Recalculate reweighting variable Y (see Equation 8.1)
10: end if
11: end for
12: Calculate V(πw)
13: w = w + η∇wV(πw)
14: until Stopping Criterion Reached

8.1.2. Incorporating Token-Level Feedback

We intend to collect the feedback for our QA task by converting the parse suggested by the
parser into a set of human-understandable statements. The statements are extracted from
spans of tokens in the parse and each statement can be traced back to the tokens in the parse
that created them. Given all statements for a parse, one could derive a reward for the entire
parse. However, with the given setup it is possible to assign different rewards to different
tokens in the parse. This is a powerful feature because it allows us to learn from partially
correct parses.

To benefit from the design of our token-level feedback task for counterfactual learning, we
define an estimator that can assign rewards at the token level. For this, wemove to log prob-
abilities, which allows us to decompose the sequence into a sum over the individual tokens.
If left as a product of probabilities, a sequence’s probability would become zero if a single
token is incorrect, i.e. ∃δj = 0, and thus the entire sequence would be ignored in an update.
By employing log probabilities,we can learn frompartially correct parses because tokens can
be manipulated individually, which allows us to encourage tokens with positive feedback.
Thus, for policies that decompose over tokens, we can define the Token-level Deterministic
Propensity Matching (DPM+T) estimator:
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VDPM+T (πw) =
1

n

n∑
t=1

 |yt|∑
j=1

δt,j log πw(yt,j |yt,<j , xt)

 , (8.3)

where yt,<j = yt,1, yt,2 . . . yt,j−1.

Combining both the one-step-late reweighting and the token-level feedback, leads to the
Token-LevelOne-Step-LateReweightedDeterministic PropensityMatching (DPM+T+OSL)
estimator:

VDPM+T+OSL(πw) =

1
m

∑m
t=1

(∑|yt|
j=1 δt,j log πw(yt,j |yt,<j , xt)

)
1
n

∑n
t=1 πw′(yt|xt)

. (8.4)

The gradients for the DPM+T andDPM+T+OSL estimatorsmay be found in Table 8.1 (also
see Appendix B).

∇wVDPM+OSL = 1
m

∑m
t=1 δtπ̄w,w′(yt|xt)∇w log πw(yt|xt).

∇wVDPM+T = 1
n

∑n
t=1

(∑|yt|
j=1 δt,j∇w log πw(yt,j |yt,<j , xt)

)
.

∇wVDPM+T+OSL =
1
m

∑m
t=1

(∑|yt|
j=1 δt,j∇w log πw(yt,j |yt,<j ,xt)

)
1
n

∑n
t=1 πw′ (yt|xt)

.

Table 8.1.: Gradients of various counterfactual estimators.

Type Explanation
Town OSM tags of “area”
Reference Point OSM tags of “center”
POI(s) OSM tags of “search” if “center” is set,

else of “nwr”
Question Type Arguments of “qtype”
Proximity : Around/Near If “around” is present
Restriction : Closest If “around” and “topx” are present
Distance Argument of “maxdist”
Cardinal Direction “north”, “east”, “south” or “west” are present

Table 8.2.: All possible statements types, which are used to transform a parse into a human-
understandable block of statements.
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8.2. Collecting Human Feedback

For many questions in theNLmaps corpus, it is difficult for humans to judge whether an an-
swer given to their question is correct or not. Similarly, non-experts cannot judge whether a
parse is correct or not for a given question. Instead we propose to automatically convert the
parse into a set of human-understandable statements. These statements can be individu-
ally judged as correct or incorrect by any non-expert user. Once a user has judged a set of
statements, the feedback given for each statement can automatically be mapped back to the
original tokens in the parse that correspond to the statement. If a statement is marked as
correct, the underlying tokens receive a reward of 1, and 0 otherwise.

There are 8 different statement types. Each is triggered by the shape of the parse and certain
tokens. For example, the token “area” triggers the statement type “Town” and the arguments
of “area” in the parse are used to populate the statement, e.g. “area(keyval(name,’Paris’))”
becomes “Town : Paris”. All statement types and their triggers can be found in Table 8.2.
The set of statements for one parse is presented in a user interface as one HTML form. Each
statement receives two radio buttons with the options “Yes” and “No” to indicate whether
that statement is true or not. The submission of a form is only accepted if a radio button has
been selected for each statement. A screenshot with a correctly filled out example may be
found in Figure 8.3.

The OSM tags that appear in the statements are generally human-understand-able. But in
case the meaning might be unclear to the user, we provide an automatically extracted de-
scription for each OSM tag and key. The descriptions are extracted from the corresponding
Wikipedia page on the OSMWiki.44 It is made available to the user in the form of a tool tip
that appears when hovering over OSM tags or keys. The existence of a tool tip is indicated
by a bold blue font in the form. For example, hovering over “amenity : parking” in Figure 8.3,
will show a small pop-up box with the description: “A place for parking cars”.

In our experiments, we prepared forms that were then filled out by recruited human users.
In the future, we envision to incorporate the feedback form directly into the online natural
language interface to OSM45. At the moment, a semantic parser might parse the question
“How many hotels are there in Paris?” with the tag “amenity=restaurant” in the parse, rather
than the correct “tourism=hotel”. A user would remain ignorant that the parser misunder-
stood the question and that a wrong answer has been presented. With the feedback form,
the user can verify for their own comfort that their question was understood correctly.

Going one step further, the feedback form could be transformed into an interactive experi-
ence. If a user marks a statement as incorrect, the semantic parser can automatically traverse
the k-best list for the highest ranking parse where the incorrect statement does not appear
and present the new parse and its answer to the user instead. Alternatively, we can allow
people to edit the form and directly provide the correct information. In the case of the ques-
tion type, any user could easily select the correct one in a drop-downmenu of the 4 possible
question types present in the NLmaps v2 corpus. In the case of OSM tags, a short list from
44https://wiki.openstreetmap.org/, 1st September 2018
45http://nlmaps.cl.uni-heidelberg.de/
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8.3 Empirical Results

Figure 8.3.: The user interface for collecting feedback from humans with an example ques-
tion and a correctly filled out form.

the k-best list could be produced and the user could search this list for a fitting tag. Users
with knowledge of OSM tags could even directly enter the correct tag.

An interactive user-system setup would deliver a better user experience while simultan-
eously collecting valuable feedback that can be used to improve performance. Additionally,
this is a step towards ensuring that model decisions are visible and understandable to the
user. Having greater transparency in the decision-making of artificially intelligent systems
has become an important concern to many users. At the same time, the system can learn
from the mistakes it makes, rather than remaining ignorant after a dissatisfied user leaves
the platform, because they were not able to easily provide feedback and inform the sys-
tem of their dissatisfaction. Viable and intuitive user-system interactions ensure a bilateral
dialogue from which both sides can profit.

8.3. Empirical Results

In our experimentsweuse the sequence-to-sequence neural networkpackageNematus (Sen-
nrich et al., 2017), which follows the setup outlined in Section 2.4. Following the approach
described in Section 3.2 (see Listing 3.4), we split parses into individual tokens by tak-
ing a pre-order traversal of the original tree structure. We use the learning rate optimiser
Adadelta (Zeiler, 2012). The model employs 1,024 hidden units and word embeddings of
size 1,000. The maximum sentence length is 200 and gradients are clipped to 1.0 if they ex-
ceed a value of 1.0. A stopping point is determined by validation on the development set
and selecting the point at which the highest evaluation score is obtained. Validation is run
after every 100 updates, and each update is made on the basis of a minibatch of size 80.
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The evaluation of all models is based on the answers obtained by executing the most likely
parse found after a beam search with a beam of size 12. We report the F1 score, which is the
harmonic mean of precision and recall. Recall is defined as the percentage of fully correct
answers divided by the set size. Precision is the percentage of correct answers out of the
set of answers with non-empty strings. Statistical significance between models is measured
using an approximate randomisation test (Noreen, 1989).

Our experiment design assumes a baseline neural semantic parser that is trained in fully
supervised fashion. For this purpose, we select 2,000 question-parse pairs randomly from
the full extendedNLmaps v2 corpus. We call this datasetDsup. Using this dataset, a baseline
semantic parser is trained in supervised fashion under aMLE objective (see Equation 2.28).
It obtains an F1 score of 57.45% and serves as the logging policy µ and as the starting point
for counterfactual learning from a log. Furthermore we randomly split off 1,843 and 2,000
pairs for a development and test set, respectively, which mirrors the split used in Chapter
6. This leaves a set of 22,765 question-parse pairs. The questions can be used as inputs and
bandit feedback can be collected for the most likely output of the semantic parser. We refer
to this dataset as Dlog .

8.3.1. Learning from Human Feedback

We select a random subset of 1,000 questions from Dlog. The questions are parsed with
the baseline policy µ and the most likely parse for each question is returned. Each parse is
transformed into a set of statements that can be judged as correct or not by non-expert users
as described in Section 8.2. 5 question-parse pairs are discarded because the underlying
parse structure is invalid. We recruited 9 humans to provide feedback for the remaining 995
question-parse pairs. Each pair is purposely judged by one user only tomimic the real-world
scenario where we cannot rely on several users asking the same question and providing
feedback. The 995 question-parse pairs togetherwith the corresponding feedback constitute
the log Dhuman.

To appraise the efficiency of our feedback collection setup, we measure the time a user took
from loading the feedback form for one question-parse pair to submitting the fully filled out
form. On average, it took a user 16.4 seconds to submit a form, with a standard deviation
of 33.2 seconds. Out of all feedback forms, a vast majority of 728 are submitted in less than
10 seconds. This indicates that our feedback collection method is efficient and shows a high
promise of being an efficient alternative compared to collecting parse annotations or correct
answer sets.

The logDhuman is employed as the training data to improve the parser using the counterfac-
tual estimators DPM, DPM+OSL, DPM+T and DPM+T+OSL. For the sequence-level ob-
jectives, a parse receives a reward of 1 if all statements are marked correct and 0 otherwise.
For the token-level objectives, tokens receive rewards of 1 if the corresponding statement is
marked as correct and 0 otherwise. We also consider a B2S setup, where the subset of 531
question-parse pairs marked as fully correct by the users is used as supervised training data
and learning continues with MLE. For the OSL update strategy, a separate experiment (see
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Subsection 8.3.5) showed the the best trade-off between speed and performance is to update
the reweighting variable Y at every validation step.

F1 ∆ F1
1 Baseline 57.45
2 B2S 57.79 ±0.18 +0.34
3 DPM1 58.04 ±0.04 +0.59
4 DPM+OSL 58.01 ±0.23 +0.56
5 DPM+T1 58.11 ±0.24 +0.66
6 DPM+T+OSL1,2 58.44±0.09 +0.99

Table 8.3.: Human Feedback: F1 scores on theNLmaps v2 test set for various counterfactual
objectives. Results are averaged over three independent runs. Best results are in-
dicated in bold face. Statistical significance of system differences at p < 0.05 are
indicated by experiment number in superscript.
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Figure 8.4.: Human Feedback: F1 performance on the test set at the validation points for
various counterfactual objectives.

Results, averaged over three runs, are reported in Table 8.3. The B2S model can slightly
improve upon the baseline but not significantly. DPM improves further, significantly beating
the baseline. Using the multiplicative control variate modified to use OSL updates does not
seem to help in this setup. By moving to token-level rewards, it is possible to learn from
partially correct parses. These partially correct parses provide valuable information that is
not present in the subset of correct answers employed by the previous models.

Optimizing DPM+T leads to a slight improvement and, combined with the multiplicat-
ive control variate, DPM+T+OSL yields an improvement of about 1.0 percentage point in
F1 score upon the baseline. It beats both the baseline and the B2S model by a significant
margin. This is a great result as we can now conclude that counterfactual learning is pos-
sible, both for non-linear models and when the feedback is elicited from real human users.
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Furthermore, this experiment again re-confirms the feasibility of deterministic logging for
sequence-to-sequence tasks in NLP.

Figure 8.4 reports the results on the test set for every validation point. It shows that DPM,
DPM+T and DPM+T+OSL always lie numerically above B2S and that DPM+T+OSL beats
B2S significantly from the third validation point onward.

8.3.2. Learning from Large-Scale Simulated Feedback

We want to investigate whether the results scale if a larger log is used. Thus, we use µ to
parse all 22,765 questions fromDlog and obtain for each the most likely output parse. Using
gold parses to simulate feedback, we assign a sequence level reward of 1 if the parse is
identical to the gold parse, 0 otherwise. We simulate token-level rewards by iterating over
the indices of the output and assigning a feedback of 1 if the same token appears at the
current index for the gold parse, 0 otherwise. An analysis of Dlog shows that 46.27% of the
parses have a sequence level reward of 1 and are thus completely correct. This subset is used
to train the B2S model using MLE.

Experimental results for the various setups, averaged over three runs, are reported in Table
8.4. The B2S model outperforms the baseline model by a large margin, yielding an increase
in F1 score by 6.24 percentage points. Employing the DPM estimator also produces a signi-
ficant increase over the baseline, but its performance falls short of the stronger B2S baseline.
Using the DPM+OSL estimator leads to a substantial improvement in F1 score over op-
timizing DPM, but it still falls slightly short of the B2S baseline. Token-level rewards are
again crucial to beat the B2S baseline significantly. DPM+T is already able to significantly
outperform B2S in this setup and DPM+T+OSL can improve upon this further. Figure 8.5
reports the results on the test set at every validation point and confirms that DPM+T and
DPM+T+OSL significantly outperform B2S at various validation points.

F1 ∆ F1
1 Baseline 57.45
2 B2S1,3 63.22 ±0.27 +5.77
3 DPM1 61.80 ±0.16 +4.35
5 DPM+OSL1,3 62.91 ±0.05 +5.46
6 DPM+T1,2,3,5 63.85 ±0.20 +6.40
7 DPM+T+OSL1,2,3,5 64.41 ±0.05 +6.96

Table 8.4.: Large-Scale Simulated Feedback: F1 scores on the NLmaps v2 test set for various
counterfactual objectives. Results are averaged over three independent runs. Best
results are indicated in bold face. Statistical significance of system differences at
p < 0.05 are indicated by experiment number in superscript.
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Figure 8.5.: Large-Scale Simulated Feedback: F1 performance on the test set at the validation
points for various counterfactual objectives.

8.3.3. Error Analysis

Following the error analysis setup introduced in Section 4.3.2, we present in Table 8.5 the
type of errors made by the baseline model as well as the DPM+T+OSL model, for both
human and simulated large-scale feedback. For both DPM+T+OSL models there is a de-
crease in bothOSM tag andQtype errors. The decrease is larger for the simulated feedback,
which is in accordance with the larger amount of available feedback. For the human feed-
back model, there is no change in the number of Skeleton errors, whereas this error type
exhibits the largest decrease in percentage for the simulated feedback setup. For the error
types Wrong Distance and Invalid Parse we observe a slight increase of errors for both
DPM+T+OSL models. But overall the human feedback model can reduce the number of
errors by slightly more than 3% and, with more feedback points available, the simulated
model exhibits an error reduction of nearly 19%.

Baseline Human Large-scale
OSM tag 1,248 1,199 ↓3.93% 1,025 ↓17.87%

Qtype 135 131 ↓2.96% 108 ↓20.00%

Wrong Dist. 3 6 ↑100.00% 8 ↑166.67%

Skeleton 70 70 →0.00% 38 ↓45.71%

Invalid Parse 7 9 ↑28.57% 12 ↑71.43%

Total 1,463 1,415 ↓3.28% 1,191 ↓18.57%

Table 8.5.: Overview of which typed of error the baseline makes and the percental in- or
decrease for DPM+T+OSL with regards to the baseline, using the human and
large-scale simulated log, respectively.
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8.3.4. Comparison to Naive Reweighting

We also implement DPM+R naively for stochastic minibatch learning. In this implement-
ation the reweighting variable Y is simply calculated on the current minibatch of size m.
Employing the setup for the large-scale experiment, we report in Table 8.6 the results for
this naive DPM+R implementation and compare it to DPM and DPM+OSL. Using a na-
ive DPM+R leads to worse results than not using a control variate, i.e. DPM. This confirms
empirically that calculating Y on small minibatches introduces large bias and the variance
reduction effect cannot counter this sufficiently. In contrast to this, calculating Y on the basis
of the entire log of size 22,766, DPM+OSL can significantly outperform DPM.

F1 ∆ F1
1 Baseline 57.45
2 DPM+R1 60.94 ±0.01 +3.49
3 DPM1,2 61.80 ±0.16 +4.35
4 DPM+OSL1,2,3 62.91±0.05 +5.46

Table 8.6.: Large-Scale Simulated Feedback: F1 scores on theNLmaps v2 test set for the com-
parison between a naive use of the reweighting objective (DPM+R) to using no
reweighting (DPM) and using one-step-late reweighting (DPM+OSL). Results
are averaged over three independent runs. Best results are indicated in bold face.
Statistical significance of system differences at p < 0.05 are indicated by experi-
ment number in superscript.

8.3.5. Varying the OSL Update Frequency

Using theDPM+T+OSL estimator and the simulated feedback setup,we vary the frequency
of updating the reweighting variable Y . Results are reported in Table 8.7. Calculating Y only
once at the beginning leads to a near identical result in F1 score as not using a control variate.
The more frequent update strategies, once or four times per epoch, are more effective and
lead to higher F1 scores. Updating four times per epoch compared to once per epoch, leads
to a nominally higher performance in F1. It has the additional benefit that the re-calculation
is done at the same time as the validation, leading to no additional slow down as executing
the parses for the development set against the database takes longer than the re-calculation
of Y . Updating after every minibatch is impractical as it slows down training too much.
Compared to the setup of updating at every validation, one epoch takes approximately an
additional 5.5 hours when updating after everyminibatch. Over all 30 validation points this
equates to an additional 165 hours, i.e. over 6 days.

134



8.3 Empirical Results

OSL Update F1 ∆ F1
1 no OSL (DPM+T) 63.85 ±0.2
2 once 63.82 ±0.1 −0.03
3 every epoch 64.26 ±0.04 +0.41
4 every validation / 64.41±0.05 +0.564x per epoch2

5 every minibatch N/A N/A

Table 8.7.: Large-Scale Simulated Feedback: F1 scores on theNLmaps v2 test set for DPM+T
and DPM+T+OSL with varying OSL update frequencies. Results are averaged
over three independent runs. Updating after every minibatch is infeasible as it
significantly slows down learning. Best results are indicated in bold face. Stat-
istical significance of system differences at p < 0.05 are indicated by experiment
number in superscript.

8.3.6. Comparison: Response-Based On-Policy & Counterfactual
Off-Policy Learning

In Chapter 6, we employ response-based on-policy learning objectives on the sameNLmaps
v2 training data and upon the same baseline semantic parser. This allows us to draw a dir-
ect comparison between the best response-based on-policy learning objective,Ramp+T, and
the best counterfactual off-policy learning objective, DPM+T+OSL. Results are reported in
Table 8.8. With an additional increase of 5.04 percentage points in F1 score, Ramp+T can
significantly outperform DPM+T+OSL. This difference can be easily understood because
response-based on-policy learning has a stronger learning signal available: it can leverage
the existing gold answers to obtain feedback for arbitrarily many model outputs. Counter-
factual off-policy learning on the other hand can access only one feedback point for one
model output and, furthermore, this model output is biased by the logging policy.

In terms of training speed, counterfactual off-policy learning is faster than response-based
on-policy learning. For counterfactual off-policy learning, the log and thus all necessary
feedback points are already collected when training begins. But response-based on-policy
learning tries out several model outputs per input. This leads to a significant slow-down
if the process of obtaining feedback for a model output is time consuming. With up to 10
parses per input that need to be executed against the OSM database, response-based on-
policy learning is an order of magnitude slower than counterfactual off-policy learning in
our experiments.

If speed is no consideration, the choice between response-based on-policy and counterfac-
tual off-policy learning reduces to how expensive it is to obtain gold targets. On the OSM
domain, both obtaining gold parses or gold answers is impractical. The underlying MRL
is only known to a handful of experts and thus it is expensive to obtain new gold parses.
But obtaining gold answers is outright infeasible because in many instances the answer set
is open-ended, fuzzy or too large to be enumerated in a reasonable amount of time and
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F1 ∆ F1
1 Baseline 57.45
2 DPM+T+OSL1 64.41±0.05 + 6.96
3 Ramp+T1,2 69.45±0.53 +12.00

Table 8.8.: Comparison: F1 scores on theNLmaps v2 test set for the best response-based on-
policy learning objective,Ramp+T, and the best counterfactual off-policy learning
objective, DPM+T+OSL. Results are averaged over three independent runs. Best
results are indicated in bold face. Statistical significance of system differences at
p < 0.05 are indicated by experiment number in superscript. Note: The F1 score
of Ramp+T differs to the score reported in Table 6.2 because here, three inde-
pendent runs, rather than two, have been run for a direct comparison to the three
independent runs of DPM+T+OSL.

without error. In such scenarios, obtaining feedback to model outputs from human users
can offer a viable alternative. This feedback collection can either be done by recruiting hu-
man workers to provide feedback or by incorporating a feedback collection method in a
deployed system, where users can provide feedback as they use the system. For the OSM
domain, our experiments showed that the feedback for one model output can in most cases
be collected in 10 seconds or less from a human user, which proves the efficiency of our
proposed method.

Thus, we conclude, counterfactual off-policy learning should be chosen if gold targets are
impossible, too time consuming or too expensive to obtain, whereas feedback for model
outputs can be easily collected. Otherwise, response-based on-policy learning is a more
promising approach because the available gold target offers a stronger learning signal as it
allows the model to try out and receive feedback for arbitrarily many outputs.

Conclusion

We demonstrated that counterfactual learning can be used to improve a semantic parser
for the QA task defined by the NLmaps v2 corpus. Because deterministic logs are on par
with stochastic logs for the machine translation task in the previous chapter, we employed
only deterministic logs for the QA task. Deterministic logs are especially important in a
deployed QA system because typically only one parse leads to a correct answer. Akin to the
machine translation task, counterfactual learning can significantly outperform the semantic
parser baseline for the QA task. This is another validation for the feasibility of deterministic
logging for sequence-to-sequence tasks.

Additionally, we moved to state-of-the-art neural networks. Counterfactual learning had
previously only been applied to linear models. We were able to show that counterfactual
learning is also successful if the underlying policy is a non-linear neural network. Moving
to neural networks, it is necessary to perform stochastic learningwith small minibatches be-
cause larger minibatches or one batch consisting of the entire log cannot be used for large,
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state-of-the-art neural networks on current hardware. However, DPM+R requires a calcu-
lation on the basis of the entire log and can thus not be employed in a stochastic (mini-
batch) gradient ascent setting. Because DPM+R offers crucial advantages over DPM, we
introduced a new estimator, DPM+OSL, that preserves the advantages of DPM+R and is
applicable to stochastic learning. We validated its effectiveness and success over DPM em-
pirically, while also showing that a naive implementation of DPM+R leads to worse results
than simply using DPM.

Most crucially, we showed that counterfactual learning is possible if feedback is collected
from real human users. In QA tasks, the human user would typically have to provide feed-
back for either the answer or the parse that the semantic parser produced for a given ques-
tion. But inmany cases, e.g. whenmany objects have to be counted, the answer cannot easily
be judged as correct or incorrect by a human user. Similarly, non-expert users cannot judge a
parse as right or wrong because they do not know the underlyingMRL. Thus, we proposed
a new method for easily collecting feedback from non-expert users: We automatically con-
vert the parse into a set of human-understandable statements. These statements can easily
be marked as correct or not by non-experts. Feedback was collected from 9 recruited users
and was subsequently used to significantly improve the baseline system. The vast majority
of feedback forms were filled out in 10 seconds or less, which demonstrates the efficiency
of our proposed approach.

Our feedback collectionmethodoffers an additional advantage. Each statement can be traced
back to a set of tokens in the parse which produced the statement. Thus, it is possible to use
the statements to give rewards to individual tokens. This allows us to assign blame within
a parse, enabling us to learn from partially correct parses. To make use of this, we intro-
duced a new counterfactual estimator, DPM+T, that decomposes over tokens. Combining
this estimator with the one-step-late approach, leads to the DPM+T+OSL estimator. This
estimator was successfully able to significantly outperform a simple Bandit-to-Supervised
(B2S) baseline, where all entries in the log that were marked as fully correct, are treated as a
supervised data set and training continues with MLE. We also repeated our experiments in
a large-scale settingwith simulated feedback. Here, wewere able to show that the gains over
the baseline scale with the amount of available feedback. Additionally, in an error analysis
we showed which type of parse errors are reduced by employing counterfactual off-policy
learning.

Finally, we were able to draw a direct comparison between response-based on-policy and
counterfactual off-policy learning becausewe employed the same training data and baseline
semantic parser in this chapter and in Chapter 6. The comparison allowed us to conclude
that response-based on-policy learning offers more potential because with gold answers
available in this setup, arbitrarily many model outputs can be tried out. This is a stronger
learning signal than the setup given for counterfactual off-policy learning, where feedback
is available for only onemodel output and this model output is biased by the logging policy.
However, in certain instances, collecting gold targets might be impossible, too time consum-
ing or too expensive, whereas obtaining feedback for a model output is efficient and easy.
This is for example the case in the OSM domain, where gold parses are expensive to ob-
tain because the MRL is only known to a handful of expert users. Similarly, gold answers
are infeasible to obtain because the answer sets are often open-ended, fuzzy or too large to
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enumerate without error or within reasonable time constraints. In such instances, counter-
factual off-policy learning is a viable alternative.

Part III Conclusion

Counterfactual off-policy learning offers an approach of learning from user-system inter-
actions that does not require any gold targets for learning. This is a crucial advantage in
scenarios where gold targets are too expensive to obtain, whereas collecting feedback for
model outputs is cheap.

We successfully employed the approach to two NLP sequence-to-sequence tasks. For the
first task, we tuned a machine translation system in a domain adaptation scenario. With
this, we verified that it is possible to use counterfactual learning for tasks with large output
spaces. Furthermore, we showed empirically with simulated feedback that deterministic
logs are on par with stochastic logs and gave an intuitive explanation of why the implicit
exploration of deterministic logging is sufficient for sequence-to-sequence tasks inNLP. In a
second task, we improved a semantic parser. On this task, we confirmed that counterfactual
learning is possible for neural models. Furthermore, we proved that counterfactual learning
is possible if feedback is collected from non-expert human users.

Together, the results from Chapter 7 and Chapter 8 demonstrate that promising gains can
be obtained if counterfactual learning is employed in deployed sequence-to-sequence tasks
where it is easy and cheap to collect large logs from human-system interactions. In the fu-
ture, it would be interesting to explore scenarios where the logging policy is not also the
starting policy that we want to improve. This might lead to further challenges, but would
be an interesting setup for scenarios where a new, better model is found that is fundament-
ally different to the logging policy. Learning from the log could ensure that the new model
is fine-tuned to user preferences before deployment.
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We explored two distinct approaches to improve sequence-to-sequence models for Natural
Language Processing (NLP) tasks using feedback obtained for model outputs. In addition,
we also introduced a new application where users can use natural language questions to
search the geographical database OpenStreetMap (OSM). The basis for this application is
the Question-Answering (QA) corpus,NLmaps, and its extension,NLmaps v2, with both of
which semantic parsing models were trained. We designed an appropriate graphical web
interface and tailored the semantic parsing models for this use. The semantic parsing task
was also used to exemplify the two distinct approaches to learn from feedback.

The first approach is response-based on-policy learning, where weak feedback in form of
downstream gold targets is available. We first employed it to improve the first model in a
two-model pipeline configuration by grounding the model in the final, downstream task.
We confirmed its success empirically on amultilingual semantic parsing setup for QAbased
on the NLmaps corpus and using log-linear models. First, a machine translation system
translated a German question into English. Next, a semantic parser maps the English ques-
tion to a semantic parse. This parse is executed against a database to obtain an answer and
the answer can be compared to the available gold answer.

By leveraging feedback from the answer-level comparison, we introduced two algorithms
which tailored themachine translation system toworkwell in conjunctionwith the semantic
parser, improving the overall task performance. The algorithms each use a ramp loss ob-
jective where a hope translation and fear translation are identified and, respectively, en-
couraged and discouraged. The first algorithm only requires the existence of gold answers,
whereas the second additionally requires gold reference translations. The latter outperforms
the former, as well as another algorithm that assumes only the existence of gold references.
However, requiring two gold targets might be too expensive in praxis.

As a second application, we explored if response-based on-policy learning can be used to
improve a semantic parser because for many domains it is cheaper to obtain gold answers
rather than gold parses. Additionally we moved from log-linear models to neural networks
and to NLmaps v2. A semantic parser is improved using the feedback obtained by compar-
ing the answers of parses produced by the model to the gold answer. We lifted several ramp
loss objectives to neural networks and compared them to Minimum Risk Training (MRT).
We showed that a ramp loss objective is the most effective because it naturally employs
the bipolar principle, where negative outputs are discouraged while positive ones are en-
couraged. Furthermore, we extended this objective to operate at the token level. The novel
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objective outperforms all others, including its sequence-level counterpart, by more effect-
ively contrasting the tokens in a fear output against the tokens in the corresponding hope
output.

However, response-based on-policy learning ultimately still requires the existence of ex-
pensive gold targets, albeit gold targets of a downstream task, which might be easier to
obtain. To further alleviate the need for such gold targets, we turned to a second approach
that does not require any gold targets.

The second approach is counterfactual off-policy learning. Instead of collecting gold tar-
gets, we proposed to collect user-system interaction logs of deployed applications. Such a
log records user input, model output and collects feedback from the user for the proposed
model output. Using this log, we employed counterfactual reward estimators to improve a
target system. This poses a challenging learning scenario because only one model output
can receive feedback and this output is biased to the deployed model, leading to a bandit,
off-policy learning setup. Prior theory suggests that the log has to be created stochastically
by sampling from the logging model. However, sampling is dangerous for sequence-to-
sequence tasks in NLP and because of this, the most likely output under the logging system
is displayed. This leads to deterministic logging for which theory indicates that it does not
offer sufficient exploration of the output space.

We employed both stochastic and deterministic counterfactual estimators to improve a ma-
chine translation system with an underlying log-linear model in a domain adaptation task.
By simulating the feedback, we were able to directly compare stochastic estimators to their
deterministic counterparts. We identified that the best deterministic estimator performs on
par with the best stochastic estimator. Our offered explanation of implicit exploration sug-
gests that deterministic logging is sufficient for sequence-to-sequence tasks in NLP because
there is enough exploration at the token level, on both input and output side. Addition-
ally, the experiments showed for the first time that counterfactual learning is possible for
tasks with large outputs space. Finally, we also analysed how some counterfactual learning
estimators can behave in degenerate ways and supplied corresponding proofs.

As a second application, we applied counterfactual off-policy learning to semantic parsing.
Mirroring the second task for response-based on-policy learning, we employed the same
baseline neural semantic parser based on NLmaps v2. To collect feedback from humans, we
presented amethodwhich transforms a semantic parse into a set of human-understandable
statements that can be marked as correct or incorrect by non-expert human users. We con-
firmed empirically that counterfactual learning works on another sequence-to-sequence
task for NLP and that learning is possible if the feedback is collected from human users.

With the move to neural networks, which are trained using stochastic gradient ascent with
small minibatches, we were no longer able to use a counterfactual estimator that required
updates made on the basis of larger batches. We presented an appropriate modification and
confirmed its success empirically. Finally, we introduced a new estimator that can leverage
token-level feedback, which allows it to outperform its sequence-level counterpart. Our suc-
cessful application of counterfactual learning to sequence-to-sequence tasks are particularly
interesting for commercial applications where the (deterministic) logging of user feedback
does not incur any cost and is plentiful.
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Goal: Improve a statistical model

Are direct or  
indirect gold targets

cheap to obtain?

Response-Based
On-Policy Learning 

Counterfactual
Off-Policy Learning

Collect
logs from
live users 

Is the model  
good enough to be

deployed?

Collect
logs from

hired
workers 

Yes NoYes

No

Figure 8.6.: Decision tree to guide whether to employ response-based on-policy learning
or counterfactual off-policy learning for a given statistical model that is to be
improved.

By posing the same semantic parsing task based on NLmaps v2 for both response-based
on-policy and counterfactual off-policy learning, we were able to draw a direct comparison
between the two approaches. We saw that the best model from response-based on-policy
learning outperforms the best model produced by counterfactual off-policy learning. How-
ever, it requires the existence of gold answers which might be too expensive or impossible
to obtain. Especially for the OSM domain, it is in many instances infeasible to ask a human
worker to produce a gold answer because answer sets are too large or fuzzily defined. In
such scenarios, it is much easier to ask humans to give feedback for a model output. Con-
cretely, we proposed amethodwhere non-expert users could typically provide the required
feedback for one model output in 10 seconds or less.

The optimal choice between response-based on-policy or counterfactual off-policy learning
thus depends on the given problem. Given a statistical model that we want to improve,
we can follow the decision tree presented in Figure 8.6. If direct or downstream gold targets
can easily be collected, response-based on-policy learning should be preferred because gold
targets offer a stronger learning signal, as it allows the model to try out different model
outputs and receive feedback for all of them. If however, gold targets are impossible to obtain
or their collection is vastlymore time consuming than obtaining feedback formodel outputs,
then counterfactual off-policy learning offers a viable alternative. If the statistical model
performs sufficiently well to be deployed, the required logs can be collected freely from live
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users who are willing to provide feedback. Otherwise, workers can be hired to provide the
required feedback.

In summary,we presented two different approaches to improve sequence-to-sequencemod-
els in NLP using feedback given to model outputs. Each approach was employed on two
applications (machine translation and semantic parsing for QA) and two different model
types (log-linear models and non-linear neural networks). The first approach, response-
based on-policy learning, grounds a model in its final, downstream task by trying out vari-
ous outputs to find an output that leads to positive task feedback. But this approach requires
gold targets based on the downstream task, which might be cheaper to obtain than directly
supervised gold targets, but are ultimately still costly. The second approach, counterfac-
tual off-policy learning, collects feedback from human-system interactions of a deployed
model. It does not require gold targets but poses a more difficult learning scenario because
feedback is only available for one output and the output is biased to the deployed model.
These factors should beweighed against each other when choosingwhich approach is more
suitable for a given problem.

Overall, both approaches allow us to learn by using weaker feedback signals than directly
supervised data. Exploring such approaches is important because nowadays many applic-
ations are built upon statistical machine-learnt models for which direct supervision is too
costly and time-consuming to obtain. With the trend towards virtual personal assistants
serving an increasing number of people on an increasing number of everyday tasks, it will
become evenmore important in the future to adapt to user needs without requiring expens-
ive supervised data. Our two investigated approaches of using feedback obtained for model
outputs are an important step in this direction.
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Appendix A

Context Free Grammar of NLmaps

[S]→ [X, 1]

[S]→ dist([X, 1], unit([KMMI, 2]))

[S]→ dist([X, 1], [X, 2], unit([KMMI, 3]))

[S]→ dist([X, 1])

[S]→ dist([X, 1], [X, 2])

[S]→ dist([X, 1], for([CW, 2]))

[S]→ dist([X, 1], [X, 2], for([CW, 3]))

[X]→ query(north([AROUND, 1]), [META, 2])

[X]→ query(north([QUERY, 1]), [META, 2])

[X]→ query(west([AROUND, 1]), [META, 2])

[X]→ query(west([QUERY, 1]), [META, 2])

[X]→ query(south([AROUND, 1]), [META, 2])

[X]→ query(south([QUERY, 1]), [META, 2])

[X]→ query(east([AROUND, 1]), [META, 2])

[X]→ query(east([QUERY, 1]), [META, 2])

[X]→ query([AROUND, 1], [META, 2])

[X]→ query([QUERY, 1], [META, 2])

[AROUND]→ around(center([QUERY, 1]), search([QUERY, 2]),

maxdist([DIST, 3]))

[AROUND]→ around(center([QUERY, 1]), search([QUERY, 2]),

maxdist([DIST, 3]), [META_TOPX, 4])

[QUERY ]→ [AREA, 1], [OSM, 2]

[QUERY ]→ [OSM, 1]

[META]→ qtype([META_REQ, 1])

[META]→ qtype([META_POS, 1])

[META_REQ]→ [META_REQ, 1], [META_REQ, 2]
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Context Free Grammar of NLmaps

[META_REQ]→ [META_REQ, 1], [METAPOS, 2]

[META_REQ]→ findkey(and([KEY, 1], [KEY, 2]))

[META_REQ]→ findkey([KEY, 1])

[META_REQ]→ findkey([KEY, 1], [META_TOPX, 2])

[META_REQ]→ count

[META_REQ]→ latlong

[META_REQ]→ latlong([META_TOPX, 1])

[META_REQ]→ least([META_TOPX, 1])

[META_POS]→ nodup([META_REQ, 1])

[META_TOPX]→ topx([INT, 1])

[AREA]→ area([INNER, 1])

[OSM ]→ nwr([INNER, 1])

[OSM ]→ nwr([INNER, 1]), [OSM, 2]

[INNER]→ and([INNER, 1], [INNER, 2])

[INNER]→ or([INNER, 1], [INNER, 2])

[INNER]→ keyval([KEY, 1], [V AL, 2]), [INNER, 3]

[INNER]→ keyval([KEY, 1], [V AL, 2])

[CW ]→ car

[CW ]→ walk

[KMMI]→ km

[KMMI]→ mi

[DIST ]→WALKDING_DIST
[DIST ]→ DIST_INTOWN

[DIST ]→ DIST_OUTTOWN

[DIST ]→ DIST_DAY TRIP
[DIST ]→ [INT, 1]

[V AL]→ or([V AL, 1], [V AL, 2])

[V AL]→ and([V AL, 1], [V AL, 2])

[V AL]→ ′valuevariable′

[V AL]→ ′keyvariable′

[KEY ]→ {set of OSM key tags}
[INT ]→ {set of all digits} [INT, 1]

[INT ]→ {set of all digits}
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Appendix B

Detailed Gradient Derivations

IPS

VIPS(π) =
1

n

n∑
t=1

δt ·
π(yt|xt)
µ(yt|xt)

Gradient
Based on the score function gradient estimator (see Equation 2.10, Section 2.2) and using
∇w log f = ∇wf

f :

∇wVIPS(π) = ∇w

[
1

n

n∑
t=1

δt ·
π(yt|xt)
µ(yt|xt)

]

=
1

n

n∑
t=1

δt ·
1

µ(yt|xt)
∇wπ(yt|xt)

=
1

n

n∑
t=1

δt ·
1

µ(yt|xt)
· π(yt|xt)
π(yt|xt)

· ∇wπ(yt|xt)

=
1

n

n∑
t=1

δt ·
π(yt|xt)
µ(yt|xt)

· ∇w log(π(yt|xt))

Setting all µ(yt|xt) = 1 recovers the gradient of DPM.
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Detailed Gradient Derivations

IPS+R

VIPS+R(π) =

n∑
t=1

δt
ρt∑n
u=1 ρu

=

n∑
t=1

δt · ρ̄t,

with ρ̄t =
ρt∑n
u=1 ρu

and ρt =
π(yt|xt)
µ(yt|xt)

.

Gradient
Using the gradient of IPS,

∇wρt = ρ′t = π(yt|xt)
µ(yt|xt) · ∇w log(π(yt|xt)) = ρt · ∇w log(π(yt|xt)),

and the quotient rule, ∇w f(w)
g(w) = g(w)∇wf(w)−f(w)∇wg(w)

g(w)2 :

∇wVIPS+R(π) =

n∑
t=1

[
δt
ρ′t ·

∑n
u=1 ρu − ρt ·

∑n
u=1 ρ

′
u

(
∑n
u=1 ρu)2

]

=

n∑
t=1

[
δt
ρt · ∇w log(π(yt|xt)) ·

∑n
u=1 ρu − ρt · [

∑n
u=1 ρu · ∇w log(π(yu|xu))

(
∑n
u=1 ρu)2

]

=

n∑
t=1

[
δt · ρ̄t

(
∇w log(π(yt|xt))−

n∑
u=1

ρ̄u · ∇w log(π(yu|xu))

)]

Setting all µ(yt|xt) = 1 recovers the gradient of DPM+R.

ĉDR

VDR(π) =

n∑
t=1

(δt − ĉδ̂(xt, yt)) · ρ̄t + ĉ
∑

y∈Y(xt)

δ̂(xt, y) · π(y|xt)



Gradient
Using the gradient of IPS+R:

∇wVDR+R(π) =

n∑
t=1

[
(δt − ĉδ̂(xt, yt)) · ρ̄t

(
∇w log(π(yt|xt))−

n∑
u=1

ρ̄u · ∇w log(π(yu|xu))

)

+ĉ
∑

y∈Y(xt)

δ̂(xt, y) · π(y|xt)∇w log(π(y|xt))



Setting all µ(yt|xt) = 1 recovers the gradient of ĉDC.
Setting ĉ = 1 recovers DR.
Setting all µ(yt|xt) = 1 and ĉ = 1 recovers DC.
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Detailed Gradient Derivations

DPM+OSL

VDPM+OSL(πw) =
1

m

m∑
t=1

δtπ̄w,w′(yt|xt),

=
1
m

∑m
t=1 δtπw(yt|xt)

1
n

∑n
t=1 πw′(yt|xt)

.

Gradient

Based on the score function gradient estimator (see Equation 2.10, Section 2.2) and using
∇w log f = ∇wf

f :

∇wVDPM+OSL =
1
m

∑m
t=1 δt∇wπw(yt|xt)

1
n

∑n
t=1 πw′(yt|xt)

=
1
m

∑m
t=1 δtπw(yt|xt)∇w log(πw(yt|xt))

1
n

∑n
t=1 πw′(yt|xt)

=
1

m

m∑
t=1

δtπ̄w,w′(yt|xt)∇w log(πw(yt|xt))

DPM+T

VDPM+T(πw) =
1

n

n∑
t=1

 |yt|∑
j=1

δt,j log πw(yt,j |yt,<j , xt)



Gradient

∇wVDPM+T =
1

n

n∑
t=1

 |yt|∑
j=1

δt,j∇w log πw(yt,j |yt,<j , xt)



DPM+T+OSL

VDPM+T+OSL(πw) =

1
m

∑m
t=1

(∑|yt|
j=1 δt,j log πw(yt,j |yt,<j , xt)

)
1
n

∑n
t=1 πw′(yt|xt)

Gradient

∇wVDPM+T+OSL =

1
m

∑m
t=1

(∑|yt|
j=1 δt,j∇w log πw(yt,j |yt,<j , xt)

)
1
n

∑n
t=1 πw′(yt|xt)
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