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Motivation: Why are Semantic Clause Types Interesting?

The distribution of SCT in text passages
correlates with discourse modes (Smith
2003) and plays a role in

 Genre characterization (Palmer and
Friedrich, 2014)

* Detection of generic and generalizing
sentences (Friedrich and Pinkal,
2015)

* Argumentation structure analysis
(Becker et al., 2016)

 Characterization of implicit
knowledge (Becker et al., 2017)
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Related Work and Contribution

Automatic Classification of Semantic Clause Types

Feature-based classifiers (Palmer et al. 2007, Friedrich et al. 2016)
e exploit language-specific and resource-intensive features

e results: with standard NLP Features

— 69.8 accuracy

with detailed features including external repositories — 71.4 accuracy

with standard and detailed features used jointly

— Adaptation to novel languages is expensive

— /4.7 accuracy

. Resource-lean Recurrent Neural Network model with attention,
enhanced with context and genre information which is

e capable of modeling

easy to port to

e capable of on of the input * able to exploit &
Data
* English Dataset: Friedrich et al. (2016): Wikipedia ( ) and MASC
( ), 13 genres (Email, Essay, Letter, Newspaper, TED talk, Wikipedia...)

 German Datasets: Mavridou et al. (2015) and Becker et al. (2016a,b) + self-

annotated data (total:
 Word embeddings

e English: 300-dim word2vec, trained on Google News (Mikolov et al. 2013)
e German: 100-dim word2vec, trained on a web corpus (Reimers et al, 2014)

), 7 genres (Fiction, Commentary, report...)

German annotated
dataset:
www.cl.uni-heidelberg.
de/english/research/
downloads/resource_
pages/GER_SET/GER_SET

_data.shtml
Results

English Testset |German Testset
Accuracy |F1-Score |Accuracy |F1-Score

Local Models Local model (w/o attention) 66.55 59.14 74.94 67.12
Local model with attention 69.18 68.31 74.51 74.02

Local model with attention+genre | 71.12 69.55 75.56 69.98

Context Model: Clauses 1 previous clause/genre 71.67 59.19 74.51 72.41
Local model with attention 2 previous clauses/genres /1.57 48.12 74.44 712.26
+ previous clauses (tokens, w/o attention) 3 previous clauses/genres 69.76 42.73 /73.35 71.79
+ genre label 4 previous clauses/genres 69.29 | 41.55 /73.11 71.12
5 previous clauses/genres 68.99 30.78 /2.89 /70.61

Context Model: Labels 1 previous label/genre 69.55 60.21 71.78 52.88
Local model with attention 2 previous labels/genres 71.04 64.54 72.29 52.52
+ previous labels with attention 3 previous labels/genres 71.68 64.42 72.47 52.34
+ genre label 4 previous labels/genres 71.25 | 65.06 | 74.33 51.12
5 previous labels/genres 72.04 | 64.74 74.92 50.76

Context Model: Labels + Clauses |1 previous label/clause/genre 71.35 70.82 73.43 59.51
Local model (w/o attention) 2 previous labels/clauses/genres | 70.65 | 68.62 | 72.23 57.38
+ previous clauses (tokens, w/o attention) |3 previous labels/clauses/genres 69.90 68.83 71.69 57.99
+ previous labels (w/o attention) 4 previous labels/clauses/genres 69.26 67.47 71.11 56.48
+ genre label of previous labels 5 previous labels/clauses/genres | 69.00 | 64.36 | 71.09 56.23

Conclusions

* Models that attend to local clauses, context & genre jointly perform best

* Competitive performance at the |level of feature-based classifiers

* Model avoids reproducing linguistic features for novel languages
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Inventory

Semantic Clause Types (SCT) (Smith 2003, Friedrich et al. 2016) characterize the
aspectual properties of clauses and their function within a text/discourse:

John loves cake.

Mike won the race.

Mary often feeds my cat.

Lions are carnivores.
John says that he loves cake.
Why do you torment me so?
Listen to this.
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Architecture

Combinations: local clauses, local clauses+genre, local clauses+previous labels, local clauses+previous tokens, local
clauses+previous labels+genre, local clauses+previous tokens+genre, local clauses+previous labels+previous tokens+genre
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Popov's work as ...
On May 7, 1895 he...
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Analysis

Position of Words with High Attention Scores

1 word with 2 words with

highest attention

Attention Score per POS Tags
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Impact of Genre

 Which genres are easier
to classify?

* Which genre helped
classifying correctly?

Similarity of Genres

* (sequences of) SCT differ
among genres: most

freq. n-grams per genre:

— GENERIC = arg. texts,
EVENTS =2 reports

— STATE-STATE - Journals,
GENERIC-GENERIC
- Wikipedia

— EVENT-EVENT-EVENT -
Jokes, EVENT-STATE-
STATE - gov. documents

* Distributions of SCT and
their n-grams measured
by symmetric Kullback-
Leibler divergence
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Best Performing System with Genre Information
Best Performing System without Genre Information
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