
Classifying Spend Descriptions with off-the-shelf Learning Components

Saikat Mukherjee Dmitriy Fradkin Michael Roth
Integrated Data Systems Dept.

Siemens Corporate Research, U.S.A.
{saikat.mukherjee,dmitriy.fradkin,michael.roth.ext}@siemens.com

Abstract

Analyzing spend transactions is essential to organiza-
tions for understanding their global procurement. Cen-
tral to this analysis is the automated classification of these
transactions to hierarchical commodity coding systems.
Spend classification is challenging due not only to the com-
plexities of the commodity coding systems but also because
of the sparseness and quality of each individual transaction
text description and the volume of such transactions in an
organization. In this paper, we demonstrate the applica-
tion of off-the-shelf machine learning tools to address the
challenges in spend classification. We have built a system
using off-the-shelf SVM, Logistic Regression, and language
processing toolkits and describe the effectiveness of these
different learning techniques for spend classification.

1 Introduction

Organizations are engaged in various kinds of procure-
ment activities. Such procurement, or spend, could be as-
sociated directly with product manufacturing or with indi-
rect internal purchases. Direct spend is more typically cen-
tered on certain fixed commodities and possibly pre-defined
suppliers. However, indirect spend is much more diffuse
and cuts across the spectrum of goods and services. The
purchase of office furniture, buying airline tickets and car
rentals are some examples of indirect spend.

One effect of the diffuse nature of indirect spend is
that often local units within an enterprise conduct their in-
dividual purchasing independently without any global co-
ordination. This results in problems such as proliferation of
suppliers for identical goods and services, inability of the
enterprise to identify purchasing synergies between units,
failure to identify the major classes of purchases and their
amounts, and inability to strike better bargains with suppli-
ers. Hence, it is imperative for organizations to maintain an
integrated global view of the total spend activity.

Approaches to integrating spend involve associating

spend transactions to a family of commodity codes where
each code represents a particular class of product or ser-
vice. Typically these commodity codes are arranged hierar-
chically from generic to more specific classes. Examples of
such commodity codes are UNSPSC1, eCl@ss2, and ESN.
Figure 1 shows a fragment of the ESN commodity coding
system which is widely used and has a broad coverage of
products and services. The ESN scheme is a three level hi-
erarchy where each code consists of at most three letters
denoting increasing specificity of the product or service.
For instance, in Figure 1, the code M represents “Electri-
cal Products”, while its child code MB represents “Power
Products”, and finally the leaf codesMBL andMBM rep-
resent “UPS Systems” and “Inverters for Power Supply” re-
spectively. Once spend transactions have been associated
to their respective commodity class, the integrated data can
be analyzed by business intelligence software or different
kinds of data mining tools.

Manually associating spend transactions to their corre-
sponding classes is, however, not scalable due as much to
the large number of transactions as to the diversity of classes
within any single commodity coding scheme. It becomes
even more difficult with increasing size and spread of orga-
nizations. Furthermore, manually associating large number
of transactions is subject to human mistakes and varying
skills of data experts. Consequently, there is a need to de-
velop automated techniques for spend classification.

In this paper, we describe the application of off-the-shelf
machine learning techniques for automated classification of
spend transaction to commodity codes. In our work, we
have used only the text descriptions of spend transactions to
classify them to appropriate commodity classes. We have
also used the ESN hierarchy as the target commodity struc-
ture. For instance, a spend on purchasing a Dell Latitude
notebook could have an associated human written descrip-
tion “15 inch Dell Latitude” and it needs to be classified to
codeNNC of the ESN structure which represents spend on
laptops.

1http://www.unspsc.org
2http://www.eclass-online.com

1

Figure 1. Portion of the ESN Commodity Cod-
ing Scheme

Various aspects of classifying spend descriptions make it
more challenging than typical text categorization tasks.

• Classifying spend descriptions involves hierarchical
text categorization due to the structure of the com-
modity coding schemes. Typically, these hierarchies
are extensive which makes the classification task even
more challenging. For instance, the ESN hierarchy has
2185 classes spread across 3 levels.

• The descriptions tend to be short pieces of text with
typically less than 5 words which is unlike usual text
categorization data sets.

• Due to the sparsity of words in spend descriptions,
classifying them correctly to commodity classes re-
quires that individual features within them are not
erroneous. However, because these descriptions are
manually written they suffer from different kinds of
mistakes such as: (a) spelling errors when a word is
mis-spelled (b) merge errors when multiple words are
joined together, and (c) split errors when a single word
is broken up into multiple words. For instance, “Mi-
crosoftOffice” is a merge error where the two words
“Microsoft” and “Office” have been joined together.
Similarly, “note book” is a common error where the
single word “notebook” has been split up into two
words.

• Spend descriptions in global organizations could be in
multiple languages. This makes it difficult to use lin-
guistic techniques suitable for one particular language
but not for others.

• The amount of spend data in large global organizations
is enormous and could approach half a million new

samples monthly. This makes training classifiers for
such large data sets computationally challenging.

• The classifiers need to be retrained periodically not
only because of new training samples but also be-
cause commodity coding structures undergo revisions
whereby new classes are added and some old ones
dropped. Yet using millions of old samples, as well
as the new ones, during retraining could again be com-
putationally difficult.

In this paper, we describe ways in which we have applied
machine learning techniques to address these challenges. In
particular, we have focused on using and modifying off-
the-shelf learning tools for spend classification and noisy
feature correction. [26] and Zycus3 are recent examples of
work in the research community and in commercial soft-
ware for spend analytics. However, they typically do not
address the challenges of hierarchical commodity classifi-
cation or the presence of noisy features in data.

In spend classification, we have experimented with Sup-
port Vector Machines (SVM) as well as Bayesian Logistic
Regression classifiers. We have applied these classifiers in
a hierarchical setting and, for SVM, explored ways to im-
prove performance beyond the baseline. Our results demon-
strate the superiority of Logistic Regression over SVM both
in terms of precision and computational efficiency.

We model the feature correction problem as as instance
of noisy channel similar to [2, 16]. In noisy channel ap-
proaches to language correction, it is assumed that the ob-
served word O is a corruption of an intended word C due
to the presence of a “noisy channel”. We have focused on
correcting only spelling mistakes and merge/split errors in
features by this approach and have assumed 1 error per word
for computational purposes. Our experiments demonstrate
the utility of the noisy channel technique for feature correc-
tion in spend description data sets.

The primary contribution of our work lies in using off-
the-shelf machine learning tools for solving a very practi-
cal problem – classifying spend descriptions to hierarchi-
cal commodity classes. We demonstrate performance and
trade-offs between off-the-shelf SVM and logistic regres-
sion classifiers for this task as well as a practical applica-
tion of noisy channel model for feature correction. We have
brought this diverse suite of techniques within a single sys-
tem to address challenges in automated spend classification.

The rest of the paper is organized as follows: Section
2 describes our experiments with SVM and logistic regres-
sion classifiers for spend categorization. In Section 3, we
describe the technical details and results of correcting noisy
features. Related work for classifiers and feature correction
are referred to in their own sections, Section 4 briefly de-
scribes the system and Section 5 concludes the paper.

3http://www.zycus.com

2 Spend Classification

2.1 Data

The total size of the ESN hierarchy is 2185 nodes, not
counting the root, of which most (2105) had at least 1 de-
scription. There are 17 first-level nodes, 192 second-level
nodes and 1976 leaf nodes. Note that actual expense de-
scriptions can only be assigned to the leaf nodes.

Our data consists of 128695 descriptions believed to be
accurately assigned to the leaves. In order to evaluate dif-
ferent approaches, we randomly split this collection into 2/3
training and 1/3 test set. The size of the training set was
85953, while the test set was 42742. The training set con-
tains cases from 418 leaf nodes, while the test set has cases
from 380 leaf nodes. Additionally, the descriptions of ESN
hierarchy nodes in 5 languages added 14981 examples (for
2105 nodes) to the training set. The full dictionary for the
training set consisted of 69429 terms.

2.2 Feature Representation

In text classification, a document is usually represented
by a sparse vector with coordinates (features) correspond-
ing to individual words in that document. Information re-
trieval and text classification literature [25, 20] describe
many ways of assigning weights to features based on var-
ious term statistics, such as term-frequency in a document,
inverted document frequency in the collection and so on.

The specifics of our application affect the representations
that we examine. Since descriptions are short, repetition of
terms is likely not a useful indicator, so term frequencies
are not used. Also, feature importance will change between
sibling nodes and between different levels of the hierarchy,
so a single weighting scheme such as inverted document
frequency is unlikely to be useful.

The two representations we examine are a simple binary
weighting scheme (a term has weight 1 if it occurs in the
description and has weight 0 otherwise), and a node specific
feature weighting representation leveraging the hierarchical
structure of the ESN. The weight of a feature f at a node n,
denoted by wt(f, n), is:
wt(f, n) = (Nn

f /Nf)× (1 + log(Nn/Nn
f))

where Nn
f is the number of leaf nodes within the subtree

rooted at n which has at least one positive sample with f ,
Nf is the total number of leaf nodes in the entire ESN tree
which has at least one positive sample with f , andNn is the
number of leaf nodes in subtrees rooted at n as well as all
its sibling nodes. Intuitively, (Nn

f /Nf) represents a subtree
weight indicating the relative importance of the subtree at n
compared to the rest of ESN tree for f . The second part of
wt(f, n) indicates the proliferation of f within leaf nodes
rooted at n and it penalizes features which occur in more

leaf nodes. It is a variation of the traditional idf feature
weighting but adapted to the hierarchical structure. Thus,
rare features would be weighted higher in upper levels of the
ESN tree and the weights decrease down the tree. This helps
in making the classifiers at the higher levels more accurate.

In discussions below, we add ”W” to the name of the
method if it uses node-specific feature weighting.

2.3 Classification Methods

Support Vector Machines (SVM) [28, 8] often show
good results in text classification [15]. We restricted our at-
tention to linear SVM since they are known to achieve high
performance in text classification [15] while being faster
and requiring less computational resources than non-linear
SVM. The particular implementation we used is LIBSVM
[5]. It is freely available and widely used. The multiclass
approach implemented in LIBSVM is one-vs-one: a clas-
sifier is constructed for each pair of classes. During clas-
sification, each classifier votes for one of its two classes.
The sample is assigned to a class with the most votes. This
and alternative approaches were examined in [14]. How-
ever, due to increased memory and time required to perform
train multiclass SVM models, we were not able to evalu-
ate them in this project - LIBSVM would run out of mem-
ory on many of the multiclass subproblems or take a very
long time. LIBSVM also allows classes to have different
weights, specified with ”-wi” option, where ”i” is the class
label. We experiment with balancing classes, by assigning
each class a wight inversely proportional to the fraction of
training samples that belong to it. Results obtained with this
approach will be marked with letter ”B”.

We also experiment with penalized logistic regression
classifiers, implemented in BBR (binary version) and BMR
(multiclass version) programs [12, 21]. These methods have
been previously shown to be competitive with SVM on
text classification problems [12]. BBR stands for Bayesian
Binary Regression, which is an alternative way of look-
ing at penalized logistic regression. Under Gaussian prior
(”-p 2”) for the model parameters, BBR is equivalent to
L2-penalized, or ”ridge”, logistic regression, while un-
der Laplace prior (”-p 2”) it is L1-penalized, or ”lasso”
[27], logistic regression. The latter method has sparseness-
inducing properties, since weights for many features are
forced to zero. Below we will refer to these two methods
as BBR L1 and BBR L2. BMR implements multinomial
(multiclass) logistic regression under L1 and L2 penalties -
it is implicitly a one-vs-all approach, where each class is as-
signed a score, and the class with the highest score is picked.

Both SVM and BBR/BMR have regularization parame-
ters that affect their performance. Ideally, these parameters
should be selected by estimating performance for different
values with cross-validation or on the hold-out set. How-

BBR L2 BBR L1 SVM BBR L2 W SVM W SVM WB # positive cases
N 94.29 95.19 85.73 93.20 93.45 93.09 12897
Q 94.97 95.31 84.66 94.01 93.98 93.88 12232
M 89.48 91.41 79.39 87.16 87.14 86.67 5178
O 93.40 93.99 80.18 94.55 94.63 94.01 4893
F 92.59 94.25 86.97 89.32 88.21 86.96 4519
J 97.15 97.78 83.08 96.43 95.01 93.95 2842
A 59.21 61.84 51.32 31.58 46.05 26.32 76
P 28.26 36.96 26.09 31.11 26.67 2.22 46
I 84.09 81.82 68.18 81.40 86.05 72.09 44
K 42.86 50.00 64.29 42.86 0 0 14

Table 1. Performance (Precision-Recall Break-Even Point) of Binary Classifiers on all the First Level
Nodes (except for G which has only 1 positive example). The best results at each node are in bold.
The size of the test set is 42742.

ever, in our application, it would be impractical to do this for
every classifier since the training would then take too much
time. Therefore, we rely on default settings. For SVM, the
default value of C is 1. For BBR/BMR the prior variance
parameter is set to be the ratio of the number of distinct
features to the mean 2-norm of the training examples. We
also use default settings for other parameters, unless stated
otherwise.

2.4 Hierarchical Classification

Hierarchical classification problems occur frequently in
text analysis, however, unlike ”flat” classification, to the
best of our knowledge there aren’t any off-the-shelf imple-
mentations of hierarchical classification methods. There-
fore, one is forced to make use of the flat classification tools
to solve hierarchical problems. There are two approaches
that one can take:

• build a single ”flat” classifier that would map an in-
stance directly to a leaf; or

• build a hierarchical classifier by constructing a model
at every node.

The first approach essentially ignores the hierarchical
structure of the data which usually leads to worse results
[10, 17]. In [10] the flat approach performed worse than
a hierarchical one when classifying web documents into a
two-level category hierarchy, using SVM to build individ-
ual models. In [17], Bayesian methods and separate feature
selection for individual classifiers led to better results than
flat approaches or hierarchical approach without individual
feature selection. Thus, building a multiclass classifier at
each internal node is a preferred approach.

Many multiclass classification approaches consist of
combining binary classifiers to select a single class. Such

approaches include error-correcting codes [9], one-vs-each
and one-vs-all [11, 29, 7]. Many binary classification meth-
ods, including SVM and logistic regression, can be refor-
mulated for multiclass problems using these ideas. These
reformulations, while elegant, can lead to increased mem-
ory and computational requirements, compared to explicit
construction of a multiclass classifier from binary classi-
fiers, as some of our experiences with this project show.

Some recent work focused on developing methods
specifically for hierarchical text classification [3, 24]. Both
of these approaches involve new formulations of SVM that
take into account hierarchical structure of the classes. While
the results are encouraging, implementations of these meth-
ods are currently not easily available.

2.5 Experiments

We initially consider using binary classifiers at each node
(i.e. each classifier makes a prediction whether a particu-
lar description belongs to the node or not). The node with
the highest score is the one to which a particular descrip-
tion is assigned. This is a one-vs-all multiclass classifica-
tion scheme. The specific methods we consider are: BBR
L2, BBR L1 and SVM on binary features; and BBR L2 W,
SVM W and SVM WB - i.e. using node-specific weighting,
and, in the last case, weight balancing for classes.

Table 2.2 shows performance (as Precision-Recall
Break-Even Point) of these methods on the first level nodes
of the ESN hierarchy. These results show that BBR L1
gives the best results. Applying BBR L2 to weighted fea-
tures gives worse results than applying either kind of BBR
to binary features. SVM methods appear comparable when
applied to weighted features - SVM on binary features per-
forms worse than all the other methods. Results on second
and third level nodes (a sample of second level results in
shown in Table 2.5) suggest that BBR L1 is at least as good

BBR L2 BBR L1 SVM BBR L2 W SVM W SVM WB # positive cases # cases
FF 75.47 75.47 64.15 80.39 78.43 74.51 53 4519
FE 85.11 80.85 68.08 80.44 78.26 78.26 47 4519
FO 95.49 96.20 92.07 94.01 93.90 93.90 2655 4519
FP 93.35 93.51 87.63 92.87 92.69 92.21 1711 4519
NO 96.04 96.13 88.02 94.48 94.38 94.50 5685 12897
NN 94.65 95.16 84.08 91.33 92.43 92.08 2915 12897
NJ 90.96 91.87 75.30 88.22 86.10 88.22 332 12897
NR 82.47 79.38 43.30 80.85 76.60 76.60 97 12897
NK 69.23 61.54 41.03 41.03 43.59 43.59 39 12897
NP 48.15 66.67 51.85 61.54 53.85 38.46 27 12897
OC 96.56 95.95 87.55 96.41 96.63 96.46 1801 4893
OM 97.68 97.26 87.10 98.65 98.65 98.40 1206 4893
OE 92.11 90.51 76.55 94.40 93.56 93.92 875 4893
ON 93.46 93.22 74.06 96.39 95.91 96.15 428 4893

Table 2. Performance (Precision-Recall Break-Even Point) of Binary Classifiers on some of the Second
Level Nodes. The best results at each node are in bold. The size of the test set varies for different
nodes.

as any other method. Note that, not surprisingly, results tend
to be worse for smaller classes than for larger ones.

BBR models were much faster to train, taking at most
several minutes as opposed to up to half an hour for train-
ing SVM. Furthermore, BBR L1 models are much smaller
than BBR L2 or SVM models due to storing only a vector
of weights for relatively few features, due to the sparse-
ness inducing prior. The total number of weights in the
2185 models built with BBR L2 was 4184500 (or 1915.1
per model), while with BBR L1 it was 159656 (or 73.1 per
model). In comparison, the average number of support vec-
tors per model using SVM W approach was 339.649 per
model, with the average of 3.43 features per support vector.
It is clear from these numbers that SVM models are at com-
parable to BBR L2 models in size, and are much larger than
BBR L1 models.

However, when we evaluate the full hierarchical classi-
fier, we find that performance of BBR deteriorates rapidly
as we move from first to the leaf levels, while SVM per-
formance decreases much slower. (These results are in Ta-
ble 2.5). The explanation for this discrepancy is the follow-
ing. We use ”-b” option in LIBSVM, which leads to SVM
being trained to compute probability estimates. Therefore,
the scores produced by SVM classifiers at different sibling
nodes are all calibrated probabilities and are comparable
across different classifiers. The BBR scores, while also
technically probabilities of class membership, are not cal-
ibrated and therefore are not directly comparable when pro-
duced by different classifiers. Thus, while individual BBR
classifiers order the test examples better than binary SVM
classifiers, their predictions do not compare well across sib-
ling classifiers - they do not produce a reliable multiclass

classifier. The problem becomes more noticeable at lower
levels due to occurrence of rare classes. In these circum-
stances, a text will have a higher score for a more frequent
class model with which it has no terms in common than for
a rare class with whose model it has some common terms.
This problem could be resolved by adding calibration post-
processing to BBR models or possibly just adjusting the in-
tercept in some way. However, this would have entailed
additional implementations and evaluation of different cali-
bration techniques [31, 30].

At this point we decided to switch to a multiclass version
of BBR: BMR. This software builds weight vectors for all
classes simultaneously, requiring more memory. In our ex-
periments it still however ended up being much faster than
training multiple binary SVM classifiers. The number of
weights per class in BMR models tends to be larger than
in BBR models: 4095763 (or 4707.77 per class) and 89110
(or 102.425 per class) based on 870 classes which were in-
cluded in the models. (Some classes were omitted since
there was no test data for them). However, BMR L1 models
is still much smaller than SVM models, where most of the
training examples would end up as support vectors. It turns
out (see Table 2.5 that using BMR L1 leads to the best per-
formance in terms of the leaf level accuracy, and accuracy
at each level. BMR L2 was the second best method.

2.6 Summary

Our comparison of the off-the-shelf SVM and BMR clas-
sifiers showed that for the SPEND application BMR leads
to much faster performance and smaller models than SVM
while giving an improved performing. While performances

Methods: SVM W SVM WB BBR L2 BBR L1 BMR L2 BMR L1
Top Level Accuracy 91.64% 89.90% 92.98% 93.35% 93.80% 95.00%

Second Level Accuracy 87.58% 85.84% 23.83% 24.00% 91.14% 92.10%
Leaf Accuracy 81.80% 80.36% 9.43% 9.50% 84.26% 85.66%

Table 3. Accuracy of Different Methods

of these methods can likely be improved by careful param-
eter selection, the practical constraints of the problem leave
little room for that.

3 Spend Feature Correction

As mentioned in Section 1, one of the challenges in clas-
sifying spend is the presence of mistakes in words in the text
descriptions. Since spend descriptions are typically short
strings, these mistakes have a bearing on the classification
accuracy. In this section, we describe the application of
noisy channel techniques to correcting typos, merge, and
split errors.

In the noisy channel framework, the joint probability
of observing an erroneous sequence of characters O cor-
responding to a correct sequence of characters is
P (O,C) = P (O|C)× P (C)
where the intuition is that first the intended sequence of

characters, C, is generated with P (C) which is then cor-
rupted due to a noisy channel into sequence of characters O
with probability P (O|C).

Our work is based on noisy-channel based OCR post-
processing [2, 16]. Most of these techniques depend on a
language specific lexicon for correction (see [18] for a sur-
vey). However, spend descriptions could be in multiple lan-
guages and many of them have limited support of thesauri
and lexicons such as Wordnet [23]. Hence, we have cur-
rently adopted a linguistic free approach.

3.1 Experiments

Source Model: We estimate the source language model,
P (C), by smoothed frequency counting of 5-grams charac-
ter sequences over samples in the data set. We experimen-
tally determined 5 to be the size of the n-grams considering
computational costs and capturing local context. In order
to keep the source model clean, we considered only those
words which were at least 2 characters long and had only
alphabetic characters. We used the CMU-Cambridge Lan-
guage Modeling Toolkit [6] to create the 5-grams models
with a vocabulary of alphabets and space and using Witten
Bell smoothing.

Channel Model: The channel model is estimated from
training data each of which is a pair of erroneous word and
corresponding correct word. Rather than manually creat-

ing the training data by going over all samples, we cre-
ated a set of possible training instances by first collecting
all words and bigrams (2 consecutive words separated by
space) such that each word contains only alphabets and has
at least 2 characters. We created a spelling mistake training
pair by pairing a correct word wi with an incorrect word
wj if wi, wj start with the same character, has a normalized
edit distance [22] of at least 0.8, and wi occurs 10 times
more than wj . The assumptions were that spelling mistakes
seldom happen in the first character, the correct word oc-
curs many more times than the incorrect word, and despite
the mistake the pair of words still have high character sim-
ilarity. Similarly, a potential split error training pair is a
bigram wi, wj and a word wk such that wk is the concate-
nation of the characters of wi and wj and occurs 10 times
more than the bigram. Merge training pairs were computed
by splitting a word at all its character positions and check-
ing whether the resulting bigram occurs in the data and with
relatively more frequency.

These potential training instances were manually
cleaned to produce the final training data. We treat each
instance as a pair of a sequence of characters from the set of
alphabets, space, and ε which is used to denote the absence
of a character. The sequence pairs in each training instance
are aligned to each other as per their minimum edit distance.
and P (ci → cj), the probability of converting character ci
into character cj , is estimated using maximum likelihood
frequency counting.

Testing: We limit the number of mistakes in any test
sample to typically 1 for computational reasons. Given a
test sample sequence of characters O, we identify all pos-
sible variations with 1 character corrections by substituting
or deleting or inserting characters. For each variation C,
we compute P (C) by breaking it into independent 5-grams
and using the source model. P (O,C) is computed by com-
bining P (C) with the probability of the correction from the
channel model. The best possible C is returned as the cor-
rected character sequence.

Results: Table 4 shows the results of our evaluation.
Automatically generating training instances for the chan-
nel model resulted in 2469 spelling mistake pairs, 84 merge
pairs, and 91 split pairs. This was manually cleaned to a
total number of 717 unique training pairs, present in 3004
samples, and 159 unique test cases present in 280 test sam-
ples. In Table 4, 1C-FT denotes evaluation for 1 character
correction considering each single word and bigram inde-

#Test
Samples

All 5-grams 5-grams with Freq > 2 5-grams with Freq > 10
Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

1C-T 280 88.20 60.38 83.78 55.36 84.74 57.50
1C-S 280 81.22 57.14 74.16 55.36 66.82 52.50

1C-DS 3284 73.52 57.10 70.85 58.62 66.38 57.17
2C-T 280 92.35 60.36 88.42 60.00 90.53 61.43

Table 4. Evaluation Results of Feature Correction

pendently in test samples instead of the whole string to-
gether. 1C-S denotes results for 1 character correction on
entire test sample strings while 1C-DS denotes results on
entire strings of both training as well as test samples. Fi-
nally, 2C-T denotes 2 character corrections considering sin-
gle words and bigrams independently in test samples. All
5-grams represents using all 5-grams in building the source
model while 5-grams with Freq > 2 and 5-grams with Freq
> 10 used only those 5-grams which appear at least twice
and ten times respectively in the entire data set.

Our results indicate that using the frequency to limit
words in the source model degraded performance. This
could be because of the extreme sparseness of data where
many good words do not appear often. As expected, it
is easier to correct words or bigrams taken independently
than the whole sample because of the presence of addi-
tional context. This negatively affects precision when rare
words have subparts which are also present in more fre-
quent words. For instance, “rent for company appartment”
is incorrectly changed to “rent for companty appartment”
because the model is biased towards the 5-gram “ty app”
due to many samples of the form “quality appraisal”. How-
ever, sometimes the context helps in recall such as “fujits
hornet” gets corrected to “fujitsu hornet” but not the sole
word “fujits”. Thus, the recall does not drop as much as
the precision between 1C-T and 1C-S. Finally, the results
indicate that having 2 character corrections does improve
the precision (2C-T) which is why it is important to scale to
multi-character mistakes. This is also supported by Figure
2 which shows the amount of CPU time, in a machine with
1 GB RAM and 2 GHz processor, to perform 1 character
feature correction increasing linearly with number of words
in samples. One way to improve this is by using advanced
data structures to represent the feature space [13].

4 System

Based on the above off-the-shelf learning tools and mod-
ifications to them, we have developed a system for spend
classification in Java. The system lets users browse training
data and ESN descriptions which could be in 5 different lan-
guages. The system is coupled to a backend Derby database
which stores the training data and ESN descriptions. Users
can train hierarchical SVM and BMR classifiers through the

system and specify parameters for feature weighting and se-
lecting different training data sets. Users can test data in
batch mode by directly connecting to databases. The results
are displayed in the system and users can correct them and
feed them back to training data. Results are also saved in
a database for further examination. The system has been
succesfully deployed and received positive feedback from
multiple users.

5 Discussions

Automated classification of spend transactions to com-
modity codes is important to organizations for analyzing
their overall procurement in a scalable way. In this paper,
we have described the application of off-the-shelf learn-
ing tools spend classification. We presented experimental
results which demonstrate the performance of SVM and
Logistic Regression classifiers as well as a noisy channel
framework for feature correction.

We have not directly addressed here the need for frequent
retraining of the classifiers due to new examples, or han-
dling increasingly large datasets. The only way to reliably
handle such such situations is with incremental algorithms.
Multiple incremental approaches have been developed for
SVM (ex. [4, 19]). Some work in this direction has also
been done for logistic regression [1]. However, the accu-
racy of these approaches tends to be lower than for batch
methods, and off-the-shelf implementations are not readily
available.

Our current classification is based solely on the spend
text description. However, if related information such as
supplier names and purchase volumes are available for
spend transactions then they could also be used for bet-
ter classification. Finally, our feature correction techniques
are currently language agnostic and could be improved if
transactions can be geographically localized and linguistic
cues, wherever available, of corresponding languages incor-
porated.

References

[1] S. Balakrishnan and D. Madigan. Algorithms for sparse lin-
ear classifiers in the massive data setting. Journal of Ma-
chine Learning Research, 9:313–337, 2008.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9

tim
e

 (
m

s)

of words

Processing time

"data.txt"

Figure 2. Time taken for feature correction
with number of words in samples

[2] E. Brill and R. Moore. An improved error model for noisy
channel spelling correction. In Proceedings of Annual Meet-
ing of the Association for Computational Linguistics, 2000.

[3] L. Cai and T. Hofmann. Hierarchical document categoriza-
tion with support vector machines. In ACM Conference on
Information and Knowledge Management, 2004.

[4] G. Cauwenberghs and T. Poggio. Incremental and decre-
mental support vector machine learning. In Advances in
Neural Information Processing Systems (NIPS), 2000.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[6] P. Clarkson and R. Rosenfeld. Statistical language modeling
using the cmu-cambridge toolkit. In Proceedings of ESCA
Eurospeech, 1997.

[7] K. Crammer and Y. Singer. On the learnability and design
of output codes for multiclass problems. In Computational
Learning Theory, pages 35–46, 2000.

[8] N. Cristianini and J. Shawe-Taylor. An Introduction to Sup-
port Vector Machines and Other Kernel-Based Learning
Methods. Cambridge University Press, 2000.

[9] T. G. Dietterich and G. Bakiri. Solving multiclass learning
problems via error-correcting output codes. Journal of Arti-
ficial Intelligence Research, 2:263–286, 1995.

[10] S. Dumais and H. Chen. Hierarchical classification of web
content. In ACM Conf. on Informaion Retrieval (SIGIR),
2000.

[11] J. H. Friedman. Another approach to polychotomous classi-
fication. Technical report, Stanford University, 1996.

[12] A. Genkin, , D. D. Lewis, and D. Madigan. Large-
scale bayesian logistic regression for text categoriza-
tion. Technometrics, 49(3):291–304, 2007. Software:
www.bayesianregression.org/.

[13] D. Gusfield. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, 1997.

[14] C. Hsu and C. Lin. A comparison of methods for multi-
class support vector machines. IEEE Transactions on Neural
Networks, 13(2), March 2002.

[15] T. Joachims. Text categorization with support vector ma-
chines: Learning with many relevant features. In European
Conf. on Machine Learning, 1998.

[16] O. Kolak and P. Resnik. Ocr post-processing for low density
languages. In Proceedings of Human Language Technology
Conference and Conference on Emprirical Methods in Nat-
ural Language Processing, 2005.

[17] D. Koller and M. Sahami. Hierarchically classifying docu-
ments using very few words. In Proceedings of International
Conference on Machine Learning, pages 170–178, 1997.

[18] K. Kukich. Techniques for automatically correcting words
in text. ACM Computing Surveys, 24(4), 1992.

[19] P. Laskov, C. Gehl, S. Krueger, and K.-R. Mueller. Incre-
mental support vector learning: Analysis, implementation
and applications. Journal of Machine Learning Research,
7:1909–1936, 2006.

[20] D. D. Lewis. Text representation for intelligent text retrieval:
a classification-oriented view. pages 179–197, 1992.

[21] D. Madigan, A. Genkin, D. D. Lewis, S. Argamon, D. Frad-
kin, and L. Ye. Author identification on the large scale. In
Proceedings of Joint Annual Meeting of the Classification
Society of North America, 2005.

[22] A. Marzal and E. Vidal. Computation of normalized edit dis-
tance and applications. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 15(9), 1993.

[23] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. WordNet: an on-line lexical database. Interna-
tional Journal of Lexicography, 3(4), 1990.

[24] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-
Taylor. Learning hierarchical multi-category text classifi-
cation models. In Proceedings of International Conference
on Machine Learning, 2005.

[25] G. Salton and M. McGill. Introduction to Modern Informa-
tion Retrieval. McGRaw-Hill, 1983.

[26] M. Singh, J. Kalagnanam, S. Verma, A. Shah, and S. Cha-
lasani. Automated cleansing for spend analytics. In Intl.
Conf. on Information and Knowledge Management (CIKM),
2005.

[27] R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society.Series B
(Methodological), 58(1):267–288, 1996.

[28] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, 2nd edition, 1998.

[29] J. Weston and C. Watkins. Multi-class support vector ma-
chines. Technical Report CSD-TR-98-04, Department of
Computer Science, Royal Holloway, University of London,
1998.

[30] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates
for multi-class classification by pairwise coupling. Journal
of Machine Learning Research, 5:975–1005, 2004.

[31] B. Zadrozny and C. Elkan. Transforming classifier scores
into accurate multiclass probability estimates. In Proceed-
ings of ACM SIGKDD’02, 2002.

