Generating Packages for Preference Elicitation in
E-negotiations

Vivi Nastase* Gregory Kersten'

*School of Information Technology and Engineering, University of Ottawa
800 King Edward, Ottawa, Ontario K1N 6N5, Canada

vnastase@site.uottawa.ca

fJohn Molson School of Business, Concordia University
1455 Blvd. de Maisonneuve West, Montreal, Quebec, H3G 1M8, Canada
gregory.kersten@jmsb.concordia.ca

Abstract

In this paper we propose an algorithm that builds a set of packages to be rated by the
user, such that this set is the smallest set that would allow a system to recompute individual
option ratings from the package ratings. We look at the problem of recomputing individual
option ratings from package ratings as solving a linear system of equations. We will show
that for a negotiation with n distinct issues, and NV individual options, the user must rate
N —n + 1 packages, and, optionally, supply n — 1 individual option ratings.

1 Introduction

Negotiation support systems (NSSs) are designed to help the negotiators reach an (opti-
mal) agreement by offering analytical support (www.smartsettle.com), communication support
[Schoop et al.2003], or both [Kersten and Noronhal999]. Analytical support comes in the form
of numerical evaluation of the offers exchanged, which allows the negotiators to assess their
position in the negotiation.

Some negotiation support systems (NSSs) like Inspire, offer the user a variety of tools that
allow the user to assess his position at the negotiation table. Most of these tools use numerical
values — wtility or preference values — computed based on the individual choices made by the
negotiator on the issues that are under debate. Obtaining user preferences raises a number of
questions:

preference elicitation: what is the best way to obtain preference values from the user, for
the negotiation at hand? There are three possible approaches to elicit preferences:

e the user assigns ratings to individual issue options. The disadvantage for this ap-
proach is that it does not allow the user to capture salient combinations of issues,



in cases where the combination of individual values does not reflect correctly the
user’s preferences.

e the user assigns ratings to packages of issue options. A package is a combination
of options, which covers all the issues under debate (one option per issue). The
downside of this approach is that the utility of packages generated on the fly in the
course of a negotiation is harder to compute. There may also be cases where based
on the user ratings, a value for individual options cannot be computed.

e the user assigns utility values to both individual issue options, and to packages
that combine all issues under debate. In this case the user can capture interaction
between issue options of interest, and it allows the system to adjust the individual
option ratings based on the package ratings. The problem of recomputing the
individual option ratings remains, as there may be situations in which there exists
no set of ratings that can satisfy the package ratings chosen by the user.

utility function: how is the utility value of a package computed from individual option util-
ities? Regardless of the way in which the utility/preference values are obtained from
the user, in order to be able to assist the negotiation process, the system must be able
to compute the utility values of the packages exchanged during the negotiation. While
multiplicative approaches were proposed [Keeney and Raiffal976], we choose to study
additive functions, which are robust [Stewart1996], and also the functions of choice in
Inspire [Kersten and Noronhal999].

usability: how big is the burden of assigning preference values for individual option/packages
in a NSS for a user? In situations where there are many issues under debate, or issues with
numerous options, asking the user to assign many values may not be a good approach.

The approach that seems to find the best combination of answers for the three questions
posed by preference elicitation, seems to be:

e use both individual option and package ratings to capture a better “image” of what the
user’s preferences are,

e use an additive function to compute the preference/utility value of a package based on
individual values,

e reduce the number of packages that the user has to rate, in order to make the package
rating task less of a burden.

Building a set of packages to be rated by the user, such that it is as small as possible,
while allowing a system to recompute individual option preferences, is the focus of this paper.
In order to design an algorithm that builds such a package, we will look at the problem of
recomputing individual option ratings based on package ratings as a system of equations whose
solution we are trying to find. The individual option ratings are linearly combined to determine
the value of the package.



2 Computing individual options by solving a linear system of
equations

Let us denote by I;, ¢ = 1,n the issues under debate in a given negotiation, where n is the
number of issues. The issues can be price, delivery conditions, quantity, etc. Each issue can
have a different number of options (for example price can be any valid monetary value between
10$ and 20%). N; , ¢ = 1,n denote the number of individual options that an issue has.

For simplicity, let us denote the possible options (without distinguishing the issue they
pertain to) by O, k = 1, N , where N = >" ; N; is the total number of options across all
issues.

A package is a combination of options such that each option represents one and only one
issue, and an issue is represented by only one option. For example, if the issues under debate
are quantity and price, and quantity has 3 possible values 10,000 15,000 20,000 and price has
4 possible values 1.5% 1.75% 2% 2.25%, then a package would be ( 10,000;1.75$ ).

If we want to represent a package using the vector of possible options, we can use the
following format: ( 0 ... 010 ... 01 ... ) wherea 1 that appears in position & in
this vector signifies that option Oy appears in this package. In the example above, when the
issues discussed are quantity and price, each with 3 and respectively 4 options, the vector of
possible options is

(1.5$ 1.75% 2% 2.25$ 10,000 15,000 20,000 ),
and the package ( 1.75%$; 10,000 ) will correspond to the vector:
(0100100)

Let us denote by xx, £ = 1, N the utility value for each issue option. If the user assigned
the rating 60 to the package above, we could represent it through the equation

T2 + x5 = 60,

where x is the utility of option Oy (1.75%), and x5 is the utility of option Os (10,000),
and the utility values of individual issues are linearly combined to determine the value of the
entire package.

The equation above can be equivalently rewritten as:
a1x1 +asx2 + ... + asxs + ... + ayxy = 60
where a9 = a5 = 1;a1 = a3 = a4 = ag = a7 = 0.

According to this notation, the packages that the user rates can be expressed through these
equations. For a set m of packages rated by the user with values y;, [ = 1, m, we can write m
equations:



ai1ry + ar2 + -+ a1pTn = Y1
a21%1 + a2x2 + -0+ 2Ty = Y2

Am1T1 + Am2T2 + *** + GmnTn = Ym

or equivalently,

anci + apry + ... + ap, = y;; where [ =1,m

or
A-x =y
T
air a1 A1n )
- a1 a2 A2n -
A= T = Y= v v Ym
aml1 Aam2 Amn
Tn

and a;; € {0,1}, a;; = 0 means in package i, option O; with utility z; is not included,
a;; = 1 means in package 7, option O; with utility x; is included.

When negotiators rate packages and not individual options, we can find the utility values
for individual options by solving the system of equations above. In order to have a unique
solution for the system of equations, m must be equal to n, and det(A) # 0.

3 Finding a combination of packages

The problem we wish to solve is finding the smallest number of packages that a user needs to
rate, in order for us to be able to compute the individual option ratings. This would allow
us to compute the value of the packages the negotiators exchange during the negotiation, and
plot them as a visual aid of the negotiation process for the users. Finding the packages to be
rated by the users is equivalent to determining matrix A — finding the combinations of 0 or 1
values for coefficients a;; such that each line in the matrix will represent a package, and such
that det(A) # 0, which will allow us to compute vector .

The constraint that each line of matrix A should represent a package, will give us an in-
teresting property for this matrix. If there are n issues under discussion in a negotiation, each
with V; possible values (i = 1,n), then matrix A will have the following property:

On every line [ of the matrix A, for each issue under discussion, at most one of the N;
elements of the issue I; can have a coefficient with value 1, the rest must be 0.

4



air Ny | @Ny 41 N N, | | ANy N A Nyt QINy 4+ No ot N1+ N

coef. for issue 1 coef. for issue 2 coef. for issue n
n

> 1O, i <1;
=Ly N ’

We have established then that in order for us to be able to compute individual option
ratings for N options (IV; options for ¢ = 1,n issues), we need to have an NxN matrix, with
a nonzero determinant, whose elements can be 0 or 1 (indicating than an issue is present or
not in a specific package). Each line in the matrix will then correspond to a package. We
have also established that in order for the matrix to represent possible packages, out of IV;
coefficients corresponding to each option of an issue I;, at most one can be 1, the rest must
be 0 (we cannot have two prices in one package, for example, or more than one delivery date).
This property will separate the matrix A into several regions, each region will correspond to
an issue '. In the matrix below, the columns 1 through 4 correspond to issue 1, and columns
5 through 7 correspond to issue 2. Each line corresponds to a package, as described before.

ain a1z a3 a4l as ae aiy
a1 Q2 Q23 Q24 \ a5 Q6 QA27
az1 a3 G33 a34|a3s aze asy
A= | a1 a4 043 ua|aas a4 a7
as1 G52 G53 G54 G55 Q56 Q57
agl G2 (63 Ue4 | A6 Qe 6T
ary ary ar3 ars|ars age  arg

Any matrix has the property that changing its lines or columns through linear combination
among its lines or columns does not change the determinant. This property will help us prove
that we cannot build an NxN matrix, where every line is a package.

Let us assume that we have a matrix A of size NxN, in which every line represents a
package. According to the property described above, columns 1 through N; (corresponding
to options of issue 1) will all have exactly one element with value 1 on each line. The same is
true for the columns corresponding to every issue.

100 0[1 00

0100[010

001 0[010
A=|l000 10 0 1 [N=7:n=2;

0 100[1LO0O

001 0[010

100 0/00 1

'For clarity purposes, the examples will show a 7x7 matrix, corresponding to the 2-issue case presented in
section 2. The formulae however will be given for the general case.



Let us change column 1, by giving it the sum value of column 1 through Nj, and we do
the same for each first column from those corresponding to each issue I;. All these columns
will be equal, since all their elements will be 1. This means the determinant of A will be 0.

In our example, we add columns 2 through 4 to column 1, and columns 6 and 7 to column

5:
100 0/1 00O
11001 10
10101 10
A=]11 0 0 1|1 0 1 |[N=Tn=2;
110 0/1 00
1010110
100 01 01

Users rate either complete packages (with one option per issue), or individual issues. Ac-
cording to the results above that shows we cannot have N rated packages (where N is the total
number of individual options, over all the issues), it means that within matrix A we will have
some individual issues. This translates into lines of matrix A that have only one value 1, the
rest 0. Since we want to fix as few individual options as possible, to allow the user to rate
packages and think globally about them, we will try to reduce as much as possible the number
of lines in matrix A which have only one value 1. If we have fewer than n — 1 such lines (where
n is the number of issues in the negotiation), the determinant of the matrix will again be 0: if
we have at most n — 2 lines that represent individual option ratings, it means that at least two
issues will have no individual option ratings. For simplicity, let us consider that issues I; and
I have no individual option ratings. This means that for the last n — 2 lines of the matrix,
for issues I; and I we have all elements zero. For the first N — (n — 2) lines, for each issue we
have exactly one element 1 per line, the rest 0. We find again the situation described above,
when by adding all columns for each issue, we obtain columns with all elements 1, therefore
the matrix is singular (the determinant is 0).

Therefore, the smallest number of individual options that we must rate separately is n — 1.

So what we want to do, is generate a square matrix A, of dimensions NxN, corresponding
to n issues, where N — (n — 1) lines correspond to packages, and n — 1 lines correspond to
individual options. The matrix must not be singular.

The matrix about which we know for sure it is not singular is the identity matrix:

10 0
7= 01 0
0 0 1

We also know that replacing lines/columns of a matrix by linear combinations of lines/columns
will not change the value of its determinant. We will therefore start from the identity ma-
trix, and we will generate packages by linear combinations of lines, until the matrix will have
N — (n — 1) packages, and n — 1 individual options.



Package generation algorithm

1. Initialize A to the identity matrix;

10 0 0/0 0O
0 1 00/0 00O
0 01 0/000O0
A=]10 0 0 1|0 0 O
0 00 0|1 00O
0 000|010
0 00 0|0 01

2. We change the first IV; lines into packages. For issue I7, the package is already instanti-
ated — there is one and only one element with value 1 on each line. We fill in the values
for the rest of the issues, by changing (randomly, for example) exactly one element to 1,
for each issue, on each of the V7 lines.

100 0[100
010 0]/0 10
001 0]/0 01
A=|00 0 1/0 1 0
0000|100
000 0]/0 10
000 0/0 01

3. For each following group of N; lines, ¢ = 2,n, and for N; — 1 lines from each group:

(a) Let [ be the index of the current line to be processed.

Pick a line (with index) k such that k < [. Because k < I, line k* was already
processed and represents a package. Line k should also meet the following condi-
tion: if [ corresponds to group NV;, line k must not have an element with value 1
on the same column as line l_: but an element with value 1 on the same column as
another line, with index [y, which has not been processed yet, and has only one
element equal to 1, and the rest 0.

(b) In order to obtain a package on line I, we change line Ito:

- -

[—T+k-1

Current line: [ with index 5, in group Na; Pick line k with index 4 (has a 1 on
column 6, the same as line [y also in group N, which is not yet a package. Add
line k£ (4) to line [ (5).

2The notation line stands in for the vector representing line line.

7



N

Il
(e R an B e § [ e B e i e B Y
SO Qo O ~=O
OO OoOlo= OO

—_

=)
O R M= OO
_= o Qo = O O

(¢) Subtract line 7 from line I;

N

Il
OO OO0 O O
O O OO O = O
O O OO = O o

—

=)
O = Ol O = O
= O OoOlo = O O

Since we started from the identity matrix, and we changed lines only by linear combination
over the lines in the matrix, det(A) = 1.

For our particular example, after iterating over step 3 for Ny — 1 (3-1=2) times, we obtain
the final result:

h

Il
coolooc o
cooloocr~o
o= olor oo
O = Ol= O = O
— o olor oo

The set of packages corresponding to this matrix is:

(1000100) < (1.5%; 10,000 )
(0100010) < (1.75%; 15,000 )
(0010001) < (28: 20,000 )

(0001010) < (2.25%; 15,000 )
(0001100) < (2.25%; 10,000 )
(0010010) < (2$; 15,000)

( ) &

0000001 20,000 )



Because for each group V;, i = 2,n we change IV; — 1 lines into packages, we will remain
with n — 1 lines that correspond to single issue options.

Within the process of generating this matrix there are sequences that can be adjusted.
First of all, the individual options that will be rated separately can be chosen such that these
are the options with either a minimum or maximum value for a user, among the issues they
belong to. Also, choosing a line (package) to combine with another line to generate a new
package can be chosen such that the end result is a balanced set, in which individual options
within an issue appears approximately the same number of times. Or either choice process
can be random.

The number of packages to be rated by the user can range between 0 and N — (n — 1), as
the process of generating packages using the algorithm described can be stopped at any time.
The number of packages to be generated can be a parameter for the algorithm.

4 Conclusion

We have presented an algorithm that generates packages to be rated by the user for an elec-
tronic negotiation support system that provides analytical support. The algorithm is im-
plemented and incorporated in an NSS platform. The number of packages generated can
be adjusted between 0 (when only single issue options are rated), and a maximum number:
N —(n—1), where N is the total number of individual options, and n is the number of issues.
These package ratings together with the individual ratings allows the system to recompute all
individual option ratings. Having the individual option ratings is necessary for the NSS to
compute utility values of the offers exchanged during negotiations, in order to offer analytic
support to the users of the electronic negotiation support system.

References

[Keeney and Raiffal976] R.L. Keeney and H. Raiffa. 1976. Decisions with multiple objectives:
Preferences and value tradeoffs. J. Wiley and Sons, New York.

[Kersten and Noronha1999] Gregory Kersten and Sunil Noronha. 1999. Www-based negotia-
tion support: Design, implementation and use. Decision Support Systems, 2(25):135-154.

[Schoop et al.2003] Mareike Schoop, A. Jertila, and T. List. 2003. Negoisst: A negotiation
support system for electronic business-to-business negotiations in e-commerce. Data and
Knowledge Engineering, 3(47):371-401.

[Stewart1996] T. Stewart. 1996. Robustness of additive value function methods in mcdm.
Journal of Multi-Criteria Decision Analysis, 4(5):301-3009.



