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ABSTRACT
Historic itinerary research investigates the traveling paths of his-
toric entities, to determine their influence and reach. A potential
source of such information are the Regesta Imperii (RI), a large-scale
resource for European medieval history research. However, two
important intermediate problems must be addressed: 1. place names
may be stated as unknown or are left empty; 2., place name queries
return large candidate sets of points scattered all across Europe
and the correct point must be selected. For 1., we perform a place
name completion step to predict place names for regests referencing
charters of unknown origin. To address 2., we formulate a graph
framework which allows efficient reconstruction of the emperors’
itineraries by means of shortest path finding algorithms. Our exper-
iments show that our method predicts coordinates of places with
significant correlation to human gold coordinates and significantly
outperforms a baseline which selects points randomly from the
candidate sets. We further show that the method can be leveraged
to detect errors in human coordinate labels of place names.

CCS CONCEPTS
• Information systems→ Geographic information systems; Infor-
mation retrieval; • Applied computing→ Arts and humanities.

KEYWORDS
Historic Itineraries, place name prediction, coordinate prediction

1 INTRODUCTION
The Regesta Imperii (RI) are an important data base for European
history studies.1 The online Unicode corpus contains more than

1The RI are maintained through the efforts of various research projects under the
umbrella of the German commission for the handling of the Regesta Imperii; www.
regesta-imperii.de
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verwilligt demselben Grafen Hugo von Montfort, in seinem Markte
Stauffen alle Dienstag einen Wochenmarkt und am Vortag vor St. Mang
einen Jahrmarkt halten zu lassen.

grants count Hugo of Montfort the right to hold, in his market-town
Stauffen, a weekly market each Tuesday and a fair the day before St. Mang.

Figure 1: Regest summarizing a charter issued by Friedrich
III in January of year 1453 and our English translation.

175,000 abstracts of charters and historiographical descriptions of
events (battles, births, etc.). While most of the charters were issued
by German kings and Holy Roman emperors, some of them were
issued by their wives, imperial princes and popes.

Most regests are labeled with the name of the place where the
charter was issued or the event took place. This property makes
the RI an attractive resource for historians investigating itineraries
of medieval entities. For example, the itinerary of Friedrich III can
be traced by inspecting the place names of the 21,477 regests which
correspond to his 50+ years of reign. However, many place names
have multiple possible points of reference. In conjunction with the
fact that the reach of many issuers extended over large parts of
the European continent, this issue can lead to severe errors when
inappropriate place resolution techniques are applied. E.g., the place
name of the regest in Figure 12 is stated as Neustadt. While Neustadt
is the name of many different locations scattered all across Germany
and Austria, the exact Neustadt to which is referred to in this case
isWiener-Neustadt in Austria. For another example consider that
emperor Sigmund issued multiple charters in Ofen3, where the
name points to places i.a. in Germany and Hungary. Taking his
home country as a criterion for excluding non-German locations
excludes the location in Hungary. However, in this case we would
exclude the correct point of reference – the Ofen in question refers
to Buda, a part of Budapest.

Our contributions are as follows: in Section §2 we evaluate meth-
ods for predicting missing place names. In §3 we formulate a graph
framework which enables us to efficiently resolve the itineraries
of the emperors and predict coordinates for every event (regest).
Finally, we evaluate the predictions against a human gold standard
and discuss drawbacks and benefits of our approach (§4).

2http://www.regesta-imperii.de/id/1453-01-08_3_0_13_0_0_2999_3000
3e.g. http://www.regesta-imperii.de/id/1410-08-05_1_0_11_1_0_1_1
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‘Issuer’ as stated in XML century regests |L| most common locations (count)

Beatrix von Schwaben, 13 2 2 Vrankinfort (1); Northusin (1)
erste gemahlin Ottos IV.
Gregor VI. 11 2 1 Köln (2)
Isabelle von England, 13 2 2 Fogie (1); Wormatie (1)
dritte gemahlin Friedrichs II.
Lando 10 3 2 Rom (2); - (1)
Margarethe von Oesterreich, 13 3 2 Weissenburg (2); Treviris (1)
gemahlin Heinrichs (VII).
Pippin der Mittlere, 7/8 34 9 ‘’ (24); in Suavis (2); Gaimundas (2)
sohn des Ansegisel und der
tochterPippins des Älteren
...

...
...

...
...

Karls IV. Gemahlinnen. 14 35 15 Prage (11); Prag (7); ‘’(4)
Luitpold, 13 35 7 – (28); Erfurt (2); Mainz und Bingen (1)
Gegenerzbischof (1200-1208)
Konrad IV. 13 36 17 - (17); apud Augustam (2); Neapoli (2)
Sede vacante 13 36 6 ‘’(20); Viterbo (12); apud Tibur (1)
...

...
...

...
...

Wenzel 14/15 4183 95 Prag (1269); - (951); Nürnberg (416)
Friedrich II. 12/13 4809 843 (1280); - (197); Fogie (159)
Sigmund 14/15 13628 466 Konstanz (2045); Nürnberg (1149); Basel (848)
Karl IV. 14 15595 954 Prag (2742); Nürnberg (1616); Prage (920)
Friedrich III. 15 21477 471 Wien (2718); Wiener Neustadt (2360); - (2189)

total 6-16 179319 12110 - (29904); ‘’ (9129); Nürnberg (6492); Innsburck (5891)

Table 1: Corpus statistics. Infrequent (top five rows), mildly
frequent (mid) and most frequent issuers (bottom).|L|:
amount of different place name strings.

candidate set size cases with candidate sets (non) empty
geo-coder mean median non empty other empty both empty

GeoNames 57.34±43.53 82 106,844 4,260 3,604
ArcGis 4.35±6.74 2 106,844 20,532 3,604

Table 2: Retrieval statistics from the two geo-coders.

2 PREPROCESSING & NAME COMPLETION
Place Name Extraction. We start by extracting from each regest

the stated place name.4 Statistics about the extracted place names
with respect to 15 issuers of varying frequency are displayed in
Table 1. E.g., Beatrix of Swabia, the first wife of Otto IV (first line
in the Table) issued a charter in a place denoted by Vrankinfort.
The name refers to the location which today is known by the name
Frankfurt am Main. We also find Latin place names as well as Latin
and German place name affixes, for example, apud Tibur. Tibur
denotes today’s Tivoli, a city near Rome and apud indicates that
the event did not happen in this city, but in its vicinity.

Geo-coding. For each place name we make use of two geo-coders,
ArcGIS5 and GeoNames6 in order to retrieve a candidate set of
European geo-spatial entities. The deployment of two geo-coders
instead of one increases the likelihood that the correct location
is among the returned candidates. Statistics about the retrieved
entities are displayed in Table 2. For 131,636 out of 179,319 regests
at least one geo-coder returned one or more candidate locations (in
the next paragraph we explain how we handled the remaining place
names). The geo-coder ArcGIS returns significantly less candidates
while at the same time having a higher total coverage (+16,272
regests could be assigned a non-empty candidate list by ArcGIS).

4Each regest comes in the form of an xml-document. In this work we will use the fields
uri (unique event identifier, each uri indicates an itinerary step), issuer (e.g., Friedrich
III ), location (place name), date (date of charter creation) and text (the textual content,
used for extracting unigram features in the place name completion step). We also clean
the place name string: we remove leading bei (at) or vor (before) and the leading or
trailing characters (?!()[]).
5http://www.arcgis.com
6https://www.geonames.org/

System Feature best acc. (weighted) acc. (unweighted)

LR all 13.9 44.9 40.8±28.6
LR last-place-name 14.3 43.7 41.2±28.6
LR text (unigrams) 6.5 33.3 34.7±25.4

random 3.0 12.5 22.3±24.6
mf place 10.0 24.9 32.9±26.2
last-place-name 52.2 67.2 57.1±23.0

Table 3: Place name prediction system performances over
all issuers. best: percentage of issuers for which a method
proved to outperform all others.

On the other hand, GeoNames tends to cover some historical sites,
for which ArcGIS returns zero candidates or candidates with the
correct location not among them. E.g., for the query Ofen both
coders return results, but the correct location (referring to Ofen as a
part of Budapest) is only contained in GeoNames’ candidate list. At
a first glance, GeoNames seems to be more suitable for (historical)
place names with or without spelling variations.

Place Name Completion. As can be seen in Table 1 (bottom row,
right column), a significant amount of location names are unknown
(an empty string (‘’)/o.O./ohne Ort/-/?). We compile a vocabularyU
of ‘unknown’ place names, which are defined as follows: (i), place
names from ‘’/o.O./ohne Ort/-/? ; (ii), place names which consist of
only one character; (iii), place names for which neither geo-coder
returns any candidates. We propose to replace place names in U
with a prediction of a place name not inU .

To investigate the performance of different place name prediction
systems for various issuers and epochs, we conduct the following
experiment. First, we put aside the set of regests with place names
inU . From the rest, for each issuer7, we build training, development
and testing data (random 60-20-20 splits). Consider, without loss
of generalization, a specific issuer. We want to learn a function
f : R → K , which maps from the space of regests to K , which is
the set of all ‘known’ place names, i.e. all place names which do not
occur inU . Each datum from an issuer’s data {(ri ,yi )}Ni=1 consists
of a regest ri and its corresponding label or place name yi ∈ K . The
feature vector ϕ(r ) ∈ Rn for a regest r consists of a concatenation
of a tfidf-bag-of-word vector built from the actual text content of
the regest (top 10,000 words are chosen) and the place name from
the anterior regest not in U (1 hot vector of dimension |K |). For
every place name y from K ′ ⊆ K (K ′: training data label set), we
fit a regularized logistic regression model дy : Rn → [0, 1] (the
regularization parameter is tuned on the development data). Finally,
we use the fitted models to predict the place names for a regest r in
the issuer’s testing data:

f (r ) = argmax
y∈K

дy(ϕ(r )) (1)

We compare with a majority place name baseline and a random
baseline (majority place name and place name probabilities are
calculated from the training data). A second baseline (last-place-
name) simply predicts the place name of the closest anterior regest
which is not inU .

As can be seen in Table 3, the simple last-place-name baseline
outperforms more complex methods by a large margin. According

7Exception: a few infrequent issuers, where all stated place names are inU .

http://www.arcgis.com
https://www.geonames.org/
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to our experiments, this strategy is correct in appr. 67.2% of cases
(Table 5, last row). Using the random baseline, on the other hand,
makes the percentage of correct choices drop by more than 50 pp.
to appr. only 12.5% of correct choices. The more complex logistic
regression model trained on all features outperforms both majority
and random guessing (+20.0 pp., +22.4 pp.) but lags considerably
behind the last-place-name baseline (-22.3 pp.). This finding results
in our decision to replace all place names of regests which appear
in the unknown place vocabulary U with the place name of the
nearest possible anterior regest which is not inU . Thus, we have
made sure that for any regest’s place name, we have a non-empty
candidate list of latitude-longitude tuples. Future work could focus
on improving the unknown-location predictions (i), by means of
a careful place name normalization step8 or (ii), by application of
better time-series prediction models which learn to exploit clues in
the text content with respect to the spatial-temporal context.

3 GRAPH BASED PLACE RESOLUTION
Our main assumption is that the shortest possible path traveled by
an emperor with respect to the itinerary’s candidate places should
approximate the path which was traveled in reality. Consider, for
example, that an emperor issued a charter from the unambiguous
Wien in Austria and one day later he issued a charter from a location
denoted by the highly ambiguous Neustadt . Yet, on the next day, he
issued a new charter, again fromWien. Then it is very reasonable
to assume that the second charter was issued from the Neustadt
which is closest toWien. Selecting any of the other Neustadts in
Germany would likely be erroneous and hamper itinerary research.

To compute the shortest path, we formulate the set of possible
traveling paths as an acyclic graph with directed weighted edges.
For a given emperor, we sort the place names in ascending order t =
1, ...,T by date. For each travel-step t , we retrieve the set consisting
of all geo-spatial candidate reference points Pt with regard to the
specific location name occurring at t . Now we can put nodes (t ,p)
for every time-step t and every p ∈ Pt into our graph G. Then
we insert directed weighted edges into G which connect nodes
(t ,p) to nodes (t + 1,p′) for every p ∈ Pt and every p′ ∈ Pt+1
resulting in |Pt | · |Pt+1 | new edges. The edge weight c(p,p′) is the
cost from traveling from a geo-spatial location p to another geo-
spatial location p′. In the simplest case, one case use the straight-
line distance (we present a more sophisticated cost formula in §3.1).
Lastly, a source is inserted as a node connected with zero-weight
edges to all (1,p) for every p ∈ P1. All nodes (T ,p) for every p ∈ PT
are connected to the target node, also with zero-weight edges.

Analysis. The above problem formulation allows us to apply
shortest path finding algorithms in order to efficiently disambiguate
the historic traveling routes. Instead of using classical shortest path
finding algorithms of polynomial complexity such as Dijkstra’s
[1, 2], we can exploit the specific structure of our graph, which con-
stitutes a temporally ordered directed acyclic graph (DAG). Hence,
we can find the optimal path with a simple algorithm of linear
complexity. We can also optimize the memory efficiency, which can
constitute a problem on machines lacking large amounts of RAM.
For example, working with the graph representing all possible paths
8e.g., {V rankinf or t, Frankenf or te, Franchenf ur t, V rankenvorde ... } →
Frankf ur t (am Main).

of Friedrich III, 174 · 106 edges and almost 2 · 106 nodes, requires
more than 50 GB of RAM. However, we do not need to work with
the full graph. Instead, we can use the ‘online’ algorithm displayed
in Alg. 1 – it is memory friendly (O(T )) and finds the optimal path
with linear complexity of O(T ). For any emperor we cycle through

Algorithm 1 Online Optimal Emperor Path (OPT)
1: P0 ← {START }
2: cost [START ] ← 0 ▷ mem. for cum. cost of places of t − 1
3: path[START ] ← {} ▷ shortest path mem. to places of t − 1
4: for t = 1, ...T do
5: name ← placeName(t ) ▷ e.g. “Franckfurt”
6: Pt ← placeCandidates(name) ▷ geocode results
7: for p ∈ Pt do

8: p⋆ ← argminp′∈Pt−1

[
cost [p′] + c(p′, p)

]
9: cost [p] ← cost [p⋆] + c(p⋆, p) ▷ update cost mem.
10: path[p] ← path[p⋆] ∪ {p⋆ } ▷ update path mem.
11: return path[p] ∪ {p }, where p ∈ PT minimizes cost

all of his time steps (line 3, Alg. 1). At time step t , we retrieve the
place name (line 4) and the set of corresponding candidate points
(line 5). We compare every candidate point from this set with every
candidate point from the step before: we search the predecessor
with the shortest path from start over the predecessor point to
the point in question (line 7) and calculate the cumulative cost of
shortest traveling to the candidate point (line 8), memorizing the
shortest path to it (line 9). This way, only information from one
time step before needs to be memorized.

3.1 Edge Cost
Given any place p, a possible next place p′ and a query string q (the
stated name of the next place p′), we define the cost of travelling
from p to p′ as

c(p,p′,q) = d(p,p′)
1 + c0 logn (pop(p′)) + c1I(p′ = q) + c2I(f irst(p′,q))

,

(2)
where d(p,p′) returns the straight-line distance between p and

p′ in kilometers, calculated with the vincenty formula [8]. pop(p)
returns the GeoNames-number of people living in the place p or 1
in case the number is not available or equals zero. The motivation is
that many cities of medieval significance are today very populated
places (e.g. Rome, Nuremberg, Cologne, Prague,...). This part of the
cost formula reduces the cost of travelling to a popular city: an
emperor likely was more prone to travel to a place of historical
significance than to another, slightly closer place with the same
name. On the one hand, this may introduce a problematic bias to
some cities (e.g., Berlin has a high population count today but was
of lesser medieval significance). On the other hand, because the
corpus bridges almost 1,000 years, calculations with any historical
population counts are also problematic. To counter a strong bias, we
can set the base of the logarithm n to a large number or lower the
coefficient c0. I(p′ = q) returns 1 if the name of p exactly matches
the query string and 0 otherwise. We avoid relying exclusively on
exact matches because of spelling variations in location names
(e.g. Regenspurc, Regensburc and Regensburg all refer to the city
Regensburg in Bavaria). So we keep all possible locations and their
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avg. cost per step

Issuer steps |V| |E| ran greedy OPT
Beatrix 1 6 7 1061.6±201.2 59.2 46.3
Gregor VI 1 208 10,815 940.4±122.7 41.4 38.5
Isabelle 1 29 53 114.8±9.5 26.0 25.2
Lando 2 38 312 892.7±148.7 43.5 34.9
Margarethe 2 222 12,210 52.5±18.8 3.8 3.8
...

...
...

...
...

...
...

Pippin 33 410 9,594 337.2±29.6 92.8 88.5
Karl IV’s wives 34 1,084 37,216 266.3±35.4 28.5 25.5
Luitpold 34 1,889 147,072 191.4±27.5 136.5 134.3
Konrad IV 35 841 34,696 328.9±72.2 18.4 15.6
Sede vacante 35 2,388 188,994 845.1±131.8 20.2 17.6
...

...
...

...
...

...
...

Wenzel 4,182 235,096 17,934,287 849.3±91.8 281.3 241.2
Friedrich II 4,808 93,083 5,170,989 1200.6±653.8 85.3 12.1
Sigmund 13,627 863,061 77,569,251 167.0±3.4 11.1 10.1
Karl IV 15,594 850,031 62,092,767 208.2±10.2 38.9 37.4
Friedrich III 21,476 1,807,066 174,612,451 482.4±66.7 117.0 100.7

macro average 424.4 25580.2 2152779.0 338.3±66.4 45.7 38.7

Table 4: Processing statistics for infrequent, medium and
highly frequent issuers (top-5, middle-5, bottom-5).

slightly different spellings while rewarding places where the name
exactly matches the query. I(f irst(p,q)) returns 1 if p is the first
result in the query results and 0 otherwise. This part exploits the
inherent rankings of the geo-coder’s candidate lists.

In our experiments we set n = 100, 000 and the coefficients
c0, c1, c2 to 1. For future work it could be worthwhile tuning the
variables on manually resolved development data.

3.2 Comparison of Shortest Path Methods
Table 4 displays information on the computation of the path solu-
tions with respect to 15 issuers and 3 different path finding tech-
niques (greedy, random and OPT). Greedily taking the next point
of lowest cost takes, on average, slightly less computation time
compared with the optimal path. However, the optimal path often
is of significantly lower cumulative cost: the average cumulative
cost over issuers for greedy is 45.7 and for OPT 38.7. For some
issuers the difference between OPT and greedy, average cost per
step wise, is small (e.g. Sigmund: 1.0). However, it can be large for
others (e.g. Friedrich II: 73.2).

3.3 Global Point Resolution
Our resolution technique enables us to obtain tuples (uri,name,y,x),
whereuri refers to a specific regest or event,name is the stated place
name where the charter was issued and y and x are the predicted
latitude and longitude coordinates. We say that our resolution re-
solves place on an event level, that is, places denoted by the same
place name can have different resolutions in different contexts.

On the one hand, it is ideal that our method resolves emperor
itineraries on the finer event level. For example, castles denoted by
the name Ehrenfels exist at several different places in Europe – we
cannot assume that all emperors visited only one specific Ehrenfels.

For the most significant place names, however, we may want
to obtain an unequivocal point of reference for all place name oc-
currences. For every unique name we retrieve the set of prediction
tuples Sname = {(yi ,xi )}Ni=1, i.e. all latitude-longitude tuples pre-
dicted for this specific place name. We define the most centered

ratio of predictions deviating more than...
method mean ∆ (km) > 625 km > 125 km > 25 km > 5 km

random 132.52±327.67 0.08±0.24 0.11±0.24 0.22±0.24 0.65±0.22
greedy 60.73±107.45 0.05±0.12 0.07±0.11 0.11±0.12 0.22±0.13
OPT 53.21±80.78 0.04±0.09 0.07±0.09 0.11±0.1 0.26±0.09

random+gobal 95.67±287.82 0.09±0.29 0.09±0.29 0.09±0.29 0.36±0.48
greedy+global 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
OPT+global 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Table 5: Place resolution system performances over all
42,264 regests referencing charters issued in a historically
significant unambiguous place (Rome, Nuremberg, etc.). ∆
(km): straight-line distance to gold.

RMSE Pearson’s ρ ∆ (km)
method lat lng lat lng mean median

random 2.732 4.828 0.583 0.469 198.921±440.207 13.226
greedy 2.19 2.89 0.69 0.708 121.05±306.205 0.0
OPT 2.073 2.74 0.714 0.723 113.707±290.184 0.0
OPT-global 1.804 2.376 0.78 0.779 82.554±258.402 0.0

Table 6: Main results. RMSE (Root Mean Square Error) & ∆:
lower is better; Pearson’s ρ: higher is better.

coordinate point as

p⋆(name) = argmin
p∈Sname

∑
p′∈Sname

d(p,p′). (3)

Formally, this step means converting our event level prediction
tuples (uri,name,y,x) into the place name level tuples (name,y,x).
In other words, for every unique place name, we have obtained an
unequivocal reference point independent of time, issuer or other
circumstances. Thereby, we incur a general loss of flexibility in place
prediction modeling but expect a gain in accuracy for predictions
of significant places.

4 EVALUATION
Historically significant places. We use the top-11 most frequent

place names (before the completion step, except ‘-’,‘’), which can
be assumed to have a clear reference point independent of context:
Nuremberg, Rome, Innsbruck, Prague, Vienna, Heidelberg, Mainz,
Augsburg, Wiener Neustadt, Frankfurt and Konstanz. These places
make up a large proportion of charter issuing locations (42,264 in
total). Since these place names are well-known and unambiguous,
we manually look up the coordinates by means of Google-maps.

The results over all regests with a place name of historical sig-
nificance (as defined above) are displayed in Table 5: our method
(OPT and global post-processing, Eq. 3) predicts the significant
places with perfect accuracy. Ablating the post-processing step and
allowing flexibility in predictions, approximately 4% of the 42,264
predictions are more than 625 km off (greedy: 5%, random: 8%).
However, approximately 74% of the predictions are closer or equal
to 5 km to the real places (and hence can be considered correct).
Randomly selecting points from the candidate lists results in only
about 35% of predictions being closer than 5 km.

Evaluation against manually resolved place names. Recently, in-
terns working at the project Regesta Imperii completed the res-
olution of about 10 thousand regest place names. To make the
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(a) latitude (b) longitude

Figure 2: Predicted (y-axis) & gold (x-axis) coordinates.
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Figure 3: Distances (straight-line) from predicted places to
gold places with respect to different solvers as a function of
time (a) and distance percentiles (b).

annotation feasible, the human resolution was done on a place
name level: every place name in the human gold annotation has
globally only one resolution. Our resolution, however, offers finer
event level annotation and takes into account that an issuer might
have visited places of the same name but different location. Never-
theless, evaluating against this gold data provides a performance
estimate of our resolution method in general and in particular for
the post-processing step by means of Eq. 3.

We proceed by selecting the set of regests where the place name
is resolved in the gold standard and our model outputs a prediction
(119,133 cases). This enables us to compare our model’s predictions
against the gold predictions on the itinerary level. The results are
displayed in Table 6. Application of OPT in combination with global
post processing (Eq. 3) best fits the data. Latitude and longitude
coordinates can be predicted with RMSE of 1.804 (latitude) and
2.376 (longitude), and a Pearson’s ρ of 0.78 (latitude) and 0.779
(longitude, cf. Figure 2). As opposed to randomly selecting a point
from the list of candidates, our method observably improves over all
aspects (RMSE: -0.928 latitude, -2.452 longitude; Pearson’s ρ: +0.197
latitude, + 0.31 longitude). The mean deviation over all predicted
points from the gold points is reduced bymore than 100 km distance.
The median distance error is greater than 13 km when randomly
selecting a point from the candidates. In our graph framework,
however, both greedy and OPT solvers (with and without global
step post-processing) have zero error. This indicates the benefits of
our graph formulation: a simple solver such as the greedy solver
already yields significant improvements over the baseline. The

distances with respect to other percentiles are plotted in Figure 3b.
Even for very low percentiles, randomly selecting a point introduces
error in the predictions. The error of OPT, however, stays low up
to the 75th percentile.

One may also be interested in the error with respect to time or
different emperors. Figure 3a plots the deviations of three solvers
and the random baseline over the course of 800 years, from 700
CE (Carolingian dynasty) to 1500 CE (Maximilian I). The Figure
suggests that we can confide in coordinate predictions from 1000
to 1200 CE. In contrast, we observe two periods (700 to 1000 and
1200 to 1300) where the predictions are to be taken with a large
grain of salt. This phenomenon could be explained by a larger
variety in place name spellings which again propagates errors and
noise through our framework and the geo-crawlers. Moreover, a
considerable amount of place names found in sources from the
earlier middle ages is generally impossible or highly difficult to
identify, even for human experts.

4.1 Discussion
Issues with the gold standard. It is important to note that the

gold standard against which we have evaluated in the previous
subsection resolves the places on a place-name level. Our approach,
however, resolves the place names on amore specific event level (per
place name vs. per place name & regest instance). The resolutions
take into account some of the corresponding context (e.g., where was
the emperor before and where was he afterwards?). What the gold
standard cannot capture qua design are cases where two different
charters were created in a location with the same place name, but
different coordinates. For example, several castles by the name
Ehrenfels exist(ed) in Germany and Austria.

Given a regest or event instance and the proposed manual and
automatic resolution, we can distinguish between four main cases:
(i), cases where the manual disambiguation is erroneous and our
system is correct (either the manual labeling of the place name
was completely wrong or we have a scenario as outlined by the
Ehrenfels-example); (ii), cases where the human is correct and our
system has made amistake (either the correct answer did not appear
in the candidate set or it was not chosen as the answer); (iii), both
approaches came up with the correct answer and (iv), cases where
both approaches came up with a wrong answer. We suspect that
(ii) and (iii) represent the majority of cases and plan to compute
statistics of these cases in future work. Given the variety of place
names and large candidate sets of coordinates, the gold standard
may not be free from errors itself (even though it was created by
historian interns working at the project Regesta Imperii).

We think that cases from group (i) are most interesting – here,
our algorithmmay aid the human annotators by offering the correct
alternative resolution suggestion. Consider the example in Figure 4.
The human labeled the place name Sulzbach with the coordinates
49.8333 (latitude) and 7.3333 (longitude). The coordinates point to
a small village in Rhineland-Palatinate. This village did not exist
in the middle ages – it is an error in the human annotations. Our
method (global OPT) labeled Sulzbach with the following coordi-
nates: 49.50126 (latitude), 11.74598 (longitude). These coordinates
point to the city Sulzbach-Rosenberg which is a merger of the two
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Sulzbach
(49.8333, 7.3333)

Sulzbach-Rosenberg
(49.5013, 11.7460)

307.85 kilometers

Figure 4: Place name Sulzbach: Human labeling error (left
destination) and correct labeling (right destination) as de-
tected by our algorithm.

cities Sulzbach and Rosenberg. This Sulzbach was a significant me-
dieval city frequently visited by Karl IV. It is possible that the human
annotator was misled by the merger in 1934 CE. Our algorithm,
however, determined the correct Sulzbach.

Outlook. To sum up, we believe that our approach can aid man-
ual coordinate annotation of place names in a three-fold way: (i), by
providing predicted candidates (annotation assistance) (ii), by sug-
gesting corrections to human annotations (annotation refinement)
and (iii), by extending human labels to allow different resolutions
of a place name in different contexts (annotation enrichment).

5 RELATEDWORK
Itinerary Research with the RI. John et al. [3], in an experiment of

smaller scale, attempt to project place names onto maps to visually
follow the itineraries of the emperors. However, the naïve automatic
coordinate selection introduces many errors of which the authors
suggest that they can be manually corrected by an expert ‘online’
in her analyses of the itineraries. We support the idea of providing
an expert with an option to manually correct errors during her
research. In this aspect, our method allows a significantly more
accurate itinerary reconstruction and thus will greatly reduce the
manual correction effort.

Other Computational Work on the RI. Opitz et al. [6] and Kuczera
[4, 5] construct knowledge graphs from the RI. For named entity
insertion (cities, counts, abbots, etc.), the first use a heuristic based
on automatic named entity recognition and dependency parsing,
while the latter uses the manually created person registers accom-
panying the RI (Unicode available only for specific emperors). The
first graph has a broader coverage and the capacity to extract the
direct receivers of emperor actions (by means of dependency tree
analysis). The second graph has less coverage but it is of signifi-
cantly higher accuracy since it depends much less on automatic
linguistic annotations. Our work is straightforward to interface
with both knowledge graph representations of the RI. For example,
treating every regest as an event node in the graph, it is easy to
attach another node via a predicted-location edge, containing our
predicted coordinates for the place where the charter was issued.

Opitz and Frank [7] formulate a multi-label document classifica-
tion task and predict, for every regest, a list with topics (“war and
peace”, “new privileges”, “finances”, etc.). This allows to trace the de-
velopment and importance of the topics over the medieval centuries.
It is straightforward to integrate this approach with our approach,
possibly addressing research questions such as e.g.: What topics

did the emperor chose to address in which locations? In an itinerary-
visualization application, we could label the itinerary points with
the corresponding topics.

6 CONCLUSION
We presented a method for automatic, large-scale reconstruction of
the European medieval rulers’ itineraries from the Regesta Imperii9.
After predicting missing place names, we modeled billions of possi-
ble paths in a directed acyclic graph, where edges indicated costs for
traveling from one point to another. We developed a heuristic to es-
timate this cost and worked with the assumption that the path with
the lowest traveling cost approximates the real path. The graph-
based formulation allowed us to solve the itinerary disambigua-
tion problem efficiently with shortest path algorithms. Evaluation
against manually resolved places showed that our method pre-
dicts coordinates with high correlation to gold coordinates. Further
analysis indicated that our method can be used to enrich manual
place resolutions on a contextual event level (per regest) or suggest
corrections of human place name level resolution errors.

Amongmany other possibilities, future work may focus on (i) im-
proving the regest place resolutions by introducing an efficient place
name normalization method or improving the traveling cost for-
mula. Perhaps, our choice of modern geo-coders was non-optimal
and usage of historic place gazetteers could be beneficial (a caveat,
though, lies in their generalization potential over the large time
span covered in our work). Furthermore, (ii), it could be highly
rewarding to not only resolve the place of charter creation but
also to attempt resolutions of the rich place names and place name
references which can be found in the actual regest text contents.10
When we are able to not only investigate the emperor itineraries
but also spatial interactions and movement patterns of other me-
dieval entities, we anticipate new large-scale statistical itinerary
research possibilities of significant impact.
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