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D ifferent metrics are used to evaluate classi-
fiers. Many recent papers and shared tasks
pick ‘macro’ metrics to rank systems (e.g.,

‘macro F1’). However, sometimes the motivation for
selecting a specific metric tends to be not fully clear,
and the expectations associated with phrases like
‘macro’ seem blurry. Starting from the basic con-
cepts of bias and prevalence, we analyze properties
of metrics, with the aim of better metric under-
standing. In particular, we study Accuracy, macro
Precision, macro Recall, macro F1, Matthews Cor-
relation Coefficient, and Kappa.

1 Introduction

Consider a typical scenario in machine learning: We
trained a classifier to predict some classes of interest
and want to assess its capability to predict unseen data.
To this aim, we usually evaluate the classifier’s pre-

dictions against reference labels in two steps: First, we
summarize the classifier’s behavior in a confusion ma-
trix that has a designated dimension for every possible
prediction-label combination. Second, an aggregate
function, which we here denote as metric, summarizes
the confusion matrix as a single number.

Obviously, a ‘perfect’ metric often doesn’t exist, since
we lose important information about a classifier’s be-
havior when reducing the confusion matrix to a single
number. Nonetheless, for classifier selection or ranking,
a suitable metric has to be chosen.
Over the recent years, there has been a surge of

papers that use ‘macro’ metrics for evaluation. In par-
ticular, we can see that ‘macro F1’ has become popular
for comparing classifiers and determining shared task
winners – its increasing popularity is also reflected in
the enormous Google-books corpus (Figure 1).
However, when searching for reasons why a partic-

ular metric has been selected, we tend to find rather
unclear statements, e.g.: ‘labels are imbalanced’ or it

Figure 1: Google books corpus n-gram search for macro F1.

metric motivation

[1] macro Prec, Recall, F1 ‘macro because (...) skewed distribution
of the label set’

[13] macro F1 ‘macro-averaging (...) implies that all class
labels have equal weight in the final score’

[17] macro F1 ‘Given the strong imbalance between the
number of instances in the different classes’

[4] accuracy, macro F1 ‘the labels are imbalanced’
[5, 15] Mat. Corr. Coef. (MCC) ‘balanced measurement when the classes

are of very different sizes’
[14] MCC, F1 ‘(...) imbalanced data (...)’

Table 1: Example comments on evaluation metric selection.

is wished for that ‘all class labels have equal weight’
(c.f. Table 1).

But such statements seem to point at a certain user
need: the evaluation score should not marginalize clas-
sification performance of data from infrequent classes.
Instead, it should tell us a bigger picture of classifier
capability (Greek: makrós, ‘long’) that is robust against
fluctuating class prevalences and (thereupon depen-
dent) classifier biases. By contrast, a micro picture
(Greek: mikrós, ‘small’) strictly binds the metric score
to the class occurrences in a specific sample.

Outline After introducing Preliminaries (§2), we con-
sider five Metric Properties (§3) to formally distinguish
classification metrics. Then, we provide an Overview
(§4) of popular metrics, to improve our understand-
ing about the metrics. In particular, we interpret the
metrics through intuitive lenses, e.g., through notions
of class prevalence and classifier bias, and we use our
established properties for further analyses. Finally, we
provide a Discussion (§5), and a short Summary (§6).
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2 Preliminaries

Basis For any classifier f : D→ C = {1, ..., n} and fi-
nite set S ⊆ D×C , let m f ,S ∈ Rn×n be a confusion matrix
where m f ,S

i j = |{s ∈ S | f (s1) = i ∧ s2 = j}|.1 We omit su-
perscripts whenever possible. A metric : Rn×n → R
allows us to order confusion matrices, respectively,
rank classifiers. For convenience, we say that a classi-
fier f is better than (or preferable to) a classifier g iff
metric(m f ,S)> metric(mg,S).
Let us define some basic quantities.

Class bias, prevalence and correct are given as

bias(i) =
∑

x

mi,x prevalence(i) =
∑

x

mx ,i

cor rect(i) = mi,i

Class precision Pi denotes the precision for class i:

Pi =
cor rect(i)

bias(i)
≈ P(class = i| f → i) (1)

It approximates the probability of a correct predic-
tion given that the classifier has predicted a specific
class (which, for brevity, we denote as f → i).

Class recall Ri denotes the recall for class i:

Ri =
cor rect(i)

prevalence(i)
≈ P( f → i|class = i) (2)

It approximates the probability of a correct predic-
tion given that an example is from a certain class.

3 Defining metric properties

We introduce some useful tools that help us to distin-
guish among metrics. We define five metric properties:
Monotonicity, class sensitivity, class decomposability,
prevalence invariance and chance correction.

I Monotonicity

This property checks the safety of a metric by impos-
ing that correct (false) predictions do not decrease
(increase) the score. We formalize this as

Property I (Monotonicity). A metric has PI if ∀m:

∂metric(m)
∂mi, j

¨

≥ 0 ⇐⇒ i = j
≤ 0 ⇐⇒ i ̸= j;

(3)

1If our classifier predicts a n-dimensional probability distribution:
σ : D → {z ∈ [0, 1]n |

∑n
i=1 zi = 1}, we may also set m f ,S

i j =
∑

s∈S I[s2 = j] · f (s1)i , with I[x] = 1 if x is true, else 0.

II Telling ‘macro’ from ‘micro’: different
errors have different weights

Where there is ‘macro’, there is also ‘micro’. We sepa-
rate micro metrics with

Property II (Class sensitivity). If ∃m ∈ R|C |×|C |≥0 :
∂metric(m)
∂mi,i

̸= ∂metric(m)
∂m j, j

with (i, j) ∈ (C × C) or
∂metric(m)
∂mi, j

̸= ∂metric(m)
∂mk,l

with (i, j, k, l) ∈ (C × C × C × C)
and i ̸= j, k ̸= l, then metric is not a micro metric.

A ‘macro’ metric, in contrast to a ‘micro’ metric, is
sensitive to class labels.

III Macro average: It’s a mean over classes

‘Macro’ metrics are sometimes named ‘macro-average’
metrics, which indicates that they may be perceived as
an average over classes. We express this as

Property III (Class decomposability). A ‘macro-
average’ metric can be stated as

metric(m, g, p) =

�

1
n

n
∑

i=1

g(mi , (m
T )i)

p

�
1
p

. (4)

I.e., if our metric can be defined as an unweighted
generalized mean over classes using a ‘local’ metric
g that makes use of all instances related to a specific
class (class = i or f → i), then we say that it has PIII.

IV More strict: “Treat all classes equally”

A common argument for using metrics other than the
rate of correct predictions is that a metric should show
‘classifier performance equally w.r.t. all classes’, or ‘does
not neglect rare classes’ (e.g., see [16, 7, 2, 13]).
Such a metric promises better extrapolation of the

measured performance to data sets with different class
frequencies. At first glance, PIII seems to imply such
a feature already, since we compute an unweighted
mean over classes. However, the score w.r.t. one class is
(potentially) coupled to the prevalence of other classes.

So it makes sense to define such an expectation
(‘treat all classes equally’) most strictly. We simulate
different class prevalences with a

Prevalence scaling. We can use a diagonal preva-
lence scaling matrix λ to set

m′ = mλ. (5)

By scaling a column i with λii , we inflate (or deflate)
the mass of data that belong to class i (e.g., see Tables 2,
3, 4), but retain the relative proportions of intra-class
error types. Now, we can define
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f
c a b

a 15 5
b 10 10

Table 2: b occurs 15 times.

f
c a b

a 15 ·1 5 ·2
b 10 ·1 10 ·2

Table 3: Apply λ= (1,2).

f
c a b

a 15 10
b 10 20

Table 4: b occurs 30 times.

Property IV (Prevalence invariance). If (λ,λ′) ∈
Rn×n
>0 × R

n×n
>0 is a pair of diagonal matrices then

metric(mλ) = metric(mλ′).

PIV makes a metric invariant to class prevalence.

Prevalence calibration There is an interesting spe-
cial case of λ. We can select λ s.t. all classes have the
same prevalence. We call this prevalence calibration:

λii =
1

n · prevalence(i)
, (6)

and achieve equal class prevalence (without chang-
ing the proportions of intra-class error types).

V Chance correction

There are two well-known chance ‘baseline’ classifiers:
One predicts labels uniformly at random, the other
based on prevalence. More arbitrary chance classifiers
exist. The interpretability of a macro metric score
increases if the score of the best chance classifier is not
more than a function of the number of classes n. This
indicates robustness against chance predictions and, in
addition, makes the measurement of a single classifier
meaningful by providing a chance baseline score.

Property V (Chance Correction). A metric has this
property, if, for a dataset S with n classes and a set A
that contains arbitrary random classifiers:

max
�

metric(mr,S) | r ∈ A
	

= c(n),

where function c provides a score that is based on
the number of classes n alone. In the special case of
max{metric(mr,S); r ∈ A} = min{metric(mr,S); r ∈
A}, we say that metric is strictly chance corrected, and
in the special case that the latter holds for all data
set pairs S, S′, we say that metric is completely chance
corrected. Note that strictness or completeness isn’t
always desired, since it does not correct for accuracy.

4 Metrics: overview and analysis

Accuracy (aka Micro Recall aka Micro Pre-
cision aka Micro F1)

Before studying other metrics, we briefly view
accurac y that tells us the ratio of correct predictions:

accurac y =

∑

i mi,i
∑

(i, j)mi, j
=

∑

i cor rect(i)
∑

i prevalence(i)
. (7)

It is equivalent to ‘micro Prec., micro Recall and micro
F1’ that are often shown in papers (c.f. Appendix A).

Property analysis and discussion We easily see
that it has only PI (monotonicity). This is expected,
since PII-V tend to target macro metrics.

In general, accuracy is a key evaluation statistic, ap-
proximating the probability to observe a correct pre-
diction. However, clearly the metric is strictly tied to
the class prevalences that occur in a specific data set,
and researchers seem interested in other metrics.

Macro recall: ticks all boxes

Macro recall is calculated as the unweighted arithmetic
mean over all class-wise recall scores:

macR=
1
n

∑

i

Ri =
1
n

∑

i

cor rect(i)
prevalence(i)

(8)

Property analysis Macro Recall has all five proper-
ties (Proofs in Appendix B). We also note that it is
strictly chance corrected with c(n) = 1/n.

Discussion Since macro Recall has all five properties,
it is a useful macro metric for transparent and mean-
ingful classifier evaluation. Moreover, it offers three
intuitive interpretations: Drawing items from class bags,
Bookmaker metric and prevalence-calibrated accuracy.
In the first interpretation, we are given n random

items, one from every class. We select a random one
and ask: what’s the probability that it is correctly pre-
dicted? MacR knows the answer.

Macro Recall also has another interesting interpreta-
tion, since it can be viewed as a (fair) Bookmaker’s
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metric.2 For every prediction, we pay 1 unit and gain
units according to fair (European) odds. The odds for
making a correct prediction, when the true class is i,
are odds(i) = |S|

prevalence(i) . For each data example, our
classifier f makes a bet, incurring a total

gain=
∑

s∈S

�

I[ f (s1) = s2] · odds(s2)− 1
�

(9)

= −|S|+
∑

s∈S

�

I[ f (s1) = s2] · odds(s2)
�

(10)

= −|S|+
n
∑

i=1

�

odds(i) ·
∑

s∈S
s2=i

�

I[ f (s1) = i]
��

(11)

= −|S|+ |S|
n
∑

i=1

cor rect(i)
prevalence(i)

(12)

= −|S|+ n|S| ·macR (13)

Ignoring the cost and normalizing by the number of
classes and data size (n|S|), we obtain macro Recall.
Finally, we can view macro Recall as an accuracy

score after class prevalence calibration. To see this,
first consider the standard accuracy measure (Eq. 7)
and calibrate class prevalence (Eq. 6), observing that

macAcc = accurac y(mλ) (14)

=

∑

i λii · cor rect(i)
∑

i λii · prevalence(i)
(15)

=
∑

i

λii · cor rect(i) = macR. (16)

Macro precision: In the bias lies the issue

Macro-precision is the unweighted arithmetic mean
over the class-precision scores:

macP =
1
n

∑

i

Pi =
1
n

∑

i

cor rect(i)
bias(i)

(17)

Property analysis While properties I, II, III, V are
fulfilled, macro Precision does not have prevalence in-
variance (Proofs in Appendix C). We can find theoretic
m,λ, where the maximum score difference (macP(m)
vs. macP(mλ)) approaches 1− 1

n . Same as macro Recall,
it is strictly chance corrected with c(n) = 1/n

Discussion Precision of class i approximates
P(class = i| f → i). Hence, at a glance, macP
provides us with an overall measure of ‘prediction
trustworthiness’, which may be valuable.

2For other bookmaker inspired metrics see [9, 10]

However, the issue is that bias(i) is a function of the
nature of a classifier and the data prevalence( j), j ∈ C .
Therefore, even though it is decomposed over classes
(PIII), it is not invariant to prevalence changes (PIV).
If we have f , f ′ with different biases, score differences
are difficult to interpret.
To mitigate this issue, we can make classifier bias

more meaningful, by calibrating class prevalence (Eq.
6), controlling prevalence and (consequently) bias.

Macro F1: Metric of choice in many tasks

Macro F1 is often used for classifier evaluation.3 It is
defined as an unweighted arithmetic mean over class-
wise harmonic means of precision and recall:

macF1=
1
n

∑

i

F1i =
1
n

∑

i

2PiRi

Pi + Ri
. (18)

with Pi , Ri , Fi = 0 if the denominator is zero.

Property analysis Four properties are fulfilled (PI,
PII, PIII, PV) while PIV is not fulfilled (Proofs in Ap-
pendix D). Interestingly, while macro F1 has PV (chance
correction), the chance correction isn’t strict, differen-
tiating it from most other macro metrics. In particular,
its chance baseline upper-bound 1/n is achieved when
P( f → i) = P(class = i), which means that macro F1
not only corrects for chance, but also for accuracy.
Additionally, we see that macro F1 is invariant to

the false-positive and false-negative error spread for a
specific class. This can be seen by writing:

macF1=
2
n

∑

i

cor rect(i)
bias(i) + prevalence(i)

, (19)

and viewing the denominator.

Discussion While the invariance to error types and
the targeted balance between chance correction and
accuracy seem useful, macro F1 inherits an issue of
macro Precision: classifier bias to a class i is tied to
class prevalence of all j, j ̸= i. Thus, in a strict sense,
macro F1 does not ‘treat all classes equally’. The score
may become more meaningful after class prevalence
calibration (Eq. 6).

Macro F1: a doppelganger

Interestingly, there is another frequently used metric
that has been coined ‘macro F1’ [12]. It is the harmonic
mean of macro Precision and macro Recall:

macF1′ =
2 ·macR ·macP
macR+macP

. (20)
3It is also set as default in evaluation reports of popular machine

learning packages such as scikit-learn.

Page 4 of 10



From Bias and Prevalence to Macro F1, Kappa, and MCC: A structured overview of metrics for multi-class evaluation

Property analysis In contrast to its name twin, one
less property is fulfilled (PIII), since it cannot be de-
composed over classes (Proofs in Appendix E), and it is
strictly chance baseline corrected with c(n) = 1/n. In
[8], we provide more analyses of the two macro F1s.

Discussion On one hand, macF1′ isn’t easy to inter-
pret, since the numerator contains the cross-product
of all class-wise recall and precision values. However,
it can be viewed through the lens of an inter-annotator
agreement (IAA) metric, where we do not compare a
classifier against a reference, but instead we compare
two reference candidates A and B, which results in
confusion matrices mA = m and mB = mT . Therefore:

macF1′ =
2 ·macR(mA) ·macR(mB)
macR(mA) +macR(mB)

, (21)

falling back on macR’s clear interpretation(s).

Birds of a feather: Kappa and Matthews
Correlation Coefficient

If we assume normalized confusion matrices4, we can
state both metrics as concise as possible. First denote

c =
∑

i

cor rect(i) b= m1 p= mT 1, (22)

where c is the amount of correct predictions, p is a
vector where at each index i we find prevalence(i),
and b is a vector where at each index i we find bias(i).

Generalized Matthews correlation coefficient
(MCC) The multi-class generalization of MCC [6]
can now be written concisely as

MCC =
c − pT b

(
p

1− bT b)(
p

1− pT p)
. (23)

Cohen’s kappa Let us state Cohen’s kappa [3] as
follows, to illuminate its similarity to MCC:

KAPPA=
c − pT b
1− pT b

. (24)

Property analysis MCC and KAPPA have PII and PV
(complete chance baseline correction: c(n) = 0). In-
terestingly, they are non-monotonic metrics (PI). They
also do not have PIII, PIV. Proofs are in Appendix F.
Note also that MCC ≥ KAPPA (since pT b≤ bT b,pT p).

4mi j =
1
|S| |{s ∈ S | f (s1) = i ∧ s2 = j}| ∈ [0, 1],

∑

(i, j)m = 1. This
shows probabilities for error types and does not change the MCC or
KAPPA score.

Discussion Kappa and MCC are similar measures.
Since pT b ≈
∑

i P(c = i) · P( f → i) is the probability
of a random baseline classifier to correctly predict an
item from a random class, and c ≈ P(cor rect), KAPPA
and MCC can be viewed as accuracy calibrated against
a random chance baseline classifier.

However, overall they are calibrated in slightly differ-
ent ways due to different denominators. The denom-
inator of KAPPA simply shows the upper-bound w.r.t.
the score of the perfect classifier, which is intuitive.
On the other hand, the denominator in MCC is

harder to interpret due to its stronger dependence on
classifier bias. This becomes evident when viewing the
measures after class-prevalence calibration (Eq. 6):

KAPPA(mλ) =
c − n−1

1− n−1

MCC(mλ) =
c − n−1

(
p

1− bT b)(
p

1− n−1)
,

The influence of classifier biases can make it more
difficult to meaningfully compare classifiers with MCC.
By contrast, in KAPPA, the bias term is gone.

5 Discussion

Prevalence calibration of macro metrics

Macro Recall shows all five properties PI-V, and there-
fore offers good interpretability. However, researchers
are also interested in using other macro metrics, such
as macro Precision, or macro F1, to, e.g., target a bias
vs. prevalence balance over all classes (Eq. 19). To
make the results of these metrics more meaningful, we
can consider calibrating class prevalence such that all
classes have the same prevalence (Eq. 5, Eq. 6). Such a
calibration makes a classifier’s bias (i.e., Precision, F1)
more meaningful and equips every metric with PIV.
Note that some popular software packages, e.g.,

scikit-learn, offer a calibration option, when cre-
ating confusion matrices from references and predic-
tions.5

More considerations

Other means in macro Recall We can use other p in
the generalized mean (Eq. 4), besides p = 1 (arithmetic
mean). E.g., we can use the geometric mean (p→ 0):

GmacR= GM(R1, ..., Rn) =
n
p

R1 · ... · Rn (25)
5from sklearn.metrics import confusion_matrix;

m = confusion_matrix(refs, preds, normalize=‘True’))
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metric PI (mono.) PII (class sens.) PIII (decompose) PIV (prev. invar.) PV (chance correct)

macro Recall ✓ ✓ ✓ ✓ ✓: 1/n, strict
macro Prec. ✓ ✓ ✓ ✗ (✓) ✓: 1/n, strict
macro F1 ✓ ✓ ✓ ✗ (✓) ✓: 1/n
macro F1’ ✓ ✓ ✗ ✗ (✓) ✓: 1/n, strict
Kappa ✗ ✓ ✗ ✗ (✓) ✓: 0, complete
MCC ✗ ✓ ✗ ✗ (✓) ✓: 0, complete
Accuracy ✓ ✗ ✗ ✗ ✗
Macro Acc. same as macro Recall (Eq. 14-16)
Micro F1 same as accuracy (see Appendix A)

Table 5: Summary of evaluation metrics. (✓): a property is fulfilled after prevalence calibration.

GmacR, same as macR, has all five properties (PI-PV).
Given n random items, one from every class, GmacR
approximates a (class-count normalized) probability
that all are correctly predicted.

GmacR can be useful when it is impor tant to have
good performance for all classes.

Presenting class-wise recall scores helps to extrap-
olate metrics for new data We can estimate pre-
cision in another data set (under unknown class-
prevalence and without reference), based on class-wise
recall. First, we state an estimate of the class distribu-
tion P(class) ≈ÛP(class) that can be expected. Then
we estimate P( f )≈ÕP( f ), by running the classifier on
some data. Finally:

P⋆(class = i| f → i) =
P( f → i|class = i) · P(class = i)

P( f → i)
(26)

≈
Ri · P(class = i)
∧

P( f → i)
∧ (27)

From here, estimated scores of macro metrics, in-
cluding MCC and KAPPA, easily follow. Note that it
is not possible to approximate expected recall values
on new data by providing precision values on old data
(since these do not transfer). Hence, this corroborates
the value of recall statistics.

How do metrics behave in a practical evaluation
setting? So far, we mainly focused on theory. In an
empirical setting, differences between most metrics
are unlikely to be as extreme as in hypothetically con-
structed cases. However, when studying results of a
shared task on document classification, we can observe
important differences in the rankings of classifiers (c.f.
Appendix G). This underlines the importance of un-
derstanding metrics, to inform metric selection and
achieve meaningful classifier rankings.

6 Conclusion

Table 5 shows an overview of the visited metrics.
We make some observations: i) only macro Recall

has all five properties and it is the only metric that
shows class prevalence invariance (PIV), i.e., ‘it treats
all classes equally’ (in a strict sense). However, through
prevalence calibration, all metrics obtain PIV. ii) In
contrast to other metrics, KAPPA and Matthews Cor-
relation Coefficient do not have property PI. I.e., un-
der some circumstances, errors can increase the score,
possibly lowering interpretability. iii) all metrics ex-
cept accuracy show chance baseline correction. Strict
chance baseline correction isn’t a feature of Macro F1,
and complete chance baseline correction (class-count
independent) is only achieved with MCC and KAPPA.
In general, we can conclude that macro Recall and

accuracy well complement each other. Both have a
clear interpretation, and relate to each other with a
simple prevalence calibration. In particular, macro
Recall can be understood as a prevalence-calibrated
version of accuracy. On the other hand, macro F1 is
interesting since it does not strictly correct for chance
(as in macro Recall) but also factors in more accuracy.
MCC and KAPPA are similar measures, where KAPPA
tends to have more robustness against classifier biases.
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Appendices

A Accuracy aka micro Preci-
sion/Recall/F1

Micro F1 is defined6 as the harmonic mean (HM) of
‘micro Precision’ and ‘micro Recall’, where micro Preci-
sion is

∑

x cor rect(x)
∑

x bias(x)
(28)

and micro Recall is

∑

x cor rect(x)
∑

x prevalence(x)
. (29)

Now it suffices to see that
∑

x prevalence(x) =
∑

x bias(x) =
∑

(i, j)mi, j, and
∑

x cor rect(x) =
∑

i mi,i,
and HM(a, a) = a.

6E.g., see [12]
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B Macro Recall

B.1 Monotonicity ✓

If i ̸= j: ∂macR(m)
∂mi, j

= − cor rect( j)
n·prevalence( j)2 ≤ 0; else ∂macR(m)

∂mi,i
=

prevalence(i)−cor rect(i)
n·prevalence(i)2 ≥ 0

B.2 Class sensitivity ✓

Follows from above.

B.3 Class decomposability ✓

In Eq. 4 set g(row, col) = row1
∑

i coli
and p = 1.

B.4 Prevalence invariance ✓

R′i =
λi,i mi,i
∑

j λi,i m j,i
= λi,i mi,i

λi,i
∑

j m j,i
= Ri .

B.5 Chance correction ✓

Assume normalized class prevalences p ∈
[0, 1]n s.t.
∑n

i=1 zi = 1} and arbitrary random
baseline z ∈ [0,1]n s.t.

∑n
i=1 zi = 1}:

MacR=
1
n

∑

i

Ri =
1
n

∑

i

pi · zi
∑

j z j · pi
=

1
n

∑

i

zi =
1
n
(30)

C Macro precision

C.1 Monotonicity ✓

If i ̸= j: ∂macP(m)
∂mi, j

= − cor rect(i)
n·bias(i)2 ≤ 0; else ∂macP(m)

∂mi,i
=

bias(i)−cor rect(i)
n·bias(i)2 ≥ 0

C.2 Class sensitivity ✓

Follows from above.

C.3 Class decomposability ✓

In Eq. 4 set g(row, col) = row1
∑

i rowi
and p = 1.

C.4 Prevalence invariance

A counter-example P ′i =
λi,i mi,i
∑

j λ j, j mi, j
̸= Pi is easily found.

E.g., in Table 2, 3, 4: macP = 0.5 3
4 + 0.5 1

2 =
5
8 ̸=

macP ′ = 0.5 3
5 + 0.5 2

3 =
19
30 .

C.5 chance correction ✓

Assume normalized class prevalences p ∈
[0,1]n s.t.
∑n

i=1 zi = 1} and arbitrary random
baseline z ∈ [0, 1]n s.t.

∑n
i=1 zi = 1}:

MacP =
1
n

∑

i

Ri =
1
n

∑

i

pi · zi
∑

j zi · p j
=

1
n

∑

i

pi =
1
n
(31)

D Macro F1

D.1 Monotonicity ✓

Let Zi = bias(i) + prevalence(i). If i ̸= j:

∂macF1(m)
∂mi, j

= −
2 · cor rect(i)

nZ2
i

−
2 · cor rect( j)

nZ2
j

≤ 0

(32)
else:

∂macF1(m)
∂mi, j

=
2

nZi
−

2 · cor rect(i)
nZ2

i

(33)

+
2

nZ j
−

2 · cor rect( j)
nZ2

j

≥ 0 (34)

D.2 Class sensitivity ✓

Follows from above.

D.3 Class decomposability ✓

In Eq. 4 set p = 1, g(row, col) = 2row1
∑

x rowx+colx

D.4 Prevalence invariance ✓

By counter-example, similar to (C.4).

D.5 chance correction ✓

Assume normalized class prevalences p ∈
[0,1]n s.t.
∑n

i=1 zi = 1} and arbitrary random
baseline z ∈ [0, 1]n s.t.

∑n
i=1 zi = 1}. We have

MacF1=
1
n

∑

i

2 · pi · zi
∑

j zi · p j +
∑

j z j · pi
=

1
n

∑

i

2 · pi · zi

pi + zi
.

(35)
We see that a maximum is attained when p = z, and

that this maximum is 1
n .
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E Macro F1 (name twin)

E.1 Monotonicity ✓

We have ∂macF1′(m)
∂mi, j

= 2x
macR+macP where x =

�

∂macR(m)
∂mi, j

+
∂macP(m)
∂mi, j

�

(36)

·
�

macR+macP −macP ·macR
�

(37)

Since macR and macP have monotonicity and (37)
≥ 0, macF1’ also has monotonicity.

E.2 Label sensitivity ✓

Follows from above.

E.3 Class decomposability

Not possible.

E.4 Prevalence invariance

See macP.

E.5 chance correction ✓

Since macF1′ is the harmonic mean from (strictly
chance corrected) macro precision and macro recall,
we also have strictly chance correction with 1

n .

F KAPPA and MCC

F.1 Monotonicity

Kappa Let us state

KAPPA=
cs− pTb
s2 − pTb

=
NK

DK
(38)

with s =
∑

(i, j)mi, j . Other variables were introduced
before (Eq. 22). Now, let zi j = bias( j) + prevalence(i).
Then, iff i ̸= j:

∂ KAPPA
∂mi, j

=
(c − zi j)D2

K − (2s− zi j)NK

D2
K

(39)

f
c a b c

a 10 43 0
b 1 1 0
c 0 0 1

Table 6: MCC = 0.0.

f
c a b c

a 10 43 0
b 1 1 0
c 0 10 1

Table 7: MCC = 0.07.

MCC Let us state

MCC =
cs− pTb
p

(s2 − pTp)(s2 − bTb)
=

NM

DM
(40)

Let now vi j =
∂ pT p
∂mi, j

= 2 · prevalence( j) and ui j =
∂ bT b
∂mi, j

= 2 · bias(i).

Then, iff i ̸= j:

∂MCC
∂mi, j

=
1

2D3
M

�

D2
M (c − zi j) (41)

− NM (2s− vi j)
p

s2 − bTb (42)

− NM (2s− ui j)
Æ

s2 − pTp
�

(43)

It suffices now to see that there exist configurations
of confusion matrices where NK (KAPPA) or NM (MCC)
→ 0, but not (c − zi, j) · D2

M |K → 0.

An example, where MCC increases, when we add
more errors, is described below in Tables 6 and 7:

F.2 Class sensitivity ✓

Trivial

F.3 Class decomposability

Trivial

F.4 Prevalence invariance

Trivial.

F.5 chance correction ✓

In the numerators we have

∑

i

pi · zi −
∑

i

�

∑

j

zi · p j

��

∑

j

z j · pi

�

= 0 (44)
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sys macR GmacR HmacR macF1 macF1c kappa mcc r1 r2 r3

A 68.1 66.8 65.4 65.4 67.7 46.5 48.0 82.9 51.2 70.2
B 68.1 66.5 65.0 66.0 67.7 47.3 49.2 87.8 51.4 65.2
C 67.6 66.8 66.0 66.0 67.5 47.2 48.1 81.7 56.0 65.2
D 67.4 66.5 65.6 65.1 67.1 46.3 47.3 80.3 54.2 67.6
E 66.9 66.8 66.8 66.0 67.3 47.0 47.0 69.8 64.0 66.8
F 65.9 65.6 65.4 64.5 66.1 45.0 45.4 73.5 58.7 65.6
G 64.9 64.2 63.5 63.4 64.9 43.0 43.8 77.4 53.9 63.5
H 64.5 64.5 64.5 63.7 64.9 43.6 43.6 65.3 63.6 64.5

Table 8: Shared task ranking with different metrics. ri: recall
for class i.

Figure 2: Team ranking correlation matrix with paired met-
rics. metric_c means that the confusion matrix has
been calibrated before metric computation (Eq. 6).

G Small empirical study

We use metrics to rank teams that participated in the
Semeval-2017 task [11] to predict the sentiment of
tweet documents: negative, neutral, or positive.
The two winning systems were determined with

macR, which is fair (A, B, Table 8). Yet, system E also
does quite well, because it achieves a better balance
over the three classes (R1 = 69.8, R2 = 64.0, R3 = 66.8,
max. ∆ = 5.8) as opposed to, e.g., system B (R1 =
87.8, R2 = 51.4, R3 = 65.2 max. ∆ = 36.4), and indi-
cated also by GmacR and HmacR metrics. Hence, if a
user wants to ensure that all classes are well predicted
under high uncertainty of prevalence (perhaps to be
expected in Twitter data?), they may prefer system E.
Figure 2 shows a pair-wise Spearmanr correlation

of team rankings. When considering the same metric
before and after prevalence calibration, we see that
only recall metrics agree with each other in their rank-
ings. In particular, as indicated before, it seems that
the second class is the one that may tip the scale: R2
observably disagrees in its team ranking with all other
metrics (Spearman’s ρ ≤ 14). Furthermore, KAPPA as-
signs the exact ranks as macR, but only after prevalence
calibration (Spearman’s ρ Kappac vs. macR: 100).
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