Using NLP Methods for the Analysis of Rituals

Nils Reiter*, Oliver Hellwig*, Anand Mishra*, Anette Frank*, Jens Burkhardt*

Ritual structure research

- Rituals exist in all human cultures across all times.
- Similarities between rituals from very distant cultures can be observed.
- Is there an underlying universal structure of rituals? A ritual grammar?

Project research topics

- A formal-linguistic, data-driven and quantitative approach for detecting ritual structures
- Frame semantics for the formalization of events and semantic roles
- Frame ontology allows for abstraction of events, roles and participants
- Ritual-specific knowledge expressed in ritual descriptions is linked to a ritual ontology
- Search functionalities for ritual scientists to verify hypotheses against semantically annotated data

2 ritual experts evaluated 20 ex-

Heterogeneous domain

- Terminology from different fields (history, theology, ...) is partially controversial
- Systematic exploration of the domain by extracting terms from scientific literature *about* rituals
- Data-driven approach for acquiring domain vocabulary

- Roles & Semantic Types
 - How similar are and ?
 - Can be substituted by ?

tracted terms as yes, no or maybe

pos	All	Ν	V	Α
Κ	0.35	0.22	0.35	0.49

- Approaches score differently for different parts of speech
- Percentage of partially correct extracted terms

		A1=yes, A2=maybe	A1=no, A2=maybe	
	Approach	Overall	Overall	
		N/V/A	N/V/A	
	tf * idf	23.33%	56.67%	
		20/30/20	70/40/60	
	X 2	56.67%	30%	
		30/ 60/80	60/ 30/0	
	PageRank	20%	60%	
		30/0/30	50/60/70	

Alternative approaches for domain term extraction

tf * idf

- Comparison corpora BAWE and BNC
- $freq_{t,d}$: frequency of

► X²

 Calculation of raw X² values based on lemma and pos pagerank

- One node for each candidate term
- Edges between two co-

term t in corpus d

- df_t: number of corpora
 in which t appears
- *D*: # of corpora (= 3)

 $tf_{t,d} = \frac{freq_{t,d}}{\max_{t'} freq_{t',d}}$ $tfidf_{t,d} = tf_{t,d} * \log(\frac{D}{df_t})$

Buitelaar & Sacaleanu (2001)

Sum over both nondomain corpora

Normalized and scaled to [0,1]

Agirre et al. (2001)

occuring cand. terms

- Calculate PageRank
 (Brin & Page, 1998)
- Highly connected nodes get higher weight

Yang et al. (2009)

This research is funded by the German Research Foundation (DFG) and part of the collaborative research center **SFB 619: Ritual Dynamics**.

References

Eneko Agirre, Olatz Ansa, David Martinez, and Eduard Hovy. Enriching WordNet Concepts with Topic Signatures. In *Proceedings of the Workshop on WordNet and Other Lexical Resources at NAACL*. 2001.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search engine. *Computer networks and ISDN systems*, 30(1-7):107–117. 1998. Paul Buitelaar and Bogdan Sacaleanu: Ranking and Selecting Synsets by Domain Relevance. In *Proceedings of the Workshop on WordNet and Other Lexical Resources at NAACL*. 2001.

Charles J. Fillmore, Christopher R. Johnson, and Miriam R.L. Petruck. Background to FrameNet. *International Journal of Lexicography*, 16(3):235–250. 2003. Yuhang Yang, Tiejun Zhao, Qin Lu, Dequan Zheng, and Hao Yu. Chinese term extraction using different types of relevance. In *Proceedings of ACL and AFNLP*. 2009.

www.cl.uni-heidelberg.de

www.ritualdynamik.de