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Abstract

Stochastic zeroth-order (SZO), or gradient-free, optimization allows to optimize
arbitrary functions by relying only on function evaluations under parameter per-
turbations, however, the iteration complexity of SZO methods suffers a factor
proportional to the dimensionality of the perturbed function. We show that in
scenarios with natural sparsity patterns as in structured prediction applications,
this factor can be reduced to the expected number of active features over input-
output pairs. We give a general proof that applies sparse SZO optimization to
Lipschitz-continuous, nonconvex, stochastic objectives, and present an experimen-
tal evaluation on linear bandit structured prediction tasks with sparse word-based
feature representations that confirm our theoretical results.

1 Introduction

Random gradient-free methods [23] provide a simple approach to optimization by applying Gaussian
smoothing to an arbitrary function, thus establishing Lipschitz-continuity of the gradient of the
smoothed function, and allowing to approximate the gradient by comparisons of function values
obtained at randomly perturbed parameter vectors. In optimization theory, related techniques are also
named “zeroth-order” [6, 3] or “derivative-free” [7, 31] methods since rather than first- or second-
order derivatives, only function values are accessible. The main advantage of stochastic zeroth-order
(SZO) methods lie in their applicability to optimization of non-differentiable functions, or in black
box situations where nothing but function values are available. The main disadvantage compared to
stochastic first-order (SFO), or gradient-based, techniques is a dependency of the convergence speed
on the dimensionality of the function to be evaluated.

In machine learning, obtaining a noisy realization of reward or loss function values at a proposed
parameter perturbation corresponds to learning with “bandit feedback” [5, 1]. These methods have
found renewed interest in the area of reinforcement learning, notably in applications where gradient
information is available and SFO techniques would be applicable. The cited advantages of SZO
methods for reinforcement learning are their simplicity and robustness against hyperparameter
changes [18], the fact that they are highly parallelizable and do not require backpropagation [28], or
the improved exploration behavior in parameter space (instead of in action space) [29].

The goal of this paper is to show that the bottleneck of SZO techniques—the dependency of conver-
gence speed on the dimensionality of the parameter space being perturbed—can be reduced to the
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expected number of active features over input-output pairs in structured prediction with sparse feature
spaces. Such sparsity patterns can be found in sequence labeling tasks that represent sequences
by context word representations. An example is the task of noun-phrase chunking where a natural
sparsity pattern is defined by n-grams of input words and output chunk labels that can possibly occur
in given input-output pairs. Our paper starts with a general proof that adapts the work of [23] to the
case of sparse parameter perturbation for Lipschitz-continuous (but not necessarily Lipschitz-smooth),
nonconvex, stochastic functions. We present three algorithms that instantiate our theory to structured
prediction applications, one based on [23]’s standard two-point function evaluation method, and
two methods that aim to reduce feedback complexity to a comparison of function values, or to a
comparison of one-point feedback to a running average, with applications to human feedback in mind.
In our experimental evaluation, we compare our SZO techniques to standard SFO techniques for
bandit structured prediction tasks from natural language processing [33]. Our experimental results on
the task of noun-phrase chunking show that the convergence speed of all compared SZO techniques
is improved by applying sparse parameter perturbations, reaching a performance close to the standard
SFO technique. Furthermore, we present an experimental evaluation on the task of statistical machine
translation that investigates the use of a non-differentiable maximum-a-posteriori (MAP) criterion
at training and test time in SZO techniques—something that is not possible in SFO methods. On
this task our best SZO result outperforms the standard SFO technique, pointing to another possible
advantage of SZO techniques.

2 Related Work

Zeroth-order, or gradient-free, stochastic optimization dates back to the finite-difference method
for gradient estimation of [11] where the value of each component of w is perturbed separately
while holding the other components at nominal value. This technique has since been replaced
by more efficient methods based on simultaneous perturbation of all weight vector components
[34, 35, 16]. More recent developments apply the simultaneous perturbation principle to bandit
learning [5, 40, 1, 3] and extend it from (strongly) convex function to non-convex functions [6, 23].
To our knowledge, the application to structured prediction problems, especially regarding sparse
perturbations in active feature space, is novel.

Connections of SZO methods to evolutionary algorithms and reinforcement learning have first been
described in [35]. Recent work has applied SZO techniques successfully to policy gradient methods
for deep reinforcement learning [29, 28, 26, 18]. The framework of bandit structured prediction
[33, 15, 24, 2] is closely related to policy gradient techniques in reinforcement learning [39, 37, 14],
for example, linear bandit structured prediction is termed “gradient bandits” in Sutton and Barto [36].
Earlier work in structured prediction has applied SZO techniques for expected loss minimization
(a.k.a. minimum risk training) [19, 10].

The quality of SZO methods to provide improved exploration behavior at reduced variance is also
appreciated in recent reparameterization approaches. Here a loss function is reparameterized via
Gaussian smoothing, and loss values obtained under latent variable perturbations are combined with
backpropagation of first-order derivatives [12, 8, 26]. Our work could provide an alternative to
the combination of SZO and SFO techniques to an end-to-end application of SZO techniques in
reparameterization scenarios.

3 Sparse Zeroth-Order Stochastic Optimization for Nonconvex Objectives

In the following, we give a theoretical analysis of gradient-free optimization by sparse parameter per-
turbation for Lipschitz-continuous (but not necessarily Lipschitz-smooth), nonconvex, and stochastic
objectives. Our analysis builds on [23].

3.1 Problem Statement

We would like to solve a stochastic optimization problem

min
w
f(w), where f(w) := Ex[F (w, x)], (1)

and Ex denotes the expectation over inputs x ∈ X , and w ∈ Rn is the dimensionality of the weight
vector parameterizing the objective function. We address the the general case of non-convex functions
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F for which we furthermore assume Lipschitz-continuity1, i.e., F (w, x) ∈ C0,0 iff

|F (w, x)− F (w′, x)| ≤ L0(F (·, x))
∥∥w − w′∥∥,∀w,w′, x. (2)

[23] show how to achieve a smooth version of an arbitrary function f(w) by Gaussian blurring
that assures continuous derivatives everywhere in its domain. In their work, random perturbation
of parameters is based on n-dimensional Gaussian random vectors u from a zero-mean isotropic
multivariate Gaussian with unit n× n covariance matrix Σ = I s.t.

N (u) =
1√

(2π)n · det Σ
e−

1
2u
>Σ−1u, (3)

and a Gaussian approximation of f(w) is defined as fµ(w) = Eu[f(w + µu)], where µ ≥ 0 is a
smoothing parameter. Furthermore, a Lipschitz-continuous gradient even for a non-differentiable
original function f can be given by applying standard differentiation rules to fµ(w), yielding
∇wfµ(w) = Eu[ f(w+µu)−f(w)

µ u] (see [23], eq. (21)).

In the case of linear stochastic structured prediction, the functional f(w) is an expectation over
inputs x, and the function F (w, x) is defined with respect to a linear model w>φ(x, y) where
φ : X ×Y → Rn is a joint, possibly sparse, feature representation on inputs and outputs. We express
sparsity in parameter perturbation by restricting the Gaussian random vector u ∈ Rn to the active, i.e.
non-zero, features for each input x, where � is the restriction operator s.t.

N (u, x) = N (u) �ui s.t. ∃y∈Y (x),φi(x,y) 6=0 . (4)

We denote by ū ∈ Rn the Gaussian random vector resulting from a sparse perturbation, and by

n̄(x) :=
∥∥ū∥∥

0
= |ū1|0 + . . .+ |ūn|0, where 00 = 0, (5)

the effective number of parameter perturbations for an input x. Based on the notion of sparse
perturbation vectors ū ∈ Rn, we can redefine the Gaussian approximation as

fµ(w) = Eū[f(w + µū)]. (6)

3.2 Convergence Analysis

Our first Lemma applies standard differentiation rules to the the continuous function fµ(w) in eq.
(6), yielding a Lipschitz-continuous gradient. A full proof, adapting the calculations given in [23], eq.
(21), to our case is given in the supplementary material.
Lemma 1.

∇wfµ(w) = Eū,x[
F (w + µū, x)− F (w, x)

µ
ū]. (7)

[23] show that for Lipschitz-continuous functions F , the variance of the gradient approximation can
be bounded by the Lipschitz constant and by the norm of the random perturbation. The term Eu[

∥∥u∥∥p]
can itself be bounded by a function of the exponent p and the dimensionality n of the function space.
This is how the dependency on n enters iteration complexity bounds and where an adaptation to sparse
perturbations has to chime in. In order to adapt [23]’s bounds to sparse gradient-free optimization,
we first need to match their bounds on the norms of the random perturbation. The simple case of
the squared norm of the random perturbation given below illustrates the idea. If a coordinate i in
feature space is not perturbed, no variance Vū[ūi] in incurred. The smaller the variance, the smaller
the factor n̄(x) that directly influences iteration complexity bounds:

Eū[
∥∥ū∥∥2

] = Eū[ū2
1 + ū2

2 + . . .+ ū2
n] = Eū[ū2

1] + Eū[ū2
2] + . . .+ Eū[ū2

n]

= Vū[ū1] + Vū[ū2] + · · ·+ Vū[ūn] = n̄(x).

For the general case of Eū[
∥∥ū∥∥p], p ≥ 2, we match [23]’s equation (17). We shorten the proof to the

parts relevant to sparse perturbations.

1We use [22]’s notation of function classes where Ck,p denotes the class of k times differentiable functions
whose pth derivative is Lipschitz continuous.
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Lemma 2.

Eū[
∥∥ū∥∥p] ≤ (p+ n̄(x))p/2. (8)

Proof.

Eū[
∥∥ū∥∥p] = (2π)−n/2

∫
ū

∥∥ū∥∥pe− 1
2 ū
>ū

= (2π)−n/2
∫
ū

∥∥ū∥∥pe− τ2 ū>ūe− 1−τ
2 ū>ū

≤ (2π)−n/2
∫
ū

( p
τe

)p/2
e−

1−τ
2 ū>ū

=
( p
τe

)p/2
(2π)−n/2

∫
ū

e−
1
2 ū
>
(

I
1−τ

)−1
ū

=
( p
τe

)p/2
(2π)−n/2

√
(2π)n · det

I

1− τ

=
( p
τe

)p/2 1

(1− τ)n̄(x)/2

≤ (p+ n̄(x))p/2.

The first inequality follows from tpe−
τ
2 t

2 ≤
(
p
τe

)p/2
, for t ≥ 0 (see [23], eq. (80)). The second

inequality follows by minimizing the right-hand side in τ ∈ (0, 1) (see [23], Lemma 1).

Lemma 2 applies the idea illustrated above to higher order norms of random perturbations: If a
coordinate is not perturbed, the determinant of the covariance matrix reduces to a product of variances
of the active features. This allows us to bound the perturbation factor for each input by n̄(x)� n.
Our convergence theorem analyzes the following SZO algorithm with Sparse Perturbations (SZO-SP).

Algorithm 1 SZO-SP
Input: sequence of learning rates hk, smoothing parameter µ > 0.
Initialize: w0 = 0
for k ≥ 0 do

For each wk, sample xk and ūk.
Compute sµ(wk) := F (wk+µūk,xk)−F (wk,xk)

µ ūk.
Update wk+1 = wk − hksµ(wk).

end for

We present an analysis for nonconvex functionals F (w, x) and f(w) = Ex[F (w, x)]. Furthermore,
we assume that each F (·, x) ∈ C0,0 with L0(F (·, x)) ≤ L0, and that f ∈ C0,0.
Theorem 1. Assume a sequence {wk}k≥0 be generated by Algorithm 1. Let f(w) ≥ f∗, ∀w ∈ Rn,
and define n̄ ≥ Exk [n̄(xk)], ∀k ≥ 0 and SN :=

∑N
k=0 hk. Furthermore, let L1 denote the Lipschitz

constant of ∇fµ(w), and let Ūk = (ū0, . . . , ūk) and Xk = (x0, . . . , xk). Then for any N > 0, we
have

1

SN

N∑
k=0

hkEŪk,Xk
[∥∥∇fµ(wk)

2∥∥] ≤ 1

SN

(
(fµ(w0)− f∗) +

(
1

2
L1(n̄+ 4)2L2

0

) N∑
k=0

h2
k

)
. (9)

Proof. The proof uses the fact that for a Gaussian approximation fµ(w), its gradient is Lipschitz-
continuous even if the gradient of f(w) is not. For Lipschitz constant L1 of∇fµ(w), we have

fµ(wk+1)− fµ(wk)− 〈∇fµ(wk), wk+1 − wk〉 ≤
1

2
L1

∥∥wk − wk+1

∥∥2
.
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Applying an update step of Algorithm 1 lets us rewrite wk+1 as wk − hksµ(wk), leading to

fµ(wk+1) ≤ fµ(wk)− hk 〈∇fµ(wk), sµ(wk)〉+
1

2
L1h

2
k

∥∥sµ(wk)
∥∥2
.

Taking expectations in ūk and xk, we can apply equation (13), and get

Eūk,xk [fµ(wk+1)] ≤ fµ(wk)− hk
∥∥∇fµ(xk)

∥∥2
+

1

2
L1h

2
k

∥∥sµ(wk)
∥∥2
.

Furthermore, the expected squared norm of sµ(wk) can be bounded by

Eūk,xk
[∥∥sµ(wk)

∥∥2]
=

1

µ2
Eūk,xk

[
(F (wk + µūk, xk)− F (wk, xk))

2 ∥∥ūk∥∥2]
≤ 1

µ2
Eūk,xk

[∥∥wk + µūk − wk
∥∥2
L2

0

∥∥ūk∥∥2]
= Eūk,xk

[
L2

0

∥∥ūk∥∥4] ≤ L2
0(n̄+ 4)2.

The first inequality follows by the assumption of Lipschitz continuity of all F (·, x) ∈ C0,0 with
L0(F (·, x)) ≤ L0. The second inequality follows by applying Lemma 2 for p = 4 and taking the
expectation Exk [n̄(xk)] whose upper bound is denoted by n̄. This yields the following inequality

Eūk,xk [fµ(wk+1)] ≤ fµ(wk)− hk
∥∥∇fµ(xk)

∥∥2
+

1

2
L1L

2
0(n̄+ 4)2h2

k.

Taking expectations over Ūk and Xk, and summing up over k = 0, . . . , N yields the result.

Theorem 1 gives a non-asymptotic bound on the expected squared gradient norm for any sequence
of iterates of Algorithm 1. [23], Section 7, furthermore show that by an appropriate choice of
learning rates hk and smoothing parameters µ, the iteration complexity for nonconvex zeroth-order
optimization, i.e., the number of iterations necessary to guarantee an accuracy of ε for the expected
squared norm of the gradient of fµ, can be analyzed as O(n

3

ε2 ). The same algebraic manipulations
can be applied to result (9) that is adapted to sparse perturbations, leading to the following Corollary:
Corollary 1.

EŪN ,XN [
∥∥∇fµ(wN )

∥∥2
] ≤ ε if N ≥ O

( n̄3

ε2
)
. (10)

Corollary 1 shows that the factor n3 that the ε-accuracy of SZO methods for nonconvex optimization
suffers in comparison to nonconvex SFO optimization can be reduced to the factor n̄3 that can benefit
from strong sparsity patterns. A full proof, adapting the calculations given in [23], Section 7, to our
case is given in the supplementary material.

4 Algorithms for Bandit Structured Prediction

Update Rules. Algorithm 1 defines an update rule by a two-point function evaluation. Two-point
update rules have been introduced as simultaneous perturbation gradient approximation by [34], and
have later become standard in gradient-free optimization [6, 3].

A possibility to reduce feedback complexity, with applications that obtain feedback from humans
in mind, is to ask for a boolean-valued, relative comparison of function values. Algorithm 1 can be
modified easily to use the following function comparison update rule:

If F (wk + µūk, xk) < F (wk, xk), Update wk+1 = wk +
hk
µ
ūk.

This rule can be seen as an SZO alternative to the dueling bandits algorithm of [40].

A similar effect as a two-point function evaluation can be achieved by comparing a one-point function
evaluation against a running average of function evaluations performed so far. This technique is
known as control variates in Monte Carlo simulation [27]. The idea is to augment a random variable
X whose expectation is sought, by another random variable Y to which X is highly correlated. Let
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Y denote the control variate, and let Ȳ denote its expectation. Then the quantity X − Y + Ȳ is
an unbiased estimator of E[X]. The variance reduction effect of control variates can be seen by
computing the variance of this quantity: Var(X−Y ) = Var(X)+Var(Y )−2Cov(X,Y ). Choosing a
control variate such that Cov(X,Y ) is positive and large enough, the variance of the gradient estimate
will be reduced. In our case, the random variable a one-point gradient approximation evaluated at
a sampled xk and ūk. A well-known control variate from reinforcement learning [39] incorporates
the average cumulative reward (or loss) as so-called baseline into the estimator, yielding a baseline
comparison update rule:

Compute Yk =
1

k

k∑
j=1

F (wj+µūj , xj) ūk, Update wk+1 = wk−
hk
µ

(F (wk + µūk, xk)− Yk) ūk.

Note the similarity of the above rule to the two-point feedback rule where Yk plays the role of a slowly
changing unperturbed function value. A similar rule has been used in gradient-free reinforcement
learning [29].

Linear Structured Prediction Models. One possibility to instantiate the algorithms described
above to structured prediction is to encode a task loss evaluation under MAP prediction as ini-
tial function F . In this work, we assume MAP prediction under a linear model ŷ(x,w) =
argmaxy∈Y(x) w

>φ(x, y). Let ∆ : Y → [0, 1] be a task loss function for structured prediction,
e.g. 1-BLEU score for machine translation, then the initial function F can be defined as

F (w, x) := ∆(ŷ(x,w)). (11)

This criterion has been used in [19, 10]. A similar deterministic criterion has been used for SZO
optimization for deep reinforcement learning by [28, 18].

Note that the MAP criterion (11) is not only not differentiable, but also not Lipschitz-continuous.
This discontinuous criterion can be replaced by the smooth criterion (12) that is be obtained by
computing an annealed expected loss criterion under temperature parameter γ ≥ 0:

F (w, x) := Epw,γ(y|x)[∆(y)] =
∑

y∈Y(x)

∆(y)
(expw>φ(x, y))γ∑

y∈Y(x)(expw>φ(x, y))γ
. (12)

This criterion approaches criterion (11) for γ → ∞ (see [32]), thus both criteria can be used
interchangeably in experiments.

Stochastic First-Order Optimization. In our experiments, we will compare SZO approaches to
gradient-based SFO algorithms. The latter will serve as upper bound in terms of convergence speed.
SFO algorithms for linear bandit structured prediction have been introduced in [33]. We employ
an algorithm that optimizes an expected loss objective Ep(x)pw(y|x)[∆(y)] by performing gradient
descent on the stochastic gradient s(w) = ∆(y)∂ log pw(y|x)

∂w .

5 Experiments

Experimental Design. The structured prediction tasks in our experiments have been established
for bandit structured prediction using SFO optimization in [33]. The task of noun-phrase chunking
uses high-dimensional, but very sparse, word-based feature representations. The task of statistical
machine translation (SMT) is a sequence-to-sequence prediction problem using a small, dense
feature representation. The goal of the latter task is to investigate potential gains of using the same,
non-differentiable, criteria at training and test time. All tasks are based on linear models.

Training for all tasks was done by supervised-to-bandit conversion where bandit feedback is simulated
by evaluating ∆ against gold standard structures which are never revealed to the learner. ∆ is a loss
function obtained from a task reward, namely 1-BLEU score at sentence level [21] for SMT, and 1-F1
score for chunking.

Convergence speed is evaluated by plotting the average cumulative loss against iterations. In our
experiments, we use the MAP criterion (11) and define average cumulative loss/reward at iteration t
as ∆t = 1

t

∑t
k=1 ∆(ŷk(xk, wk + µūk)). This criterion corresponds to regret under the assumption

of zero loss for the optimal model.
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Figure 1: Average cumulative loss on training data for sparse noun phrase chunking (left) and dense
statistical machine translation (right). All results were obtained with fixed hyperparameters for each
task, averaged over 3 runs with different random seeds for each algorithm, showing mean results in
bold lines, 2 standard deviations in filled areas.

Test set evaluation is done by the standard offline evaluation for the respective tasks. Machine
translation is evaluated by measuring the corpus-based BLEU score [25] against an unseen test set of
human reference translations. Chunking is evaluated by F1 score on an unseen test set. The early
stopping point for test set evaluation is chosen according to a standard online-to-batch conversion
by selecting the model that performs best on development data for final evaluation on test data. All
evaluation results are averaged over three runs with different random seeds. Further comparison
points are out-of-domain lower bounds, in-domain upper bounds, and the SFO algorithm (Expected
Loss Minimization) of [33].

Sparse Models for Noun-Phrase Chunking. We followed [30] in applying a linear conditional
random field (CRF) model to the noun phrase chunking task on the CoNLL-2000 dataset. The original
training set was split into a development set (top 1,000 sent.) and a training set (7,936 sent.); the test
set was kept intact (2,012 sent.). Training for bandit learning on the chunking task is done by cold
starting the models from w0 = 0.

For an input sentence x, each CRF node xi carries an observable word and its part-of-speech tag, and
has to be assigned a chunk tag ci out of 3 labels: Beginning, Inside, or Outside (of a noun phrase).
Chunk labels are not nested. As in [30], we use second order Markov dependencies (bi-gram chunk
tags), such that for sentence position i, the state is yi = ci−1ci, increasing the label set size from
3 to 9. The model uses feature templates that combine these labels with uni-, bi-, and tri-grams of
Part-of-Speech tags, and with uni- and bi-grams of words, leading to high sparsity pattern of on
average 0.25% active features for over 1.5M features on the training set.

Dense Feature Models for SMT. The learning goal in our SMT experiment is re-ranking of n-best
translation lists of size 5,000 using a linear combination of 14 dense features. The experiments are
based on the cdec [4] framework. The experimental setup is French-to-English domain adaptation
from Europarl to NewsCommentary domains using the data of [13].

The bandit learning algorithms were initialized with the learned weights of the out-of-domain
median model and used 40,444 parallel in-domain sentence pairs. Bandit feedback was simulated
by evaluating the sampled translation against the reference using as loss function ∆ a smoothed
per-sentence 1 − BLEU (zero n-gram counts being replaced with 0.01). The possible range of
improvements is given by the difference in performance of 0.257 BLEU for the out-of-domain model,
compared to 0.284 BLEU for an in-domain model, evaluated on a separate in-domain test set of 2,007
parallel sentence pairs.
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Table 1: Test set evaluation for chunking under F1 score, and for machine translation under BLEU.
Results for stochastic learners are shown for SFO, and SZO algorithms with perturbation of all
parameters (ALL) or for sparse perturbations of parameters for active features only (SPARSE). All
results are averaged over three runs with different random seeds for each algorithm. Best SZO results
are shown in bold face; higher results are better.

Update Rule Test F1 Chunking Test BLEU SMT

Function Comparison (ALL) 0.810 0.265
Baseline Comparison (ALL) 0.819 0.266
Two-Point Evaluation (ALL) 0.841 0.273
Function Comparison (SPARSE) 0.842 -
Baseline Comparison (SPARSE) 0.869 -
Two-Point Evaluation (SPARSE) 0.888 -
SFO 0.908 0.263

Experimental Results for Chunking. The left plot in Figure 1 confirms our theoretical findings
by showing faster convergence for SPARSE perturbations (dashed curves) over perturbation of ALL
parameters (solid curves) for each update rule. SPARSE perturbations for two-point updates lead to a
similar convergence speed as the SFO algorithm, followed by SPARSE perturbations for baseline
comparison updates, and SPARSE perturbation for function comparison. The hyperparameters for all
algorithms were kept fixed at constant learning rate h = 0.01 and exploration parameter µ = 0.01.

Test set results for chunking are shown Table 1. The results were obtained by tuning hyperparameters
on development sets for constant learning rate h in the range of 10−2 to 10−3, and exploration
parameter µ in the range of 10−1 to 10−2. Best development settings for all algorithms were obtained
close to the time horizon of 4M iterations, showing an undertraining behavior in all cases. However,
we find the same relations in test set performance as were obtained for convergence speed, with
SPARSE two-point updates coming close to the SFO result.

Experimental Results for Machine Translation. Figure 1 depicts the convergence behavior of
SZO optimization for the dense SMT re-ranking task, using perturbations of ALL features. Out of
the SZO update rules, two-point update lead to fastest convergence, followed by baseline comparison
and function comparison update rules. All average cumulative loss results were obtained under the
same hyperparameter settings of h = 0.001 and µ = 0.001 for all algorithms.

Test set results are shown in 1. Here optimal hyperparameter settings were adjusted on a development
set of 1,064 parallel in-domain sentence pairs for constant learning rate h in the range of 100 to 10−5,
and exploration parameter µ in the range of 10−2 to 10−6. Final results are obtained by averaging
three independent runs using the hyperparameters found on the development set. Best development
settings for all algorithms are obtained at 1-4M iterations, except for two-point feedback that reached
an optimum already around 100k iterations. The goal of the SMT experiment was to show a possible
advantage of using the same non-differentiable MAP criterion at training and test time for SZO
algorithms. As we can see, all SZO results outperform the SFO result. In the range of 2.7 BLEU
points between out-of-domain and in-domain models, we can achieve an improvement of 1.6 BLEU
points by SZO with two-point updates, which is also an improvement of 1.0 BLEU points over the
SFO Algorithm.

Further Experiments. Further experiments using sparse, word-based models for multiclass text
classification (which can be viewed as a degenarate structured prediction task) are given in the
supplementary material.

6 Conclusion

The theoretical contribution of this paper is to show that the main bottleneck in SZO optimization—
the dependency of the iteration complexity on the dimensionality of the function to be perturbed—can
be reduced to the expected number of active features in sparse structured prediction scenarios. We
presented experimental results on linear structured prediction tasks that confirm our theoretical results.

8



Furthermore, we showed that it can be advantageous to use the same criterion at train and test time,
something that is impossible for SFO algorithms if this criterion is non-differentiable.

The experiments in this paper were obtained by perturbing the discontinuous deterministic MAP
criterion (11). Using a smooth annealed criterion (12) yields similar results, and allows to match
our experiments with our (and other existing) theory that assumes at least Lipschitz continuity
of perturbed functions. To our knowledge, existing work on SZO optimization for discontinuous
functions is concerned with a theory of differentiation and asymptotic convergence results [20, 38],
thus non-asymptotic convergence analysis for discontinuous SZO is an interesting open problem.
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Supplementary Material

A Theorems and Proofs

Lemma 1.

∇wfµ(w) = Eū,x[
F (w + µū, x)− F (w, x)

µ
ū]. (13)

Proof.

∇wfµ(w) = ∇wEx
[∫

ū

N (ū) F (w + µū, x) dū

]
= Ex

[∫
ū

∇wN (ū) F (w + µū, x) dū

]
= Ex

[∫
ū

∇w
1√

(2π)n
e−

1
2 ||ū||

2

F (w + µū, x)dū

]

= Ex

[∫
y

∇w
1√

(2π)n
e−

1
2 ||

y−w
µ ||

2

F (y, x) · 1

µn
dy

]
where y = w + µū

= Ex

[∫
y

1 · y − w
µ2

1√
(2π)n

e−
1
2 ||

y−w
µ ||

2

F (y, x) · 1

µn
dy

]

= Ex

[∫
ū

ū

µ

1√
(2π)n

e−
1
2 ||ū||

2

F (w + µū, x)dū

]

= Ex
[∫

ū

ū

µ
N (ū) F (w + µū, x)dū

]
= Ex

[∫
ū

ū

µ
N (ū) F (w + µū, x)− F (w, x)dū

]
.

The last line follows since Ex,ū[F (w,x)
µ ū] = F (w,x)

µ Eū,x[ū] = 0.

Corollary 1.

EŪN ,XN [
∥∥∇fµ(wN )

∥∥2
] ≤ ε if N ≥ O

( n̄3

ε2
)
. (14)

Proof. Our goal is to bound the terms on the righthandside of Theorem 1 in order to classify
Algorithm 1 by the number of iterations necessary to guarantee an accuracy of ε for the expected
squared norm of the gradient of fµ. The inequality is repeated here:

1

SN

N∑
k=0

hkEŪk,Xk
[∥∥∇fµ(wk)

2∥∥] ≤ 1

SN

(
(fµ(w0)− f∗) +

(
1

2
L1(n̄+ 4)2L2

0

) N∑
k=0

h2
k

)
. (15)

We follow [23] in assuming a constant learning rate hk := h, k ≥ 0.
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Figure 2: Average cumulative loss on training data for sparse multiclass text classification. All results
are averaged over 3 runs, with mean results in bold lines, 2 standard deviations in filled areas.

We bound the approximation gap between the original function f and the smoothed approximation
fµ by α choosing µ ≤ µ̃ = α

n̄1/2L0
. The latter is possible by applying [23], eq. (18), to our case s.t.

|fµ(w)− f(w)| ≤ µL0n̄
1/2.

Furthermore, we apply [23], eq. (22) to our case s.t. L1 = n̄1/2

µ̃ L0 where L0(F (·, x)) ≤ L0 for all
F (·, x), x ∈ X .

Let SN =
∑N
k=0 hk = (N + 1)h, then the right-hand side of eq. (15) becomes

1

(N + 1)h

(
(fµ̃(w0)− f∗) +

1

µ̃
n̄1/2(n̄+ 4)2L3

0(N + 1)h2

)
(16)

=
1

(N + 1)h

(
(fµ̃(w0)− f∗) +

n̄1/2L0

α
n̄1/2(n̄+ 4)2L3

0(N + 1)h2

)
(17)

=
fµ̃(w0)− f∗

(N + 1)h
+
h

α
n̄(n̄+ 4)2L4

0 (18)

≤ L0R

(N + 1)h
+
h

α
n̄(n̄+ 4)2L4

0. (19)

The last inequality follows from Lipschitz continuity s.t. fµ̃(w0) − f∗ ≤ L0

∥∥w0 − w∗
∥∥ and the

additional assumption of a bound
∥∥w0 − w∗

∥∥≤ R. Minimizing this upper bound in h, by taking the
first derivative and setting it to zero, gives

h∗ =

(
αR

n̄(n̄+ 4)2L3
0(N + 1)

)1/2

. (20)

Plugging this back into the upper bound gives

L0R

(N + 1)h∗
+
h∗

α
n̄(n̄+ 4)2L4

0 (21)

= 2

(
n̄(n̄+ 4)2L5

0R

α(N + 1)

)1/2

. (22)

Thus, in order to guarantee an ε-accuracy on the left-hand side of eq. (15), we need N ≥ O( n̄
3

ε2 )
iterations.
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B Further Experiments

Sparse Models for Multiclass Text Classification. Multiclass text classification uses a sparse
linear feature representation on the Reuters RCV1 dataset [17]. This dataset a standard benchmark for
(simplified) structured prediction that has been used in a bandit setup by [9]. The simplified problem
uses a binary ∆ function indicating incorrect assignment of one out of 4 classes. The data were split
into a training set (509,381 documents from original test_pt[0-2].dat files), a development set
(19,486 docs: every 8th entry from test_pt3.dat and a test set (19,806 docs from train.dat).
Training for bandit learning is done by cold starting the models from w0 = 0. Meta-parameter
settings were determined on development sets for constant learning rate h in the range of 100 to 10−5,
and exploration parameter µ in the range of 10−2 to 10−6.

Following [9], we used documents with exactly one label from the set of labels {CCAT, ECAT, GCAT,
MCAT} and converted them to tfidf word vectors of dimension 227,903 on the training set. This tfidf
conversion yields very sparse features with a sparsity pattern of on average 0.5%.

As shown in Figure 2, best convergence behavior for sparse multiclass text classification is obtained
by the SFO method which functions as upper bound for the SZO methods. Among SZO methods
we see a clear grouping of algorithms with SPARSE perturbation of active features only (dashed
curves) and standard SZO methods where ALL parameters are perturbed (dense curves), with a clear
advantage in convergence speed for the former. A comparison of the different SZO update rules
defined in Section 4 shows a similar ranking to the experiments described above, with updates based
on (SPARSE) two-point function evaluation converging fastest.
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