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Abstract
Multi-task learning has been shown to be
effective in various applications, including
discriminative SMT. We present an exper-
imental evaluation of the question whether
multi-task learning depends on a “natu-
ral” division of data into tasks that bal-
ance shared and individual knowledge, or
whether its inherent regularization makes
multi-task learning a broadly applicable
remedy against overfitting. To investi-
gate this question, we compare “natural”
tasks defined as sections of the Interna-
tional Patent Classification versus “ran-
dom” tasks defined as random shards in
the context of patent SMT. We find that
both versions of multi-task learning im-
prove equally well over independent and
pooled baselines, and gain nearly 2 BLEU
points over standard MERT tuning.

1 Introduction

Multi-task learning is motivated by situations
where a number of statistical models need to be es-
timated from data belonging to different tasks. It is
assumed that the data are not completely indepen-
dent of one another as they share some common-
alities, yet they differ enough to counter a simple
pooling of data. The goal of multi-task learning is
to take advantage of commonalities among tasks
by learning a shared model without neglecting in-
dividual knowledge. For example, Obozinski et
al. (2010) present an optical character recognition
scenario where data consist of samples of hand-
written characters from several writers. While the
styles of different writers vary, it is expected that
there are also commonalities on a pixel- or stroke-
level that are shared across writers. Chapelle et al.
(2011) present a scenario where data from search
engine query logs are available for different coun-
tries. While the rankings for some queries will

have to be country-specific (they cite “football”
as a query requiring different rankings in the US
and the UK), a large fraction of queries will be
country-insensitive. Wäschle and Riezler (2012b)
present multi-task learning for statistical machine
translation (SMT) of patents from different classes
(so-called sections) according to the International
Patent Classification (IPC)1. While the vocabulary
may differ between the different IPC sections, spe-
cific legal jargon and a typical textual structure
will be shared across IPC sections. As shown in
the cited works, treating data from different writ-
ers, countries, or IPC classes as data from differ-
ent tasks, and applying generic multi-task learning
to the specific scenario, improves learning results
over learning independent or pooled models.

The research question we ask in this paper is
as follows: Is multi-task learning dependent on a
“natural” task structure in the data, where shared
and individual knowledge is properly balanced?
Or can multi-task learning be seen as a general
regularization technique that prevents overfitting
irrespective of the task structure in the data?

We investigate this research question on the ex-
ample of discriminative training for patent trans-
lation, using the algorithm for multi-task learn-
ing with `1/`2 regularization presented by Simi-
aner et al. (2012). We compare multi-task learning
on “natural” tasks given by IPC sections to multi-
task learning on “random” tasks given by random
shards and to baseline models trained on indepen-
dent tasks and pooled tasks. We find that both
versions of multi-task learning improve over inde-
pendent or pooled training. However, differences
between multi-task learning on IPC tasks and ran-
dom tasks are small. This points to a more general
regularization effect of multi-task learning and in-
dicates a broad applicability of multi-task learning
techniques. Another advantage of the `1/`2 reg-

1http://wipo.int/classifications/ipc/
en/



ularization technique of Simianer et al. (2012) is
a considerable efficiency gain due to paralleliza-
tion and iterative feature selection that makes the
algorithm suitable for big data applications and
for large-scale training with millions of sparse fea-
tures. Last but not least, our best result for multi-
task learning improves by nearly 2 BLEU points
over the standard MERT baseline.

2 Related Work

Multi-task learning is an active area in machine
learning, dating back at least to Caruana (1997). A
regularization perspective was introduced by Ev-
geniou and Pontil (2004), who formalize the cen-
tral idea of trading off optimality of parameter vec-
tors for each task-specific model and closeness of
these model parameters to the average parame-
ter vector across models in an SVM framework.
Equivalent formalizations replace parameter reg-
ularization by Bayesian prior distributions on the
parameters (Finkel and Manning, 2009) or by aug-
mentation of the feature space with domain inde-
pendent features (Daumé, 2007). Besides SVMs,
several learning algorithms have been extended
to the multi-task scenario in a parameter regu-
larization setting, e.g., perceptron-type algorithms
(Dredze et al., 2010) or boosting (Chapelle et
al., 2011). Further variants include different for-
malizations of norms for parameter regularization,
e.g., `1/`2 regularization (Obozinski et al., 2010)
or `1/`∞ regularization (Quattoni et al., 2009),
where only the features that are most important
across all tasks are kept in the model.

Early research on multi-task learning for SMT
has investigated pooling of IPC sections, with
larger pools improving results (Utiyama and Isa-
hara, 2007; Tinsley et al., 2010; Ceauşu et al.,
2011). Wäschle and Riezler (2012b) apply multi-
task learning to tasks defined as IPC sections and
compare patent translation on independent tasks,
pooled tasks, and multi-task learning, using same-
sized training data. They show small but sta-
tistically significant improvements for multi-task
learning over independent and pooled training.
Duh et al. (2010) introduce random tasks as n-best
lists of translations and showed significant im-
provements by applying various multi-task learn-
ing techniques to discriminative reranking. Song
et al. (2011) define tasks as bootstrap samples
from the development set and show significant im-
provements for a bagging-based system combina-

tion over individual MERT training.
In this paper we apply the multi-task learning

technique of Simianer et al. (2012) to tasks de-
fined as IPC sections and to random tasks. Their
algorithm can be seen as a weight-based back-
ward feature elimination variant of Obozinski et
al. (2010)’s gradient-based forward feature selec-
tion algorithm for `1/`2 regularization. The lat-
ter approach is related to the general methodol-
ogy of using block norms to select entire groups
of features jointly. For example, such groups can
be defined as non-overlapping subsets of features
(Yuan and Lin, 2006), or as hierarchical groups
of features (Zhao et al., 2009), or they can be
grouped by the general structure of the prediction
problem (Martins et al., 2011). However, these
approaches are concerned with grouping features
within a single prediction problem whereas multi-
task learning adds an orthogonal layer of multiple
task-specific prediction problems. By virtue of av-
eraging selected weights after each epoch, the al-
gorithm of Simianer et al. (2012) is related to Mc-
Donald et al. (2010)’s iterative mixing procedure.
This algorithm is itself related to the bagging pro-
cedure of Breiman (1996), if random shards are
considered from the perspective of random sam-
ples. In both cases averaging helps to reduce the
variance of the per-sample classifiers.

3 Multi-task Learning for Discriminative
Training in SMT

In multi-task learning, we have data points
{(xiz, yiz), i = 1, . . . , Nz, z = 1, . . . , Z}, sampled
from a distribution Pz on X × Y . The subscript
z indexes tasks and the superscript i indexes i.i.d.
data for each task. For the application of discrimi-
native ranking in SMT, the spaceX can be thought
of as feature representations of n-best translations,
and the space Y denotes corresponding sentence-
level BLEU scores.2 We assume that Pz is differ-
ent for each task but that the Pz’s are related as,
for example, considered in Evgeniou and Pontil
(2004). The standard approach is to fit an inde-
pendent model involving a D-dimensional param-
eter vector wz for each task z. In multi-task learn-
ing, we consider a Z-by-D matrix W = (wd

z)z,d
of stacked D-dimensional row vectors wz , and Z-
dimensional column vectors wd of weights asso-
ciated with feature d across tasks. The central al-

2See Duh et al. (2010) for a similar formalization for the
case of n-best reranking via multi-task learning.



gorithms in most multi-task learning techniques
can be characterized as a form of regularization
that enforces closeness of task-specific parameter
vectors to shared parameter vectors, or promotes
sparse models that only contain features that are
shared across tasks. In this paper, we will fol-
low the approach of Simianer et al. (2012), who
formalize multi-task learning as a distributed fea-
ture selection algorithm using `1/`2 regulariza-
tion. `1/`2 regularization can be described as pe-
nalizing weights W by the weighted `1/`2 norm,
which is defined following Obozinski et al. (2010),
as

λ||W||1,2 = λ
D∑

d=1

||wd||2.

Each `2 norm of a weight column wd represents
the relevance of the corresponding feature across
tasks. The `1 sum of the `2 norms enforces a
selection of features by encouraging several fea-
ture columns wd to be 0 and others to have high
weights across all tasks. This results in shrinking
the matrix to the features that are useful across all
tasks.

Simianer et al. (2012) achieve this behavior by
the following weight-based iterative feature elimi-
nation algorithm that is wrapped around a stochas-
tic gradient descent (SGD) algorithm for pairwise
ranking (Shen and Joshi, 2005):

Algorithm 1 Multi-task SGD
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all sentences i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]

T

Select top K feature columns of W by `2 norm
for k ← 1 . . .K do

v[k] = 1
Z

Z∑
z=1

W[z][k].

end for
end for
return v

The innermost loop of the algorithm computes
an SGD update based on the subgradient ∇lj of a
pairwise loss function. `1/`2-based feature selec-
tion is done after each epoch of SGD training for

each task in parallel. The `2 norm of the weights
is computed for each feature column across tasks;
features are sorted by this value; K top features
are kept in the model; reduced weight vectors are
mixed and the result is re-sent to each task-specific
model to start another epoch of parallel training
for each task.

We compare two different loss functions for
pairwise ranking, one corresponding to the orig-
inal perceptron algorithm (Rosenblatt, 1958), and
an improved version called the margin perceptron
(Collobert and Bengio, 2004). To create train-
ing data for a pairwise ranking setup, we gener-
ate preference pairs by ordering translations ac-
cording to smoothed sentence-wise BLEU score
(Nakov et al., 2012). Let each translation candi-
date in the n-best list be represented by a feature
vector x ∈ IRD: For notational convenience, we
denote by xj a preference pair xj = (x

(1)
j ,x

(2)
j )

where x
(1)
j is ordered above x

(2)
j w.r.t. BLEU. Fur-

thermore, we use the shorthand x̄j = x
(1)
j − x

(2)
j

to denote aD-dimensional difference vector repre-
senting an input pattern. For completeness, a label
y = +1 can be assigned to patterns x̄j where x

(1)
j

is ordered above x
(2)
j (y = −1 otherwise), how-

ever, since the ordering relation is antisymmetric,
we can consider an ordering in one direction and
omit the label entirely.

The original perceptron algorithm is based on
the following hinge loss-type objective function:

lj(w) = (−〈w, x̄j 〉)+

where (a)+ = max(0, a) , w ∈ IRD is a weight
vector, and 〈·, ·〉 denotes the standard vector dot
product. Instantiating SGD to the stochastic sub-
gradient

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.

leads to the perceptron algorithm for pairwise
ranking (Shen and Joshi, 2005).

Collobert and Bengio (2004) presented a ver-
sion of perceptron learning that includes a margin
term in order to control the capacity and thus the
generalization performance. Their margin percep-
tron algorithm follows from applying SGD to the
loss function

lj(w) = (1− 〈w, x̄j 〉)+



with the following stochastic subgradient

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 < 1,

0 else.

Collobert and Bengio (2004) argue that the use of
a margin term justifies not using an explicit regu-
larization, thus making the margin perceptron an
efficient and effective learning machine.

4 Experiments

4.1 Data & System Setup
For training, development and testing, we use data
extracted from the PatTR3 corpus for the experi-
ments in Wäschle and Riezler (2012b). Training
data consists of about 1.2 million German-English
parallel sentences. We translate from German into
English. German compound words were split us-
ing the technique of Koehn and Knight (2003). We
use the SCFG decoder cdec (Dyer et al., 2010)4

and build grammars using its implementation of
the suffix array extraction method described in
Lopez (2007). Word alignments are built from all
parallel data using mgiza5 and the Moses scripts6.
SCFG models use the same settings as described
in Chiang (2007). We built a modified Kneser-
Ney smoothed 5-gram language model using the
English side of the training data and performed
querying with KenLM (Heafield, 2011)7.

The International Patent Classification (IPC)
categorizes patents hierarchically into eight sec-
tions, 120 classes, 600 subclasses, down to 70,000
subgroups at the leaf level. The eight top
classes/sections are listed in Table 1.

Typically, a patent belongs to more than one
section, with one section chosen as main classi-
fication. Our development and test sets for each
of the classes, A to H, comprise 2,000 sentences
each, originating from a patent with the respec-
tive class. These sets were built so that there is no
overlap of development sets and test sets, and no
overlap between sets of different classes. These
eight test sets are referred to as independent test
sets. Furthermore, we test on a combined set,

3http://www.cl.uni-heidelberg.de/
statnlpgroup/pattr

4https://github.com/redpony/cdec
5http://www.kyloo.net/software/doku.

php/mgiza:overview
6http://www.statmt.org/moses/?n=Moses.

SupportTools
7http://kheafield.com/code/kenlm/

estimation/

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

Table 1: IPC top level sections.

called pooled-cat, that is constructed by concate-
nating the independent sets. Additionally we use
two pooled sets for development and testing, each
containing 2,000 sentences with all classes evenly
represented.

Our tuning baseline is an implementation of hy-
pergraph MERT (Kumar et al., 2009), directly op-
timizing IBM BLEU4 (Papineni et al., 2002). Fur-
thermore, we present a regularization baseline by
applying `1 regularization with clipping (Carpen-
ter, 2008; Tsuruoka et al., 2009) to the standard
pairwise ranking perceptron. All pairwise ranking
methods use a smoothed sentence-wise BLEU+1
score (Nakov et al., 2012) to create gold standard
rankings. Our multi-task learning experiments are
based on pairwise ranking perceptrons that differ
in their objective, corresponding either to the orig-
inal perceptron or to the margin-perceptron. Both
versions of the perceptron are used for single-task
tuning and multi-task tuning. In the multi-task
setting, we compare three different methods for
defining a task: “natural” tasks given by IPC sec-
tions where each independent data set is consid-
ered as task; “random” tasks, defined by sharding
where data is shuffled and split once, tasks are kept
fixed throughout, and by resharding where after an
epoch data is shuffled and new random tasks are
constructed. In all cases a task/shard is defined to
contain 2,000 sentences8, resulting in eight shards
for each setting. The number of features selected
after each epoch was set to K = 100, 000.

For all perceptron runs, the following meta pa-
rameters were fixed: A cube pruning pop limit of
200 and non-terminal span limit of 15; 100-best
lists with unique entries; constant learning rate;
multipartite pair selection. Single-task perceptron
runs on independent and pooled tasks were done

8This number is determined by the size of the original de-
velopment sets; variations of this size did not change results.



single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 51.18 51.22

A 54.92 0255.27 055.17
B 51.53 51.48 0151.69
C 1256.31 255.90 55.74
D 49.94 050.33 050.26
E 149.19 48.97 149.13
F 1251.26 51.02 51.12
G 149.61 49.44 49.55
H 49.38 49.50 0149.67

average test 51.52 51.49 51.54

Table 2: BLEU4 results of MERT baseline using dense
features for three different tuning sets: independent (sepa-
rate tuning sets for each IPC class), pooled and pooled-cat
(concatenated independent sets). Significant superior per-
formance over other systems in the same row is denoted by
prefixed numbers. The first row shows, e.g., that the result
of pooled 1 is significantly better than independent 0, and
pooled-cat 2.

for 15 epochs; multi-task perceptron runs used 10
epochs. Single-task tuning on pooled-cat data in-
creases computation time by a factor of 8 which
makes this setup infeasible in practice. For the
sake of comparison we performed 10 epochs in
this setup.

MERT (with default parameters) is used to op-
timize the weights of 12 dense default features;
eight translation model features, a word penalty,
the passthrough weight, the language model (LM)
score, and an LM out-of-vocabulary penalty. Per-
ceptron training allows to add millions of sparse
features which are directly derived from grammar
rules: rule shape, rule identifier, bigrams in rule
source and target. For a further explanation of
these features see Simianer et al. (2012).

For testing we measured IBM BLEU4 on tok-
enized and lowercased data. Significance results
were obtained by approximate randomization tests
using the approach of Clark et al. (2011)9 to ac-
count for optimizer instability. Tuning methods
with a random component (MERT, randomized
experiments) were repeated three times, scores re-
ported in the tables are averaged over optimizer
runs.

4.2 Experimental Results

In single-task tuning mode, systems are tuned
on the eight independent data sets separately, the
pooled data set, and the independent data sets con-

9https://github.com/jhclark/multeval

single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 50.75 1 52.08

A 1 55.11 54.32 01 55.94
B 1 52.61 50.84 1 52.57
C 56.18 56.11 01 56.75
D 1 50.68 49.48 01 51.22
E 1 50.27 48.69 1 50.01
F 1 51.68 50.71 1 51.95
G 1 49.90 49.06 01 50.51
H 1 50.48 49.16 1 50.53

average test 52.11 51.05 52.44

model size 430,092.5 457,428 1,574,259

Table 3: BLEU4 results for standard perceptron with `1 reg-
ularization baseline using sparse rule features, tuned on in-
dependent, pooled and pooled-cat sets. Prefixed superscripts
denote a significant improvement over the result in the same
row indicated by the superscript.

catenated (pooled-cat). Testing is done on each of
the eight IPC sections separately, and on a pooled
test set of 2,000 sentences where all sections are
equally represented. Furthermore, we report aver-
age test results over runs for all independent data
sets.

Results for the MERT baseline are shown in
Table 2: Neither pooling nor concatenating inde-
pendent sets leads to significant performance im-
provements on all sets with averaged scores being
nearly identical.

Evaluation results obtained with the standard
perceptron algorithm (Table 4) show improve-
ments over MERT in single-task tuning mode. The
gain on pooled-cat data shows that in contrast to
MERT training on 12 dense features, discrimi-
native training using large feature sets is able to
benefit from large data sets. However, since the
pooled-cat scenario increases computation time
by a factor of 8, it is quite infeasible when used
with large sets of sparse features. Single-task tun-
ing on a small set of pooled data seems to show
overfitting behavior.

Table 3 shows evaluation results for a regular-
ization baseline that applies `1 regularization with
clipping to the the single-task tuned standard per-
ceptron in Table 4. We see gains in BLEU on in-
dependent and pooled-cat tuning data, but not on
the small pooled data set.

Multi-task tuning for the standard perceptron
is shown in the right half of Table 4. Because
of parallelization, this scenario is as efficient as



single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 51.77 12 52.56 12 52.54 12 52.60

A 54.79 54.76 01 55.31 012 56.35 012 56.22 012 56.21
B 12 52.45 51.30 1 52.19 012 52.78 0123 52.98 012 52.96
C 2 56.62 56.65 1 56.12 01245 57.76 012 57.30 012 57.44
D 1 50.75 49.88 1 50.63 01245 51.54 012 51.33 012 51.20
E 1 49.70 49.23 01 49.92 012 50.51 012 50.52 012 50.38
F 1 51.60 51.09 1 51.71 012 52.28 012 52.43 012 52.32
G 1 49.50 49.06 01 49.97 012 50.84 012 50.88 012 50.74
H 1 49.77 49.50 01 50.64 012 51.16 012 51.07 012 51.10

average test 51.90 51.42 52.06 52.90 52.84 52.79

model size 366,869.4 448,359 1,478,049 100,000 100,000 100,000

Table 4: BLEU4 results for standard perceptron algorithm using sparse rule features, tuned in single-task mode on independent,
pooled, and pooled-cat sets, and in multi-task mode on eight tasks taken from IPC sections or by random (re)sharding. Prefixed
superscripts denote a significant improvement over the result in the same row indicated by the superscript.

single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 52.58 12 52.98 12 52.95 12 52.99

A 1 56.09 55.33 1 55.92 0124556.78 012 56.62 012 56.53
B 1 52.45 51.59 1 52.44 01253.31 012 53.35 012 53.21
C 1 57.20 56.85 01 57.54 0157.46 1 57.42 1 57.43
D 1 50.51 50.18 01 51.38 0124552.14 0125 51.82 012 51.66
E 1 50.27 49.36 01 50.72 012451.13 012 50.89 012 51.02
F 1 52.06 51.20 01 52.61 0124553.07 012 52.80 012 52.87
G 1 50.00 49.58 01 50.90 0124551.36 012 51.19 012 51.11
H 1 50.57 49.80 01 51.32 01251.57 012 51.62 01 51.47

average test 52.39 51.74 52.85 53.35 53.21 53.16

model size 423,731.5 484,483 1,697,398 100,000 100,000 100,000

Table 5: BLEU4 results for margin-perceptron algorithm using sparse rule features, tuned in single-task mode on independent
tasks, and in multi-task mode on eight tasks taken from IPC sections or by random (re)sharding. Prefixed superscripts denote
a significant improvement over the result in the same row indicated by the superscript.

single-task tuning on small data. We see improve-
ments in BLEU over single-task tuning on small
and large tuning data sets. Concerning our initial
research questions, we see that the performance
difference between “natural” tasks (IPC) and “ran-
dom” tasks is not conclusive. However, multi-
task learning using `1/`2 regularization consis-
tently outperforms the standard perceptron under
`1 regularization as shown in Table 3 and MERT
tuning as shown in Table 2.

Table 5 shows the evaluation results of the
margin-perceptron algorithm. Evaluation results
on single-task tuning show that this algorithm im-
proves over the standard perceptron (Table 4),
even in its `1-regularized version (Table 3), on
all tuning sets. Results for multi-task tuning

show improvements over the same scenario for the
standard perceptron (Table 4). This means that
the improvements due to the orthogonal regular-
ization techniques in example space and feature
space, namely large-margin learning and multi-
task learning, add up. A comparison between
single-task and multi-task tuning modes of the
margin-perceptron shows a gain for the latter sce-
narios. Differences between multi-task learning
on IPC classes versus random sharding or re-
sharding are again small, with the best overall re-
sult obtained by multi-task learning of the margin-
perceptron on IPC classes.

Overall, our best multi-task learing result is
nearly 2 BLEU points better than MERT training.
The algorithm to achieve this result is efficient due



to parallelization and due to iterative feature se-
lection. As shown in the last rows of Tables 3-5 ,
the average size is around 400K features for inde-
pendently tuned models and around 1.6M features
for models tuned on pooled-cat data. In multi-task
learning, models can be iteratively cut to 100K
shared features whose weights are tuned in par-
allel.

5 Conclusion

We presented an experimental investigation of the
question whether the power of multi-task learning
depends on data structured along tasks that exhibit
a proper balance of shared and individual knowl-
edge, or whether its inherent feature selection and
regularization makes multi-task learning a widely
applicable remedy against overfitting. We com-
pared multi-task patent SMT for “natural” tasks
of IPC sections and “random” tasks of shards in
distributed learning. Both versions of multi-task
learning yield significant improvements over in-
dependent and pooled training, however, the dif-
ference between “natural” and “random” tasks is
marginal. This is an indication for the useful-
ness of multi-task learning as a generic regulariza-
tion tool. Considering also the efficiency gained
by iterative feature selection, the `1/`2 regulariza-
tion algorithm presented in Simianer et al. (2012)
presents itself as an efficient and effective learning
algorithm for general big data and sparse feature
applications. Furthermore, the improvements by
multi-task feature selection add up with improve-
ments by large-margin learning, delivering overall
improvements of nearly 2 BLEU points over the
standard MERT baseline.

Our research question regarding the superiority
of “natural” or “random” tasks was shown to be
undetermined for the application of patent trans-
lation. The obvious question for future work is if
and how a task division can be found that improves
multi-task learning over our current results. Such
an investigation will have to explore various sim-
ilarity metrics and clustering techniques for IPC
sub-classes (Wäschle and Riezler, 2012a), e.g., for
the goal of optimizing clustering with respect to
the ratio of between-cluster to within-cluster sim-
ilarity for a given metric. However, the final crite-
rion for the usefulness of a clustering is necessar-
ily application specific (von Luxburg et al., 2012),
in our case specific to patent translation perfor-
mance. Nevertheless, we hope that the presented

and future work will prove useful and generaliz-
able for related multi-task learning scenarios.
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Katharina Wäschle and Stefan Riezler. 2012b. Struc-
tural and topical dimensions in multi-task patent
translation. In Proceedings of the 13th Conference
of the European Chapter of the Association for Com-
putational Linguistics, Avignon, France.

Ming Yuan and Yi Lin. 2006. Model selection
and estimation in regression with grouped variables.
J.R.Statist.Soc.B, 68(1):49–67.

Peng Zhao, Guilherme Rocha, and Bin Yu. 2009. The
composite absolute penalties family for grouped and
hierarchical variable selection. The Annals of Statis-
tics, 37(6A):3468–3497.


