
Теория применения нейронных сетей и нейрокомпьютеров

109

SNC: THE SOFTWARE NEUROCOMPUTER WITH MODULAR ARCHITECTURE

I.MISUNO, D.RACHKOVSKIJ, E.REVUNOVA, A.SOKOLOV
V.M.Glushkov Cybernetics Center, National Ukrainian Acad. Sci., Kiev, Ukraine

dar@infrm.kiev.ua

NEURAL NETWORK INFORMATION 
TECHNOLOGIES AND NEUROCOMPUTERS
Since the end of 80s, we have observed a dynamic 

development of information technologies that make use 
of neural networks (NNs) for information processing. 
Various implementations of neural network models 
have been named neurocomputers (NCs) [1]. Four 
levels of NCs can be distinguished [18]:
Level 0. Theory and algorithms. Descriptions of various 
NN models.
Level 1. Software. Software implementations of various 
NN models using conventional computers.
Level 2. Software-hardware. Coprocessors accelerating 
an emulation of NNs.
Level 3. Hardware. Physical implementations of NNs. 

The peculiarities of NN operations, as well as the 
parallelism of NN models and algorithms encourage to 
implement them with specialized computational 
devices. These are the "traditional" NCs [2] 
corresponding to levels 2-3. They were widely created 
at the end of 80s and beginning of 90s, when universal 
computers did not provide an adequate computational 
power for NN calculations. Mainly, these were vector 
coprocessors with the SIMD architecture, e.g., ANZA 
Plus from HNC or DELTA II from SAIC. A number of
NCs have been created in the V.M.Glushkov 
Cybernetics Center [9][10][3], as well as in other 
institutions of the former USSR.

In practice, those software-hardware NCs turned out 
to be inefficient for the tasks of NN investigation, as 
well as for developing and running NN applications. A 
small volume of production did not allow the price of 
NCs to be reduced, whereas huge investments into the 
progress of usual PCs did not permit NCs to keep up 
with their pace of performance growth. Another 
drawback of traditional NCs is that the execution 
speed, taken alone, does not determine the expended 
time and cost of research, development, and application 
of NN technologies. Apparently, the computational 
complexity of the algorithms employed, the efficiency 
of data representations, algorithmic implementations, 
interactions with the user, and the efficiency of the 
development process are of primary importance.

We define a modern neurocomputer as a means for 
the efficient development and implementation of neural 
network information technologies. The neurocomputer 
developed by us is a software neurocomputer (SNC) 
based on the employment of power, programming 
technologies, and user-friendly interfaces of modern 
PCs.

The efficiency of development is achieved by the 
employment of the modular COM software 
architecture; providing a convenient user interface; 
standardization of the internal data formats and 
program blocks; providing a library of the developed 
and ready-to-use program blocks; providing a 
convenient creation and usage of new blocks; providing 
other resources to facilitate development (e.g., tools for 
testing classification algorithms, statistical processing, 
documenting, etc.).

The efficiency of implementation is achieved by the 
choice of NN architectures with a rather low 
computational complexity; an optimized algorithmic 
and software realization; the use of the PCs with an 
optimized configuration.

Thus, the created software neurocomputer will 
allow a wide range of tasks (from the development and 
investigation of novel NN architectures to the 
development and running of NN applications) to be 
solved by users who are not experts in those areas. 

THE ARCHITECTURE AND IMPLEMENTATION 
OF THE NEUROCOMPUTER

According to the structure of information 
processing tasks, SNC includes units implementing the 
following functions: data supply; preprocessing; 
processing; auxiliary; user interface and system 
configuration.

Data supply units select input data and transform 
them to the formats comprehensible by subsequent 
units. The data can be artificial or real, and can be fed, 
e.g., from files. There is a generator of artificial data 
producing vectors with real-valued components and 
controlled parameters [16]. They can be used for 
testing classifiers. 

Preprocessing units deal mainly with real-world 
data. For example, images are preprocessed by 
centering, scaling, feature extraction, etc. [1][11][3]. 
For acoustical signals, a multi-band digital filtration 
[15] is used. 

Processing units process data according to their 
algorithms. In the current SNC version, they are mainly 
modifications of Random Threshold Classifiers 
[4][8][12]. Such a NN architecture provides a high 
performance and classification quality and ability to 
deal with data of complex class boundaries in the 
attribute space. Classifiers operate in two main modes -
training and testing. 

Auxiliary units implement statistical and other 
processing of the results, as well as visualization and 



Проблемы нейрокибернетики

110

storage tasks. The user interface unit allows a visual 
construction of the system configuration, the data link 
configuration, the parameters, and the execution 
algorithm. The constructed system configuration is 
saved into a file, and can be then executed either in the 
console mode or in the windowed mode.

SNC was implemented with Visual C++ 6.0. A 
single-thread, single-process, single-apartment COM 
programming architecture was used. The COM 
technology allows additional processing modules to be 
added to the program architecture without project 
rebuilding. There are now two kinds of user-
programmable modules that can be added to the 
system, namely, processing modules and data format 
modules. Data format modules perform recognition of 
the input data and allow a generalized access to various 
input data formats via system-standard COM 
interfaces. Processing modules perform the actual
processing of input data and are the basic system 
configuration units. Each processing module has a 
number of input and output data buffers, to be 
connected with other format and processing modules. 
To implement a new class of the processing units, a 
user implements a specified interface that allows the 
system to recognize this new object and use it in 
configurations along with all other objects.

SNC allows a sequence of processing units to be 
executed in a predefined order. A current project 
configuration (the used processing units, the data link 
configuration, the execution sequence) is stored in an 
external XML file providing the possibility of a 
convenient cross-platform exchange of implemented 
project configurations. 

Each processing unit is considered to be a “black 
box” that processes a set of the input data and forms a 
set of the output data; has an arbitrary number of the 
input and output data buffers; can implement its own 
data transport mechanism; has two sets of parameters: 
initial and working set parameters, through which the 
unit behavior is set up and controlled by the host 
system; is implemented as a COM object supporting 
interface(s) recognizable by the host system and the 
other processing units. 

The implemented software architecture specifies 
three data exchange modes: external data buffers 
through which data are transferred between processing 
units (the passive data model); internal data buffers 
implemented as the part of processing units (the active 
data model); and using processing units themselves as 
active data buffers allowing direct data requests from 
one processing unit to another (the modified active data 
model). As an alternative, to implement a more flexible 
program architecture, each processing unit can 
implement its own data transport interfaces (provided 
that the other processing units can recognize the 
implemented interfaces).

AN INVESTIGATION OF A REAL-VALUED 
ATTRIBUTE VECTOR CLASSIFICATION

The system prototype for an investigation of a real-
valued vector classification includes subsystems for 
data generation and classification. 

Data generation is carried out by the DataGen unit 
that allows data sets with real-valued attributes to be 
generated varying: the number of input attributes; the 
number of output classes; the complexity of class 
regions; the distributions of data samples (normal or 
random); the noise level ("measurement noise", "input 
errors", "teacher errors"); the number of data samples; 
the number of realizations of class regions [16].

Classification is made by the classification units -
mainly, RTC/RSC NN classifiers [4] [12] and their 
modifications. The RTC classifier consists of three
neuron layers: A input neurons in the first layer 
according to the number of the input attributes 
(components of a real-valued input vector), N binary 
neurons in the second layer, and C output neurons 
corresponding to the classes.

Binary neurons of the second layer are connected to 
all neurons of the input layer. Any neuron of the second 
layer outputs 1, if each of the input values lies between 
some thresholds assigned to that neuron, and 0 
otherwise. Therefore, each second-layer neuron has a 
hyper-rectangle receptive field in the input space. 
Before the start of the training, all thresholds of the 
second-layer neurons are generated randomly and 
independently for each of the input dimensions 
(attributes). The number N of neurons in the second 
layer is large (typically, many thousands) in order to 
cover each point of the input space by a large enough 
number of different but overlapping hyper-rectangles, 
so that their intersection has a small volume allowing 
complex class regions in the input space to be 
approximated (see Fig. 1). 

During training, only the weights of 
interconnections between the second layer and the 
output layer neurons are modified according to some 
version of learning rules for simple perceptrons.

The model of the RTC classifier emulated with 
SNC has been very efficient in: the training time, the 
recognition time, recognition rate, where it 
outperformed the nearest neighbor classifiers, the 
potential function classifiers, the Gaussian classifiers, 
and the multi-layer perceptrons trained by the standard 
back propagation procedure (see also [4]).

In the Random Subspace Classifier (RSC), only 
hyper-rectangles with the random thresholds generated 
for a randomly chosen subset S of the whole set of A
dimensions are used as the receptive fields [12]. This 
allows a substantial reduction of the execution time. 
For example, for A=100 S can be chosen equal to 4-5 
providing an acceleration by a factor of 20-25. 

In the considered classifiers, the thresholds in 
various dimensions are chosen randomly and 
independently from any training set. To adapt the 



Теория применения нейронных сетей и нейрокомпьютеров

111

classifier structure to the peculiarities of a given 
classification problem, the distribution of the centers of 
hyper-rectangles for a certain dimension can be chosen 
as an approximation of the density distribution of the 
training samples for this selected dimension. The 
lengths of the hyper-rectangles’ sides for a selected 
dimension can also be chosen in some relation to the 
distribution of the test samples.

CLASSIFICATION OF HANDWRITTEN 
CHARACTERS

The SNC configuration for a handwritten digit 
recognition is as follows. The input data are the files 
from the MNIST database [13]: a training set of 60,000 
examples, and a test set of 10,000 examples. It is a 
subset of a larger set available from NIST. The digits 
have been size-normalized and centered in a fixed-size 
image of 28x28 pixels each. They are read by the SNC 
unit-reader for this database format (.idx). 

encoded
point

active (hyper)
rectangles

input
space

Fig. 1. Encoding by the second-layer neurons in RTC/RSC 
classifiers

Then, the unit implementing the binary LIRA 
classifier [7][6] is used. It is a modification of the RSC 
classifier for binary images. It may also be considered 
as a development of Rosenblatt's perceptron [5]. Each 
neuron of the second layer of this classifier detects a 
particular combination of 1s ("positive pixels") and 0s 
("negative pixels") in the input image, thus extracting a 
particular feature. The dimensions of the receptive field 
of each neuron-detector are limited, and the number of 
inspected pixels is fixed and the same. Both are 
determined by the corresponding parameters. The 
receptive field size used was 10x10. Positions of 
receptive fields and coordinates of inspected positive 
and negative pixels inside the receptive field of each 
feature were determined randomly for each neuron of 
the second layer. Thus, a neuron of the second layer 
was only active if all image pixels corresponding to the 
coordinates of its positive pixels were 1 and all image 
pixels corresponding to the coordinates of its negative
pixels were 0 (see Fig. 2).

Training of the output layer was implemented using 
the rule for simple perceptron. The training process 
comprised up to 40 passes through the training set of 
60,000 examples. The number of errors on the testing 
set decreases with the increasing number N of the 

second-layer neurons. For example, the number of 
errors E per 10,000 test examples was E=1150 for 
N=4,000; E=330 for N=32,000; and E=175 for 
N=256,000 (see also [5]). The training time for 
N=256,000 comprised 35 passes that lasted 10 hours on 
a 800 MHz PC.

To decrease further the number of errors, an 
extended training set was formed by augmenting the 
original training set with artificially distorted versions 
of the original training samples. The distortions were 
shifts and skewing. This allowed 65 errors per 10,000 
test examples to be reached, which is better than the 
results obtained with all other approaches, as far as we 
know. 

retina

...

...

...

...

...

receptive
fields

input
image

second-layer
neurons

Fig 2. Encoding in LiRA classifiers

IDENTIFICATION OF A SPEAKER BY VOICE
For this task, the preprocessing unit performs a 

multi-band digital filtration [15]. The filtration results 
may be considered as a 2D gradual image, where the X 
axis represents time T, the Y axis represents frequency 
F, the value of pixel (x,y) represents the output of the 
corresponding filter at the corresponding point in time 
(see Fig. 3). 

A modification of the LIRA classifier is used as the 
processing unit. It may be considered as a combination 
of binary LIRA and RSC for dealing with gradual 
images. In each point of the receptive field of a certain 
neuron of the second layer, the pixel value is compared 
with the threshold value for that point. If the conditions 
of all checks are satisfied, the feature is considered 
present, and the corresponding neuron is activated. 

"Image" windows Receptive fields

T

F

Fig. 3. Filtration results and application of LIRA classifier



Проблемы нейрокибернетики

112

The "image" (the result of filtration) is split into a 
number of adjacent windows. The classifier is trained 
on each window of each voice to be identified. The 
identification process of a new voice recording is 
implemented by "voting". The classifier outputs the 
recognition result (the speaker's name) for each input 
window of the filtered voice to be identified. The 
"winner" is the voice that was recognized in the 
majority of windows. 

CONCLUSION
In conclusion, SNC provides an effective means for 

the development and implementation of neural network 
information technologies in various application areas. 
This has been achieved by the employment of original 
neural network paradigms and implementation of 
various processing units as COM objects. The system 
architecture allows a flexible configuration for solving 
specific problems and a straightforward integration of 
new units which were developed with due regard for 
the system requirements.

We intend to expand the range of the SNC 
applications through the problems of intelligent 
information access and management, as well as natural 
language processing taking into account the semantics 
and structure of textual data and using analogical 
reasoning [14]. These are based on the advantages of 
the structure-sensitive binary sparse distributed 
representations [17] in the framework of Associative-
Projective Neural Networks [10][3]. 

REFERENCES
1. Amosov, N.M., Baidyk, T.N., Goltsev, A.D., 
Kasatkin, A.M., Kasatkina, L.M., Kussul, E.M., & 
Rachkovskij, D.A. (1991) Neurocomputers and 
intelligent robots. Kiev: Naukova dumka. (In Russian). 
2. Hecht-Nielsen, R. (1986) Performance Limits of 
Optical, Electro-Optical and Electronic Artificial 
Neural System Processors. Proc. Soc. Photo-Opt. 
Instrum. Eng., 634. p. 277.
3. Kussul, E.M. (1992) Associative neuron-like 
structures. Kiev: Naukova Dumka. (In Russian). 
4. Kussul, E.M., T.N. Baidyk, VV. Lukovich, D.A. 
Rachkovskij, Adaptive High Performance Classifier 
Based on Random Threshold Neurons, Proc. of Twelfth 
European Meeting on Cybernetics and Systems 
Research (EMCSR- 94), Austria, Vienna, 1994, pp. 
1687-1694. 
5. Kussul, E.M., Baidyk, T.N., Kasatkina, L.M. & 
Lukovich V.V. (2001). Neural network system for 
continuous handwritten words recognition. In: Proc. of 
the Intern. Joint Conference on Neural Networks 
(Washington, DC).
6. Kussul, E.M., Baidyk, T.N., Rachkovskij, D.A. 
(1995). Application of Neural Network Classifiers for 
the OCR of Printed Texts. In: Proc. of the Second 
International Symposium on Neuroinformatics and 

Neurocomputers, Rostov-on-Don, Russia, Sept. 20-23, 
pp. 1-6.
7. Kussul, E.M., Kasatkina, L.M., Lukovich, V.V. 
(1999) Neural classifiers for handprinted character 
recognition. USIM (Control Systems and Computers), 
N4, pp. 77-86.
8. Kussul, E.M., Kasatkina, L.M., Rackovskij, D.A., 
Wunsch, D.C. (1998) Application of Random 
Threshold Neural Networks for Diagnostics of Micro 
Machine Tool Condition. In: "Proceedings of 
IJCNN'98", IEEE, Piscataway, NJ, Vol. 3, pp. 1685-
1687.
9. Kussul, E.M., Lukovich, V.V, Lutsenko, V.N. 
(1988) Multiprocessor computational devices for robot 
control in natural environment. Control systems and 
machines, no 5, pp.102-105. 
10. Kussul, E. M., Rachkovskij, D. A., & Baidyk, T. N. 
(1991a) Associative-Projective Neural Networks: 
architecture, implementation, applications. In Proc. of 
the 4th Intern. Conference "Neural Networks & their 
Applications", Nimes, France, Nov. 4-8, 1991, pp. 463-
476. 
11. Kussul, E. M., Rachkovskij, D. A., & Baidyk, T. N. 
(1991b) On image texture recognition by associative-
projective neurocomputer. In C. H. Dagli, S. Kumara, 
& Y. C. Shin (Eds.), Proceedings of the ANNIE'91 
conference "Intelligent engineering systems through 
artificial neural networks", pp. 453-458. ASME Press. 
12. Kussul, E.M., Rachkovskij, D.A., & Wunsch, D. 
(1999) The Random Subspace coarse coding scheme 
for real-valued vectors In: Proceedings of the 
International Joint Conference on Neural Networks, 
Washington, DC, July 10-16, 1999. 6 pp.
13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. 
(1998) Gradient-based Learning Applied to Document 
Recognition, Proceedings of the IEEE, v. 86, N 11, pp. 
2278-2344.
14. Rachkovskij, D.A. (2001) Representation and 
Processing of Structures with Binary Sparse Distributed 
Codes. IEEE Transactions on Knowledge and Data 
Engineering, 13(2), pp. 261-276. 
15. Rachkovskij, D. A. & Fedoseyeva, T.V. (1990) On 
audio signals recognition by multilevel neural network. 
In Proceedings of The International Symposium on 
Neural Networks and Neural Computing -
NEURONET'90, pp. 281-283. Prague, Czechoslovakia. 
16. Rachkovskij, D.A. & Kussul, E.M. (1998) 
DataGen: a generator of datasets for evaluation of 
classification algorithms. Pattern Recognition Letters 
19, pp. 537-544.
17. Rachkovskij, D. A. & Kussul, E. M. (2001) Binding 
and Normalization of Binary Sparse Distributed 
Representations by Context-Dependent Thinning. 
Neural Computation 13(2), pp. 411-452 
(http://cogprints.soton.ac.uk/documents/disk0/00/00/12
/40/index.html). 
18. Stubbs, D. (1988) Neurocomputers. M.D. 
Computing, 5, N3, pp. 14-24.


