Method

Scalable Influence Functions

Algorithm 1 Arnoldi

1: procedure ARNOLDI(v, n)
2: 1. Build orthonormal basis for the Krylov subspace \(K_n \).
3: \(\tilde{K}_n = \text{Span}(v, Hv, H^2v, \ldots, H^{n-1}v) \)
4: 2. Diagonalize \(K_n \) to its top eigenvalues.
5: \(\text{Discard the last row of } A \) and the last \(v \).
6: 3. Compute \(A \)'s eigenvalues \(\lambda_j \) and eigenvectors \(w_j \).
7: 4. Set \((\lambda_j, w_j) \) to the corresponding eigenvectors.
8: \(\text{Set } (\tilde{\lambda}_j, \tilde{w}_j) \) to the projection onto the spans \([c_j]_n \) basis.
9: 5. Return \((\tilde{\lambda}_j, \tilde{w}_j) \).
10: end procedure

The procedure additionally builds an orthonormal basis for the Krylov subspace so that the diagonalization of the restriction \(H \) to \(K_n \) yields an approximation of the largest (in absolute value) eigenvalues of \(H \) and of the corresponding eigenvectors.

The matrix \(H \) gets replaced with now diagonal \(\tilde{H} \) simplifying the matrix appearing in the definition of \(T_H \) and dispensing with the expensive LISSA [2] procedure.

Results

MNIST Benchmark

Corrupted MNIST – Small Model (Figure 1 & 2)

- [2] considers only a 10% subset of data and a CNN with 3k parameters.
- We evaluate ability to recall synthetically mislabeled examples [4].
- IFs outperform gradient methods and RandProj does not capture correct eigenvalues.

Corrupted MNIST – Large Model (Table 1)

- CNN with 800k parameters.
- LISSA is prohibitively slow; Arnoldi & RandProj scale well; no advantage in using curvature information.