Google Research

Scaling Up Influence Functions

Andrea Schioppa, Artem Sokolov, Polina Zablotskaja, David Vilar (arischioppa, artemsok, polinaz, vilar)@google.com

Influence Functions

Questions that Influence Methods address:

- Which training examples are most responsible for the prediction at a given test point?
- Which training examples advocate / oppose the prediction at a test point?
- Which part of the training data is corrupt / of lower guality?
- Which training examples are easier / harder to memorize?

The formal answer [1]:

$\mathcal{I}_{\text{true}}(x, z) = L(z|\Theta : x \notin \mathcal{D}) - L(z|\Theta : x \in \mathcal{D})$

x is a training example; z is a test example; Θ is the parameters of a model: L is the loss function used in training: D is the corpus of all training examples.

However removing each training example and retraining the model is not feasible!

Scalable Influence Functions

O(p) complexity is the major bottleneck for efficient implementation of IFs.

We can use Random Projection $G \in \mathbb{R}^{p \times \tilde{p}}$ to create a subspace of size \tilde{p} such that $\mathbb{E}[G^T G] = I$

$$\mathcal{I}_{\tilde{H}}(x,z) = \langle G \nabla_{\Theta} L(z), \tilde{H}^{-1} G \nabla_{\Theta} L(x) \rangle$$
$$\tilde{H} = G \cdot H \cdot G^{T}$$

However the image of G is not H-invariant. To solve this we propose using the standard the Arnoldi iteration [3] technique of building an approximately H-invariant subspace and constructing the n-th order Krylov subspace:

$$K_n(H;v) =$$
Span $\{v, Hv, H^2v, \dots, H^nv\}$

The procedure additionally builds an orthonormal basis for Krylov subspace so that the diagonalization of the restriction \tilde{H} to H yields an approximation of the largest (in absolute value) eigenvalues of Hand of the corresponding eigenvectors.

The matrix H gets replaced with now diagonal \tilde{H} simplifying the matrix inversion appearing in the definition of \mathcal{I}_{H} and dispensing with the expensive LISSA [2] procedure.

 Instead [1] compute the effect of the perturbation on the current optimum:

 $\mathcal{I}_H(x,z) = \langle \nabla_{\Theta} L(z), H^{-1} \nabla_{\Theta} L(x) \rangle$

This is faster, but for DL models still not feasible due to the inverse of the Hessian $H = \nabla^2_{\Omega} L$

• [2] (LISSA) suggest iterative inversion of Hessian with:

 $H_r^{-1}v = v + (I - H)H_{r-1}^{-1}v$

Hessian vector products can be estimated in $O(b \cdot p)$ -time, where $b = |D|, p = |\Theta|$. The total $O(b \cdot p \cdot r)$ -time complexity will be

incurred at every x in whose influence on z we are interested.

Method is slow: either small models, reduction of parameters to the last layer, small datasets or a subset of points.

- 1: procedure ARNOLDI(v, n)2: \triangleright Build orthonormal basis for the Krylov subspaces K_n . $w_0 \leftarrow \frac{v}{\|v\|_2}$ 3: 4. $A_{l,m} \leftarrow 0$ for 0 < l < n and 0 < m < n5. for $i \leftarrow 1, n$ do 6: $w_i \leftarrow H \cdot w_{i-1}$ ▷ HVP in fwd-over-rev mode 7: Set $A_{i,j} = \langle w_i, w_j \rangle$ for j < i $\begin{aligned} & w_i \leftarrow w_i - \sum_{j < i} A_{i,j} w_j \\ & A_{i+1,i} \leftarrow \|w_i\|_2, w_i \leftarrow \frac{w_i}{\|w_i\|_2} \end{aligned}$ 8: 9:
- 10: return: $A, \{w_i\}$
- 11: procedure DISTILL(A, $\{w_i\}, \tilde{p}$)
- 12: \triangleright Distill A, $\{w_i\}$ to its top- \tilde{p} eigenvalues.
- Discard the last row of A and the last w_n
- Obtain A's eigenvalues $\{\lambda_i\}$ and eigenvectors $\{e_i\}$
- Set $\{\lambda'_i\}$ to the \tilde{p} -largest (in absolute value) of $\{\lambda_i\}$ Set $\{e'_i\}$ to the corresponding eigenvectors
- 16: 17: Set G to the projection onto the spans $\{e'_i\}$ in $\{w_i\}$ -basis return: $\{\lambda'_i\}, G$ 18:
- 19: procedure INFLUENCE (x, z, n, \tilde{p})
- 20: \triangleright Influence of x on z with n iterations and top- \tilde{p} eigenvalues. $v \leftarrow \mathcal{N}(0, 1)$
- 21: Executed once 22: $A, \{w_i\} = \text{ARNOLDI}(v, n)$ and cached 23: $\{\lambda'_i\}, \hat{G} = \text{DISTILL}(\hat{A}, \{w_i\}, \hat{p})$ 24: $g_x \leftarrow G \cdot \nabla_{\Theta} L(x)$ \triangleright fwd JVP for x over G-rows 25: $q_z \leftarrow G \cdot \nabla_{\Theta} L(z)$ \triangleright fwd JVP for z over G-rows
 - $g_x \leftarrow g_x / \{\lambda'_i\}$ \triangleright Multiply with diagonalized \tilde{H}^{-1} return: $\langle g_x, g_z \rangle$

MNIST Benchmark

Corrupted MNIST -- Small Model (Figure 1 & 2)

- [2] considers only a 10% subset of data and a CNN with 3k parameters
- We evaluate ability to recall synthetically mislabeled examples [4].
- IFs outperform gradient methods and RandProj does not capture correct eigenvalues.

Corrupted MNIST -- Large Model (Table 1)

- CNN with 800k parameters..
- LISSA is prohibitively slow; Arnoldi & RandProj scale well; no advantage in using curvature information.

Machine Translation

Synthetic Noise (Table 2)

- A model on WMT17 German -> English.
- Noisy data where references where permuted (with 6%) probability).
- Subsetting the layers leads to worse performance.

Natural Noise [Quality] (Table 3)

- Bad quality Paracrawl (100M pairs, ~1B words) from WMT'18 data cleaning task..
- Applying Arnoldi on top of Microsoft winning submission Scores to get 50% of the selected clean data gives 37.2.
- Method has high throughput: 2.2M examples per hour using TPUv2 (32 cores)

Layers	Method	\tilde{p}	AUC	AP	
all layers	RandProj	10	85.6	31.3	
	RandProj	20	85.2	28.0	
	Arnoldi	10	92.0	47.8	
	Arnoldi	20	93.8	54.4	Table
last 3 decoder layers	RandProj	10	80.6	23.5	Table
	RandProj	20	83.0	25.8	
	Arnoldi	10	82.0	28.1	
	Arnoldi	20	83.7	28.5	

Method	% selected	BLEU@10k	BLEU@200k	-
None	100	9.9	17.8	-
Pre-cleaning	14	11.7	22.6	
RandProj	1	7.7	8.7	Table 3
Arnoldi	1	17.8	19.6	
RandProj	5	18.7	27.9	-
Arnoldi	5	24.0	30.3	
RandProj	10	21.3	28.6	-
Arnoldi	10	25.0	30.8	

- Conclusion We proposed a new way of calculating influence scores of [2] for large DNNs by approximate diagonalization of their Hessians and avoiding re-estimating them on every training example.
 - We demonstrated finding influential or noisy examples in datasets of up to 100M training examples and models with up to 300M parameters.
 - We showed IFs can be either superior or match random projection and gradient-based approaches, when measured on the benchmark of retrieving synthetically mislabeled data with self-influence scores.
 - We will make our code publicly available.

References

[1] Cook, R. D.; and Weisberg, S. 1980. Characterizations of an Empirical Influence Function for Detecting Influential Cases in Regression, Technometrics 22(4): 495-508. [2] Koh, P. W.; and Liang, P. 2017. Understanding Black-box Predictions via Influence Functions. In ICML

[3] Arnoldi, W. E. 1951. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics 9(1): 17–29. [4] Pruthi, G.; Liu, F.; Sundararaian, M.; and Kale, S. 2020. Estimating Training Data Influence by Tracing Gradient Descent. In NeurIPS

- Algorithm 1 Arnoldi
- - ▷ Orthogonalize

σ

Introduction

13: 14: 15:

26:

27: