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Abstract- We propose an adaptive approach to modeling user's 
behavior in computer anomaly detection systems. As a base 
model, Markov chains with variable memory length are used. 
Аn adaptive version of the algorithm constructing a model that 
takes into account changes in user's behavior is introduced. 
Experimental testing of the proposed approach is also provided.  

 
I  INTRODUCTION 

 
Over the last decade it became evident that even advanced 

security systems are not always capable of protecting 
computer systems from intrusions. The majority of systems 
make use of common security mechanisms: identification and 
authentication, access restriction, and cryptographic 
mechanisms. Drawbacks of traditional approaches include: 
vulnerability from own malevolent users, an often impossible 
clear distinction between "inside" and "outside" users, 
comparative ease of guessing semantic passwords, hampering 
user's work due to imposed access restrictions (e.g., in e-
business). Hence, a demand has emerged for mechanisms that 
can resist attacks even if standard protection systems have 
been already passed through.  

Intrusion detection systems are intended to meet that 
demand. Usually, they are classified into misuse detection and 
anomaly detection systems. The former are based on 
comparing patterns of known attacks with log traces. Such 
systems are effective dealing with known attacks, however, in 
case of an unknown attack they usually fail. Therefore, a 
large, continuously updated database of attack patterns and 
their variations is needed. Anomaly detection systems are 
more flexible when dealing with unknown attacks. Their basic 
assumption is that intruder's actions necessarily differ from 
the behavior of a legitimate user, i.e., they are an anomaly. At 
the first stage of their functioning, a representation of normal 
activity is built. Building patterns of abnormal behavior is 
difficult because of the rarity of labeled intrusive training 
data. Therefore, training should often be carried out only on 
positive examples, which is much more difficult. Two types 
of mistakes are possible: normal behavior is wrongly taken 
for ill-intentioned (false positive) or an attempt of an illegal 
penetration into a system is taken for normal activity (false 
negative). 

In this work, we propose an approach to adaptive modeling 
of user's behavior using Markov chains with variable memory 
length [1]. In section II, we give some introductory 
considerations that lead to the selection of the base model. 
Section III briefly describes the base model from [1]. Section 
IV provides our modified adaptive algorithm. Experimental 
testing and conclusions are given in sections V and VI. 

 
II  MODELING USER'S BEHAVIOR 

 
Starting from the pioneering work in the field of anomaly 

detection [2], many approaches to the problem have been 
proposed. Almost all of them can be divided into four 
categories: instance-based learning [3], frequency-based 
learning [2], neural-network approaches [4,5], and finite 
automata approaches [6,7,8]. 

The majority of data available from audit systems are of 
sequential and non-deterministic nature. And for many data 
sources, it is typical that the probability of the next symbol 
depends on previous symbols, and frequently only on few of 
them. It suggests modeling such data with Markov chains 
[2,9,10,11] or with Hidden Markov Models (HMM) [6]. 
Though these statistical models can model a variety of 
sequences, they have their drawbacks: the number of states of 
Markov chains grows exponentially with the increase of their 
order. Hence, only models with very small order are of 
practical value, and they may give bad approximations. As to 
HMM, there are theoretical results concerning the difficulty 
of their learning (see [1] for references and details).  

Another consideration for not using HMM is that unlike the 
situation in pattern recognition tasks, the observed audit 
events are usually not distorted. In case of computer audit 
events, we usually observe events their creator meant to 
create. Hence, it is not obligatory to introduce unobservable 
states having a meaning of "what really occurred", as in 
HMM [6], or to use advanced structure-processing methods 
that handle sequence components possessing a gradual degree 
of similarity [12]. 

Moreover, for sequences of user commands, the probability 
of next command is usually determined by a variable length 
context. Therefore, there is no need to take into account all 
possible previous contexts, but only those on which next 
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commands really depend. For this work we chose a model 
that can be thought of as Markov chains with variable 
memory length [1]. 

The majority of approaches to modeling of audit sequences 
described in literature are non-adaptive. It is often offered to 
periodically retrain models for adaptation to varying behavior. 
This delayed tuning results in performance and reliability 
decrease, because the model becomes inaccurate as time 
passes after retraining. The only work known to us where an 
adaptation method similar to ours was proposed is [9]. 
However, a Markov chain of the first order was used there 
and dependencies on contexts longer than one command 
could not be considered.  

 
III  BASE MODEL 

 
Following [1], we consider a finite alphabet (commands, in 

our case) Σ , with the set of words over Σ  denoted by , 
finite set of automaton states Q, where every state q  has 
a label . Probabilistic Suffix Automaton (PSA) is 
defined as a 5-tuple < , where 

 is the transition function, 
 is the next symbol probability function, 

and  is the initial state probability distribution 
over starting states. 
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The task of building an automaton using examples obtained 

from some PSA  is posed in [1], and a special subclass of 
stochastic machines, Prediction Suffix Trees (PST), is chosen 
as the hypothesis class. A PST T , over Σ , is a tree of degree 
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is a pair ( ,  associated with every node, where s  is a 
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where  is the string labeling the node we reach by 
performing a walk that corresponds to the sequence 
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To measure the quality of approximation of automaton M  
by some PST T , it is required that the so-called Kullback-
Leibler distance between probability distributions P  and 

 the automaton and the tree induce on strings of length N  
is not larger then  with sufficiently large probability 
( -good hypothesis).  
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In [1], empirical probabilities P s  and P  are 
defined using examples generated by . If N  is the length 
of string r , L is the maximal length of nodes' labels (bound 
on the depth of PST), then, defining χ  as an indicator 
(1/0) of s  coinciding with a substring r  starting from the 
position , we put: 
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For some m  strings, each of length , we then 
have 
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The algorithm of learning PST starts from an empty tree 
with one root node labeled by an empty string. Then, a node 
with some label s  is added to it, if P s  is not negligible and 
if for some symbol σ  the probability P  differs from 
the empirical probability P  of having it as the 
next symbol after su . This means that s , but not 

, is then the context of , on which s  depends. The 
algorithm ends if there are no leaves in the tree for which the 
above conditions are satisfied, or if it has reached the 
maximum bound on the depth of the tree . 
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It is proved in [1] that, for any PSA M  and parameters 
 and , the learning algorithm builds in 

polynomial time a PST T  such that with the probability not 
less than (1 , the tree T is an -good hypothesis for M . 
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IV  MODIFICATION OF THE BASIC MODEL 
 
A principal peculiarity of anomaly detection task is the 

necessity of adaptive model construction and it's updating. To 
supply the base model with adaptability, we modified the 
calculation of empirical probabilities (3) so that the 
contribution of earlier examples to cumulative empirical 
probability decreases at each step.  

We fix learning coefficient , and put the 
empirical probability of a state s  at time t  to be 

0 α< <

 P s ,  1 1( ) ( )P s′=�

1( ) ( ) (1 ) ( )t tP s P s P sα α− ′= + −� �           (4) 

where P s  (2) is the empirical probability of the state in the 
string that arrived at the moment t . Coefficient  regulates 
"forgetting" speed: values close to zero will result in fast 
"forgetting", and values close to unity — in slower. 
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α



We obtain the following modified algorithm for adaptive 
reconstructing a PST under changing probabilities of states: 

 
1. Get 1t−T  from the previous time step, and renew 

values of empirical probabilities according to (4). 
2. Recursively delete all leaves for which 
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� ,  We carried out an experiment to check whether this method 
works. In Fig. 2, averaged values of are represented by 
gray scale – darker cells correspond to their larger values, 
lighter cells correspond to their smaller values. The diagonal 
values corresponding to the probability values of "own" 
sessions using "own" PSTs are approximately three times 
larger than off-diagonal values.  

K
add to the tree a node that corresponds to s , and 
(possibly) all nodes on the way from the deepest 
node in T , which is a suffix of s , to the node with 
label . 

ˆ
s

(c) If s <

1(1σ ≥ −
L
ε ε

, then for each σ , if 
, add a string σ  to 

′ ∈ Σ

0( ) )P s′� s′ S . 
 

V  EXPERIMENTS 
 

For training our model, real data obtained from 6 month 
logs of a UNIX university server were used. All processes 
which were started on behalf of users were logged by means 
of FreeBSD accounting mechanisms. Totally, we collected 
data from more than 800 users. From more than 900 unique 
process names (commands) that were used during the data 
collection period, we left only those whose overall use 
intensity exceeded 200 launches – 350 commands altogether. 
All other rare commands were replaced with the special 
command RARE. In addition, indicators ALPHA and OMEGA 
were inserted to mark the beginning and the end of each 
session. The resulting PSA (after conversion from PST) 

contained several thousand states.  

 
Fig. 1. Typical evolution of anomaly indicator K vs. number of session during the training period. 

Probability for each session was calculated using (1). To 
partially overcome its dependence on the session's length, the 
anomaly indicator ( )NN

TP=K  was used, where P  is 
the probability of a given log session of length N . In Fig. 1, 
the typical evolution of the K  parameter is depicted for two 
users. 

r ( )N
T r

 
A.  Cross test 

 
One of the possible ways of anomaly detection is using cross 
testing of log sessions. I.e., for the current session its 
probability is calculated as though it was generated not by the 
owner of the session, but by the PSTs of all other users as 
well. If the maximum probability is reached not on the real 
user's PST, an intrusion may be present. 

 

 
Fig. 2. The cross test for sessions of 35 randomly chosen users.
Averaged values of anomaly indicator K are depicted using gray
scale. 



B.  User substitution 
 
We tested the model's ability to cope with the widespread 

case of intrusions when a password is stolen and another user 
logs in on behalf of the password owner. Sessions with 
inserted parts from other users were used for testing. The 
results of such a simulation are depicted in Fig. 3.  

Figures show that the K  values for "hostile" parts 
considerably differ from the values obtained in the legitimate 
sessions. It is, therefore, possible to introduce threshold 
classification between normal and abnormal sessions. If the 
value  exceeds this threshold, the session is marked as 
normal, otherwise – as anomalous. However, if both users 
belong to one "class" (i.e. have similar habits), such 
classification may be not so reliable.  

K

 
C.  Estimation of parameters 
 

We conducted some experiments to investigate the influence 
of  on the process of adaptation to user's behavior. Fig. 4 
shows that smaller values of  give quicker adaptation to 
changed behavior, while larger ones result in more gradual 
reaction to changes. It may be necessary to select an 
individual value of α  for each user, because people have 
individual patterns of changes of their behavior. Although 
smaller values of  result in faster adaptation, it may lead to 
the increase of false negative rate because of an early 
forgetting of past information.  

α
α

α

Let us name the value of L  optimal if the approximating 
characteristics of the PST are not improved any more, i.e., 
further increase of does not produce higher values of . 

Fig. 5 shows that the worst value is L , as the model is 
simplified to the trivial Markov chain of order 1. As L  
increases, the significant improvement can be observed, as 
longer contexts are taken into account and a more precise 
approximation becomes possible. For user UID 5003, optimal 

 can be set to be equal to five, as its further increase does 
not substantially increases the values of K  (Fig. 5). 

L K
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VI  CONCLUSIONS 

 
We presented an application of an adaptive version of 

Markov model with variable memory length to the anomaly 
detection task. The modified model can be applied to 
modeling various sequences. The use of an adaptive 
adjustment procedure allowed the approach to capture more 
subtle peculiarities of users' behavior and to continuously 
refine their models. 

Since it is impossible to formalize precisely the anomaly 
criteria, it may be fruitful to use a set of techniques from 
which the conclusion will be drawn on the presence of 
intrusion. In this work, we offered two possible techniques of 
anomaly detection, namely, threshold classification and cross 
test technique, and provided their experimental testing.  

One of perspective directions of further research is the use 
of ensembles of probabilistic trees [10], similar to those used 
in our work. Trees in those ensembles are taken into account 
with a certain weight when calculating probability of the next 
event in an audit stream, and there exists an adaptive 
procedure of weight adjustment. 

It is also worth paying attention to a method of detection of 
anomalies at the level of system calls [13] as it allows us not 
to consider too irregular human behavior. However, 
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Fig. 3. User substitution examples. Log data from one user was inserted into a log of another, thus modeling a situation when a password was 
stolen or guessed. A sharp change of values of anomaly indicator K is observed at the time steps corresponding to the inserted (middle) parts 
of the sessions.  



completely refusing from analyzing user audit data is not 
desirable, as only the analysis at this level will allow detecting 
intrusions that cannot be detected at a level of system calls 
(e.g., use of stolen password). 
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