
An Adaptive Detection of Anomalies in User's Behavior

Artem M. Sokolov
International Research and Training Center of Informational Technologies and Systems

Pr. Acad. Glushkova 40

Kiev 03680

Ukraine

sokolov@ukr.net

Abstract- We propose an adaptive approach to modeling user's
behavior in computer anomaly detection systems. As a base
model, Markov chains with variable memory length are used.
Аn adaptive version of the algorithm constructing a model that
takes into account changes in user's behavior is introduced.
Experimental testing of the proposed approach is also provided.

I INTRODUCTION

Over the last decade it became evident that even advanced

security systems are not always capable of protecting
computer systems from intrusions. The majority of systems
make use of common security mechanisms: identification and
authentication, access restriction, and cryptographic
mechanisms. Drawbacks of traditional approaches include:
vulnerability from own malevolent users, an often impossible
clear distinction between "inside" and "outside" users,
comparative ease of guessing semantic passwords, hampering
user's work due to imposed access restrictions (e.g., in e-
business). Hence, a demand has emerged for mechanisms that
can resist attacks even if standard protection systems have
been already passed through.

Intrusion detection systems are intended to meet that
demand. Usually, they are classified into misuse detection and
anomaly detection systems. The former are based on
comparing patterns of known attacks with log traces. Such
systems are effective dealing with known attacks, however, in
case of an unknown attack they usually fail. Therefore, a
large, continuously updated database of attack patterns and
their variations is needed. Anomaly detection systems are
more flexible when dealing with unknown attacks. Their basic
assumption is that intruder's actions necessarily differ from
the behavior of a legitimate user, i.e., they are an anomaly. At
the first stage of their functioning, a representation of normal
activity is built. Building patterns of abnormal behavior is
difficult because of the rarity of labeled intrusive training
data. Therefore, training should often be carried out only on
positive examples, which is much more difficult. Two types
of mistakes are possible: normal behavior is wrongly taken
for ill-intentioned (false positive) or an attempt of an illegal
penetration into a system is taken for normal activity (false
negative).

In this work, we propose an approach to adaptive modeling
of user's behavior using Markov chains with variable memory
length [1]. In section II, we give some introductory
considerations that lead to the selection of the base model.
Section III briefly describes the base model from [1]. Section
IV provides our modified adaptive algorithm. Experimental
testing and conclusions are given in sections V and VI.

II MODELING USER'S BEHAVIOR

Starting from the pioneering work in the field of anomaly

detection [2], many approaches to the problem have been
proposed. Almost all of them can be divided into four
categories: instance-based learning [3], frequency-based
learning [2], neural-network approaches [4,5], and finite
automata approaches [6,7,8].

The majority of data available from audit systems are of
sequential and non-deterministic nature. And for many data
sources, it is typical that the probability of the next symbol
depends on previous symbols, and frequently only on few of
them. It suggests modeling such data with Markov chains
[2,9,10,11] or with Hidden Markov Models (HMM) [6].
Though these statistical models can model a variety of
sequences, they have their drawbacks: the number of states of
Markov chains grows exponentially with the increase of their
order. Hence, only models with very small order are of
practical value, and they may give bad approximations. As to
HMM, there are theoretical results concerning the difficulty
of their learning (see [1] for references and details).

Another consideration for not using HMM is that unlike the
situation in pattern recognition tasks, the observed audit
events are usually not distorted. In case of computer audit
events, we usually observe events their creator meant to
create. Hence, it is not obligatory to introduce unobservable
states having a meaning of "what really occurred", as in
HMM [6], or to use advanced structure-processing methods
that handle sequence components possessing a gradual degree
of similarity [12].

Moreover, for sequences of user commands, the probability
of next command is usually determined by a variable length
context. Therefore, there is no need to take into account all
possible previous contexts, but only those on which next

mailto:sokolov@ukr.net

commands really depend. For this work we chose a model
that can be thought of as Markov chains with variable
memory length [1].

The majority of approaches to modeling of audit sequences
described in literature are non-adaptive. It is often offered to
periodically retrain models for adaptation to varying behavior.
This delayed tuning results in performance and reliability
decrease, because the model becomes inaccurate as time
passes after retraining. The only work known to us where an
adaptation method similar to ours was proposed is [9].
However, a Markov chain of the first order was used there
and dependencies on contexts longer than one command
could not be considered.

III BASE MODEL

Following [1], we consider a finite alphabet (commands, in

our case) Σ , with the set of words over Σ denoted by ,
finite set of automaton states Q, where every state q has
a label . Probabilistic Suffix Automaton (PSA) is
defined as a 5-tuple < , where

 is the transition function,
 is the next symbol probability function,

and is the initial state probability distribution
over starting states.

*Σ
Q∈

*s ∈ Σ

Q
:

Q

, , ,Q τ γ πΣ >,
:τ ×
Qγ ×
π

Q
[0,1]
1]

q

Σ →
Σ →
: → [0,

For two states q q , and for each symbol σ , if
, and q has s as its label, then we require that

 has such a label s that is a suffix of string s .

1 2, Q∈
1 1

2

∈ Σ
1 2(,)qτ σ =

2q 1σ
The task of building an automaton using examples obtained

from some PSA is posed in [1], and a special subclass of
stochastic machines, Prediction Suffix Trees (PST), is chosen
as the hypothesis class. A PST T , over Σ , is a tree of degree

M

Σ , where every edge is labeled by a symbol σ . There
is a pair (, associated with every node, where s is a
string, associated with the walk beginning from that node and
ending in the root of the tree, and is the next
symbol probability distribution associated with s . For each s
that labels a node ∑ . The probability that the
PST will generate sequence

∈ Σ

[0,1]

)ss γ

: Σ →sγ

1()sσ γ σ∈Σ =

1 2r … Nrr r is =

1

1
() ()i

N
N

iT s
i

P r rγ −
=

=∏ , (1)

where is the string labeling the node we reach by
performing a walk that corresponds to the sequence

.

is

1 1r…j jr r −

To measure the quality of approximation of automaton M
by some PST T , it is required that the so-called Kullback-
Leibler distance between probability distributions P and

 the automaton and the tree induce on strings of length N
is not larger then with sufficiently large probability
(-good hypothesis).

M

TP

ε
0ε >

In [1], empirical probabilities P s and P are
defined using examples generated by . If N is the length
of string r , L is the maximal length of nodes' labels (bound
on the depth of PST), then, defining χ as an indicator
(1/0) of s coinciding with a substring r starting from the
position , we put:

()�

M

j

(|)sσ�

(s)

| | 1j s +−
11() ()

1

N

j
j L

P s s
N L

χ
−

=
′ =

− + ∑
1 1

1(|) ()/
N N

j
j L j L

P s sσ χ σ
− −

+
= =

′ = ∑

,

 (2) ().j s∑ χ

For some m strings, each of length , we then
have

1N L≥ +

1

1

1() ()
(1)

m N

j
i j L

P s s
m N L

χ
−

= =
=

− + ∑∑�

1 1

1
1 1

(|) ()/
m N m N

j
i j L i j

P s sσ χ σ
− −

+
= = = =

=∑∑ ∑∑�

,

 (3) ().j
L
sχ

1

1

t

The algorithm of learning PST starts from an empty tree
with one root node labeled by an empty string. Then, a node
with some label s is added to it, if P s is not negligible and
if for some symbol σ the probability P differs from
the empirical probability P of having it as the
next symbol after su . This means that s , but not

, is then the context of , on which s depends. The
algorithm ends if there are no leaves in the tree for which the
above conditions are satisfied, or if it has reached the
maximum bound on the depth of the tree .

()�

(uffix s

(|)sσ�

))

L

(| sσ�

()s
σ

ffix
()suffix s

It is proved in [1] that, for any PSA M and parameters
 and , the learning algorithm builds in

polynomial time a PST T such that with the probability not
less than (1 , the tree T is an -good hypothesis for M .

0ε > 0 δ< <

)δ
ˆ

− ˆ ε

IV MODIFICATION OF THE BASIC MODEL

A principal peculiarity of anomaly detection task is the

necessity of adaptive model construction and it's updating. To
supply the base model with adaptability, we modified the
calculation of empirical probabilities (3) so that the
contribution of earlier examples to cumulative empirical
probability decreases at each step.

We fix learning coefficient , and put the
empirical probability of a state s at time t to be

0 α< <

 P s , 1 1() ()P s′=�

1() () (1) ()t tP s P s P sα α− ′= + −� � (4)

where P s (2) is the empirical probability of the state in the
string that arrived at the moment t . Coefficient regulates
"forgetting" speed: values close to zero will result in fast
"forgetting", and values close to unity — in slower.

()t′
α

We obtain the following modified algorithm for adaptive
reconstructing a PST under changing probabilities of states:

1. Get 1t−T from the previous time step, and renew

values of empirical probabilities according to (4).
2. Recursively delete all leaves for which

1 0() (1) .tP s ε ε< −�

3. Initialize set S :
*

1 1
ˆ{ | , () (), () (1) },ttS s s suffix s L T P s ε ε−= ∈ Σ ∈ ≥ −�

0

)

 where L T is the set of leaves of T . 1
ˆ(t− 1t̂−

4. While S ≠ ∅ do: pick any s and S∈
(a) delete s from S
(b) if there exists such that σ ∈ Σ

2 min(|) (1)tP sσ ε≥ +� γ and 2
(|)

1 3
(| ())
t

t

P s
P suffix s

σ ε
σ

> +
�

� , We carried out an experiment to check whether this method
works. In Fig. 2, averaged values of are represented by
gray scale – darker cells correspond to their larger values,
lighter cells correspond to their smaller values. The diagonal
values corresponding to the probability values of "own"
sessions using "own" PSTs are approximately three times
larger than off-diagonal values.

K
add to the tree a node that corresponds to s , and
(possibly) all nodes on the way from the deepest
node in T , which is a suffix of s , to the node with
label .

ˆ
s

(c) If s <

1(1σ ≥ −
L
ε ε

, then for each σ , if
, add a string σ to

′ ∈ Σ

0())P s′� s′ S .

V EXPERIMENTS

For training our model, real data obtained from 6 month
logs of a UNIX university server were used. All processes
which were started on behalf of users were logged by means
of FreeBSD accounting mechanisms. Totally, we collected
data from more than 800 users. From more than 900 unique
process names (commands) that were used during the data
collection period, we left only those whose overall use
intensity exceeded 200 launches – 350 commands altogether.
All other rare commands were replaced with the special
command RARE. In addition, indicators ALPHA and OMEGA
were inserted to mark the beginning and the end of each
session. The resulting PSA (after conversion from PST)

contained several thousand states.

Fig. 1. Typical evolution of anomaly indicator K vs. number of session during the training period.

Probability for each session was calculated using (1). To
partially overcome its dependence on the session's length, the
anomaly indicator ()NN

TP=K was used, where P is
the probability of a given log session of length N . In Fig. 1,
the typical evolution of the K parameter is depicted for two
users.

r ()N
T r

A. Cross test

One of the possible ways of anomaly detection is using cross
testing of log sessions. I.e., for the current session its
probability is calculated as though it was generated not by the
owner of the session, but by the PSTs of all other users as
well. If the maximum probability is reached not on the real
user's PST, an intrusion may be present.

Fig. 2. The cross test for sessions of 35 randomly chosen users.
Averaged values of anomaly indicator K are depicted using gray
scale.

B. User substitution

We tested the model's ability to cope with the widespread

case of intrusions when a password is stolen and another user
logs in on behalf of the password owner. Sessions with
inserted parts from other users were used for testing. The
results of such a simulation are depicted in Fig. 3.

Figures show that the K values for "hostile" parts
considerably differ from the values obtained in the legitimate
sessions. It is, therefore, possible to introduce threshold
classification between normal and abnormal sessions. If the
value exceeds this threshold, the session is marked as
normal, otherwise – as anomalous. However, if both users
belong to one "class" (i.e. have similar habits), such
classification may be not so reliable.

K

C. Estimation of parameters

We conducted some experiments to investigate the influence
of on the process of adaptation to user's behavior. Fig. 4
shows that smaller values of give quicker adaptation to
changed behavior, while larger ones result in more gradual
reaction to changes. It may be necessary to select an
individual value of α for each user, because people have
individual patterns of changes of their behavior. Although
smaller values of result in faster adaptation, it may lead to
the increase of false negative rate because of an early
forgetting of past information.

α
α

α

Let us name the value of L optimal if the approximating
characteristics of the PST are not improved any more, i.e.,
further increase of does not produce higher values of .

Fig. 5 shows that the worst value is L , as the model is
simplified to the trivial Markov chain of order 1. As L
increases, the significant improvement can be observed, as
longer contexts are taken into account and a more precise
approximation becomes possible. For user UID 5003, optimal

 can be set to be equal to five, as its further increase does
not substantially increases the values of K (Fig. 5).

L K

1=

L

VI CONCLUSIONS

We presented an application of an adaptive version of

Markov model with variable memory length to the anomaly
detection task. The modified model can be applied to
modeling various sequences. The use of an adaptive
adjustment procedure allowed the approach to capture more
subtle peculiarities of users' behavior and to continuously
refine their models.

Since it is impossible to formalize precisely the anomaly
criteria, it may be fruitful to use a set of techniques from
which the conclusion will be drawn on the presence of
intrusion. In this work, we offered two possible techniques of
anomaly detection, namely, threshold classification and cross
test technique, and provided their experimental testing.

One of perspective directions of further research is the use
of ensembles of probabilistic trees [10], similar to those used
in our work. Trees in those ensembles are taken into account
with a certain weight when calculating probability of the next
event in an audit stream, and there exists an adaptive
procedure of weight adjustment.

It is also worth paying attention to a method of detection of
anomalies at the level of system calls [13] as it allows us not
to consider too irregular human behavior. However,

Simulated intrusion
UID 7003's data against UID 29108's profile

0

0.05

0.1

0.15

0.2

0.25

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

K

legal data from user 29108

intrusive data from user 7003

Simulated intrusion
UID 40103's data against UID 28108's profile

0

0.05

0.1

0.15

0.2

0.25

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

22
3

22
9

K

legal data from user 28108

intrusive data from user 40103

Fig. 3. User substitution examples. Log data from one user was inserted into a log of another, thus modeling a situation when a password was
stolen or guessed. A sharp change of values of anomaly indicator K is observed at the time steps corresponding to the inserted (middle) parts
of the sessions.

completely refusing from analyzing user audit data is not
desirable, as only the analysis at this level will allow detecting
intrusions that cannot be detected at a level of system calls
(e.g., use of stolen password).

REFERENCES

[1] D. Ron, Y. Singer, and N. Tishby. The power of

amnesia: Learning probabilistic automata with variable
memory length. Machine Learning, 25 (2-3): 117-149, 1996.

[2] D. E. Denning. An intrusion-detection model. In Proc.
IEEE Symposium on Security and Privacy, pp. 118-131, 1986.

[3] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for Unix processes. In Proceedings
of the 1996 IEEE Symposium on Research in Security and
Privacy, pp. 120-128. IEEE Computer Society Press, 1996.

[4] K. Tan. The Application Of Neural Networks To UNIX
Computer Security. In Proc. of the IEEE International
Conference on Neural Networks, 1, pp. 476-481, Perth,
Australia, 1995.

[5] J. Ryan, M.-J. Lin, R. Miikkulainen. Intrusion Detection
with Neural Networks, Advances in Neural Information
Processing Systems, Cambridge MA: MIT Press, 1998.

[6] T. Lane. Hidden markov models for human/computer
interface modeling. In IJCAI-99 Workshop on Learning About
Users, pp. 35-44, 1999.

[7] C. C. Michael and A. Ghosh. Two state-based
approaches to program-based anomaly detection. ACM
Transactions on Information and System Security, 5 (2), 2002.

UID 7003 K(α)

0

0.1

0.2

0.3

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

K 0.5

0.99

0.998

Fig. 4. Typical dependence of the course of adaptation on the value of vs. number of session. "Monotone" zones correspond to periods oα f
very stable patterns of this user behavior.

UID 5003 K(L)

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

K

L=1

L=3

L=5

L=7

Fig. 5. Typical dependence of the course of adaptation on the value of L vs. number of session. Contexts of length not longer then L
appeared to be sufficient to describe this user behavior (as further increase of L does not increase values of K).

5=

[8] D. Wagner and R. Dean. Intrusion detection via static
analysis. In F. M. Titsworth, editor, Proceedings of the 2001
IEEE Symposium on Security and Privacy, pp. 156-169, Los
Alamitos, CA, May 14-16 2001. IEEE Computer Society.

[9] B. D. Davison and H. Hirsh. Predicting sequences of
user actions. In Predicting the Future: AI Approaches to
Time-Series Problems, pp. 5-12, Madison, WI, July 1998.
AAAI Press. Proceedings of AAAI-98/ICML-98 Workshop,
published as Technical Report WS-98-07.

[10] E. Eskin. Anomaly detection over noisy data using
learned probability distributions. In Proc. 17 International
Conf. on Machine Learning, pp. 255-262. Morgan Kaufmann,
San Francisco, CA, 2000.

[11] N. Ye. A markov chain model of temporal behavior
for anomaly detection. In Proceedings of the 2000 IEEE
Systems, Man, and Cybernetics, Information Assurance and
Security Workshop, pp. 171-174, 2000.

[12] D. A. Rachkovskij and E. M. Kussul. Binding and
normalization of binary sparse distributed representations by
context-dependent thinning. Neural Computation 13(2): 411-
452, 2001.

[13] A. Somayaji. Automated response using system-call
delays. In USENIX Security Syposium 2000. pp. 185-197,
2000.

