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INVESTIGATION OF ACCELERATED SEARCH

FOR CLOSE TEXT SEQUENCES WITH THE HELP

OF VECTOR REPRESENTATIONS

A. M. Sokolov UDC 004.032.26

The results of numerical experiments using artificial data are presented. The experiments are designed

for testing theoretically derived properties of a randomized scheme for embedding an edit distance into

a vector space. Its application to the search for similar texts is also described as applied to the

problems of duplicate filtration and spam detection.
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1. INTRODUCTION

There is a need to compare long character sequences in many applied problems of various object domains. Web

search, large-scale document management systems [1], and genetics [2] are examples of such domains.

To compare sequences, one should specify a metric that must be adequate to the corresponding problem and must be

efficiently computable. The Levenstein distance (the classical edit distance) [3] often satisfies the first condition. It is defined

for symbolic strings x and y as the minimum number of operations of insertion, replacement, and elimination of symbols that

are required for the transformation of x into y. These operations are interpreted as operations occurring during mutations and

evolution of genes in genetics problems, as some ways of text distortion for unauthorized advertising in the Internet, or as

distortions during optical text recognition in document management systems.

The classical algorithm is well known that computes the Levenstein distance for strings of length n and whose

complexity equals O n( )

2

[4]. In view of large typical values of n and also a great number of strings, the application of this

algorithm in the above-mentioned domains is very difficult. Therefore, a computationally efficient estimate of an edit

distance [5] is required.

In [6], a method is developed for the estimation of the Levenstein distance on the basis of embedding such an edit

distance into a vector space and also an algorithm is proposed for finding approximate nearest strings on the basis of a

modification of the scheme of locality-sensitive hashing [7] (LSH) that uses p-stable distributions [8]. However, the

proposed methods should be investigated in experiments and applications.

In this article, the results of numerical experiments on checking the theoretical results of the proposed scheme using

artificial data are described. The application of the proposed algorithm of approximate determination of nearest strings to the

following topical problems is considered: duplicate filtration (in search machines, document management systems, etc.) and

detection of spam, i.e., messages that are, as a rule, of advertising character and are massively sent to a great many people

(using web-pages, e-mail, etc.) who have not expressed their desire to receive them.
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2. EMBEDDING EDIT DISTANCE

Let us describe the essence of deterministic and probabilistic embeddings (proposed and founded in [6]) of the

classical edit distance into a vector space and also schemes of searching for approximate duplicates of character strings on

the basis of the proposed embedding.

2.1. Deterministic Scheme

For some symbolic string x
n

�� and also for a parameter q N� , we call an q-gram a substring of length q. We call a

vector of the form �n q x N
,

| |

( ) ( { })� � 0

�
a q-gram vector in which to each q-gram � ��

q
corresponds a vector element

( ( ))

,

�
�n q x N� �{ }0 whose value equals the number of occurrences of � in x. The Manhattan ( )l

1

distance between these

vectors, i.e., the sum of moduli of differences of vector element values is called the q-gram distance [9] and is denoted by

d x yq ( , ) .

We assume that we have a window of width equal to w symbols and two q-gram length values q
1

and q
2

, q q
1 2

� .

A string x is transformed into a vector �( )x by the concatenation of all q-gram vectors

� �i w q w q x i i w
, , ,

( [ , – ])� � 1 (1)

for q q q q� � �
1 1 2

1, , , and i n w� � �1 1, , – .

By the distance between such vectors we understand the corresponding q-gram distance and, based on it, we define a

new distance between strings x y
w

, �� as follows:

d x y d x y
w q q q q q q

, ,

, ,

( , ) ( , )

1 2

1 2

�

��
� �

. (2)

We denote �q q q� 	
2 1

. Using vectors (1), we define the following distance for strings x y
n

, �� :

D x y d x i i w y i i wi n w w q q
( , ) ( [ , – ], [ , – ]

, , –

, ,

� � �
� � �

�
�

1 1

1 2

1 1 ) / (( )( ))n w q	 � �1 1� . (3)

Assume that q w
1

2 3� / ,


 �
�q w q� � �1 2 7 57 16

1

1 2

/ (– ( ( – )) )

/

, Q q q� � �( )( ),� �1 2 and t w q� �– � 1. As is

shown in [6],

if we have ed( , ) ,x y k�
2

then we obtain D x y Qt k q n w q d( , ) ( / ( ( ))– ) / (( – )( ))
 � � � �
2 2

2 1 2 1 1� � ; (4)

if we have ed( , ) ,x y k�
1

then we obtain D x y k w n n w d( , ) [ ( )] / ( – )� � � � �2 1 1

1

2

1

, (5)

where ed(x,y) is the edit distance.

Under the condition d d
2 1

� , the smaller the difference between k
1

and k
2

, the more exact can be the approximation

of ed( , )x y for a known D x y( , ) . We put w n�
�

. Then the growth index w providing the greatest approximation precision is

attained when � � 05. . In this case, we have k k n
2 1

1 2

� �( )

/

, the time of construction of vectors �( )� equals O n( )

/3 2

, and

their dimension equals O n( )

/5 4

.

The obtained estimates of the time of construction and dimension of obtained vectors in the deterministic scheme are

too large to be efficiently used in practice. Therefore, this scheme is randomized in [6] so that it can be applied to the

problem of searching for approximately nearest neighbors and is less critical to resources.

2.2. Randomized Scheme

Let a vector �
w q q

i
x

, ,

( )

1 2

be a concatenation of q-gram (from q
1

to q
2

) vectors (1) of a substring x i i w[ , – ]� 1 of length

w, where i is chosen randomly and equiprobably from the set of possible positions of a window of width equal to

w i n w: ,... , – .� �1 1 The dimension of the vector �
w q q

i
x

, ,

( )

1 2

equals � �q q q

q

� �
1 2

, ,

| | .

Let �
i

be a random vector of the same dimension as �
w q q

i
x

, ,

( )

1 2

with elements chosen randomly from the Cauchy

distribution p x x( ) ( ( ))� �
	

� 1

2 1

. For the string x, we construct a hash vector of dimension K h x h x h x h xK: ( ) ( ( ), ( ),... , ( ))�
1 2

,
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where


 �
h x x b ri w q q

i

i i( ) (( ( ), ) ) /

, ,

� �� �

1 2

, (6)

r and bi are real numbers, and bi is chosen randomly and equiprobably from the range [ , ]0 r .

If a sphere B q k x q x k
n

( , ) { | ( , )� � �� ed } is specified, then the family H h X
n

� �{ : }� (where X is some finite or

countable set of values) is called [7] ( , , , )k k p p
1 2 1 2

-sensitive or simply locality-sensitive if, for any x y
n

, �� and any

independently and equiprobably chosen hash function h H� , the following conditions are satisfied:

if x B y k� ( , )

1

, then we have Prob[ ( ) ( )]h x h y p� �
1

, (7)

if x B y k� ( , )

2

, then we have Prob[ ( ) ( )]h x h y p� �
2

. (8)

In order that the family H make it possible to distinguish between “close” and “distant” strings, the following

condition should be satisfied: k k
1 2

� , i.e., a close string x must be closer to y than a distant one and, at the same time, we

have p p
2 1

� , i.e., close strings must cause a collision of hash functions with a higher probability than distant ones.

As is proved in [6], expression (6) is a locality-sensitive function (for w n�
2 3/

and r w� , and for q q Q
1

, , ,� and t

such as those in the deterministic scheme) and, based on it, one can construct a procedure searching for nearest strings using

the following general scheme from [9, 10].

Algorithm of searching for the nearest string with the help of LSH. Let there be a base consisting of P strings of

identical length n. As a result of the request for q
n

�� , the approximate nearest neighbor should be returned, namely, a

string belonging to the sphere B q k( , ).

2

All strings x P� are stored in memory cells as follows.

1. By formula (6), for each string x from the base P, L K-dimensional random hash vectors h x h x
j j
( ) ( ( ),�

1

h x h x
j

K

j

2

( ),... , ( )), j L� 1,... , , are generated.

2. For each unique hash vector obtained from all the strings of the base h x
j
( ) , j L x P� �1,... , , , a memory cell is

created. The total number of cells equals C L P� � | |.

3. Each string of the base P is associated with the cells whose hash vectors are produced by these cells.

To find the approximate neighbor nearest to an arrived string q
n

�� ,

(1) L its hash vectors are formed;

(2) the cells are scanned whose hash vectors completely coincide with those formed for q and that correspond to each

hash vector h q h q
j j
( ) ( ( ),�

1

h q h q
j

K

j

2

( ),... , ( )), j L� 1,... , ;

(3) the list S of strings is compiled that are in the scanned cells from the base P. Since the same string of the base P

can occur several times in S , this list can be represented in the form of a multiset.

The procedure comes to an end after scanning all the cells corresponding to hash vectors h q
j
( ) , j L� 1,... , , or when

the size of the list S attains 2L .

In [6], the values of probabilities p
1

and p
2

are determined and theorem formulated below is proved.

THEOREM 1. For the described construction of vectors, the value of � � log ( p p
1 2

/ ) and, for values of

K Pp� log

1

2

/

| | , (9)

L P�| |

�
, (10)

the search algorithm produces (in S with a probability higher than 1/2) a string y such that we have ed( , )x y k�
2

, where

k O zn n
2

1 3

� ( ln )

/

and z is a parameter that influences the value of k
2

and the values of the probabilities p
1

and p
2

. For

the experiments described below, the parameters k
1

1� and z � 1 01. were used. The described hashing of a string can

also be realized in the form of a distributed neural network representation [10].

Realization of searching for the nearest string with the help of an LSH forest. For a software implementation of

the described LSH procedure, a modification of the described LSH scheme is used here, which is called an LSH forest and

makes it possible to find nearest neighbors without updating hash vectors with changing the size of the base P or the

parameter k
2

[11].
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For each j L� 1,... , , all hash vectors h p
j
( ) of all strings p of the base P are stored in the form of a separate prefix

tree T j whose depth amounts to K levels (the depth of its root equals 0 and those of its leaves equal K). The node points of

the tree correspond to values of hash vector elements and contain references to the strings whose hash vectors correspond to

the paths from the root of the tree to a given node. Leaves of these trees correspond to cells in the original scheme. In

particular, if, in hash vectors of two strings, the first k their elements coincide, then the first k nodes along the path from the

root of the tree T j to the leaves corresponding to these strings also coincide.

After arriving a request string q,

— L and its K-dimensional hash vectors h q
j
( ) are formed;

— for each hash vector h p
j
( ) , the node is found in T j that corresponds to h p

j
( ) with the largest number of

coincident first elements of these vectors;

— beginning with the nodes found, all L trees are synchronously scanned in the direction of their roots, and the

strings p corresponding to the mentioned nodes are added to the resulting multiset S of strings;

— when all the strings whose hash vectors coincide at a given level are added to S , the procedure is repeated for the

next (higher) level until the root is reached or | |S exceeds 2L .

As a result, we obtain the multiset S of strings (candidates for a neighbor that is approximately nearest to q) that are

ordered in decreasing order of depths of tree nodes up to which the first elements of hash vectors of the corresponding string

and request coincided. By the level of a string from S we will hereafter understand the depth of the last node of the tree at

which the first elements of the hash vectors of the request and this string still coincide.

According to Theorem 5.1 from [11], S contains neighbors approximately nearest to the request q with nonzero

constant probability (by analogy with Theorem 1).

3. NUMERICAL INVESTIGATION OF THEORETICAL CONSTRAINTS

3.1. Experimental Base RandomStrings

To check the theoretical results, experiments with the deterministic and probabilistic schemes were performed using

artificially generated data. Some (random) string (center) q was randomly edited using the operations of insertion,

elimination, and replacement. The strings obtained after such an editing form a collection of strings. Since the total number

of operations is much smaller than the length of a string and the edit distance cannot be calculated in view of computational

complexity, we assume that the edit distance is approximately equal to the sum of numbers of distortions. A similar

assumption is made in [12]. In what follows, we will refer to this collection of strings as RandomStrings.

3.2. Deterministic Scheme

Checking theoretical constraints. The experimental investigation of the validity of the fact whether the value of the

distance D x y( , ) from formula (3) is in interval (4) and (5) was pursued for strings from the RandomStrings base. In Fig. 1,

minimum (crosses) and maximum (noughts) experimental values of the quantity D x y( , ) are given for each value of the edit

distance ed ( , )x y for n � 5000 and n � 10000. The diagram becomes flat near to the greatest possible value of the distance

D x y w q q( , ) [ ( )– – ]� �2 1

2 1

(40 for n � 5000 and 58 for n � 10000) when, in each window, there are 2 1( – )w q � different

q-grams for q q q q� � �
1 1 2

1, , , . The theoretical values of upper (4) and lower (5) bounds of D x y( , ) are represented,

respectively, by continuous and thin dotted lines. As is obvious, the experimental data correspond to the theoretical estimates.

3.3. Randomized Scheme

Checking theoretical constraints. As in the case of the deterministic variant of the scheme, using artificially

generated strings of different lengths for the randomized variant, we experimentally check whether the theoretically

predicted values of probabilities p
col

of collision of hash function (6) are within limits (7) and (8). Figure 2 presents the

experimentally obtained probabilities of coincidence of the values of hash function (6) for strings of length n � 1000 and

n � 3000 together with the theoretical points of the upper (noughts) and lower (crosses) bounds. As is obvious, these

experimental data also correspond to the theoretical estimates.

Choosing the value of L and additional filtering. Since necessary resources grow linearly with L , the values of L

(9) turn out to be too large [11] in practice. However, the use of smaller values does not guarantee that at least one string y

such that we have ed( , y)q k�
2

will be in the returned multiset S . Subsequent experiments were performed to examine the

influence (on the “quality” of the multiset S ) of the choice of smaller (than theoretical) values of L and also of an additional

filtering of the multiset S (this filtering can presumably eliminate strings for which we have ed( , )q y k�
2

) (false positives).

496



The experiments were conducted using the methods of estimation of quality of the multiset S that are described below.

A. The method of estimation based on the precision value.

B. The method of estimation based on an ordering of the multiset S with respect to a known etalon.

Experiment on the estimation of the quality of S on the basis of the precision value. In search systems for the

investigation of quality of the set of documents returned as the answer to a request, a compromise between the number of relevant

texts (true positives) and the number of irrelevant texts (false positives) is traditionally analyzed. To this end, the precision value p
(the ratio of the number of returned documents relevant to the request to the total number of returned documents) and

completeness value r (the ratio of the number of returned documents relevant to the request to the total number of relevant

documents) are determined. These values are usually represented by diagrams of dependence of precision on completeness [13].

In the present article, this approach is not informative since the considered problem of searching for the approximate

nearest neighbor implies the determination of one neighbor rather that a great many neighbors. Therefore, the ratio

(completeness) | ( , ) | / | ( , ) |B q k P S B q k P
2 2

� � � is not informative.

The situation with the noninformativeness of completeness also arises in estimating the quality of search systems,

namely, since the entire set of returned results is of no interest to the user, he usually restricts himself to the browsing of only

first pages of the results obtained [14]. In these cases, instead of precision and completeness, the precision characteristic at a

level n is usually used (the precision at n P n/ @ ) [15] that is computed as the precision on the set consisted of the first n

results. In the case being considered, this level is naturally bounded by the size of the multiset S , and the precision at the

level | |S is specified as | ( , ) |/| |B q k P S S
2

� � .
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Fig. 2. Dependence of experimental values of the probability of collision of hash

functions h xi ( ) and h yi ( ) on the edit distance between strings of length 1000 (a)

and 3000 (b) symbols.

a b

ed ( , )x y

p
col

p
col

Fig. 1. Typical dependence of the distance D x y( , ) on ed ( , )x y for n � 5000 (a)

and n � 10000 (b) symbols.
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In order to avoid the introduction of an offset into the precision estimate at the level | |S , in view of unequal numbers

of strings inside and outside of the sphere B q k( , )

2

and different numbers of strings at a definite distance from q, we selected

2200 strings of length equal to 1000 symbols from the RandomStrings collection (Sec. 3.1) (in this case, k
2

126� ) in such a

manner that the number of strings belonging to B q k( , )

2

consisted of half the total number of strings and the number of

strings for each value of distance from the center q did not exceed 10. The obtained set P contained strings whose edit

distance from the center q varied from 10 to 248.

The set P was stored as an LSH forest with the help of the randomized scheme from item 2.2. A request q was applied

to the input of the approximate nearest neighbor search procedure. Based on the set S S L(| | )� 4 obtained at the output for

each request, the precision at levels 0 5. L (where L is even), L L L L, , ,2 3 4 was computed. Precision values were averaged over

100 random independent realizations of the LSH-forest. Their values and dispersion � p are presented in Table 1.

For small values of L , the maximal precision is observed, which is a distinctive feature of the LSH-forest procedure

returning the set of strings S arranged by level depths. With increasing the value of L , the precision first decreases, which is

explained by better chances for the strings from P B q k\ ( , )

2

to be in S , but, in what follows, precision ceases to essentially

change and the dispersion of its values simultaneously decreases, which allows one to speak about the stabilization of

precision values. A similar effect is observed as a result of increasing | |S . Thus, in practice, it suffices to use the value of L

equal to several tens (for example, 30 or 40). This makes it possible to obtain an acceptable precision level and to save

resources. The value of | |S can be fixed, for example, the theoretically recommended value 2L can be used.

Experiment on the estimation of ordering of multisets. We investigate the correspondence of string order in S to

the actual ordering of the same strings based on the edit distance from q. We denote by S � the multiset of values of the edit

distance from the strings from S to q S x q x S, { , | }.� � �ed ( )

To compare ordered multisets, we will use the generalized Kendall distance [16] as the basis that allows one to

compare ordered sets by introducing various penalties for finding elements in different relative orders in sets M
1

and M
2

. In

particular, if two elements i j M M, � �
1 2

belong to the sets with indices i i j
1 2 1

, , , and j
2

, then the penalty u is computed

according to the following rules:
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TABLE 1

L

Precision Value at the Level | |S for

| | .S L� 0 5 � p, . L0 5

| |S L� � p, L1

| |S L� 2 � p, L2

| |S L� 3 � p, L3

| |S L� 4 � p, L4

1 0.950 0.048 0.945 0.029 0.927 0.025 0.893 0.031

2 0.930 0.065 0.895 0.056 0.853 0.054 0.825 0.032 0.810 0.028

3 0.885 0.050 0.816 0.035 0.784 0.030 0.770 0.025

4 0.855 0.071 0.842 0.041 0.810 0.031 0.777 0.023 0.757 0.021

5 0.824 0.039 0.786 0.021 0.759 0.014 0.735 0.014

6 0.853 0.052 0.797 0.040 0.782 0.025 0.760 0.019 0.730 0.014

7 0.778 0.031 0.768 0.018 0.743 0.013 0.721 0.010

8 0.846 0.038 0.791 0.024 0.755 0.016 0.729 0.013 0.724 0.010

9 0.759 0.024 0.741 0.013 0.717 0.011 0.697 0.009

10 0.860 0.030 0.787 0.024 0.749 0.015 0.722 0.009 0.689 0.008

12 0.807 0.035 0.776 0.021 0.740 0.013 0.712 0.009 0.688 0.007

14 0.821 0.028 0.770 0.018 0.740 0.010 0.716 0.007 0.682 0.006

16 0.809 0.021 0.746 0.013 0.721 0.010 0.691 0.007 0.673 0.005

18 0.845 0.019 0.765 0.014 0.719 0.008 0.686 0.005 0.665 0.004

20 0.811 0.024 0.762 0.014 0.708 0.006 0.682 0.005 0.658 0.004



(1) if i i j j i i j j
1 2 1 2 1 2 1 2

� � � �, ( , ) , then u � 0 ;

(2) if i i j j i i j j
1 2 1 2 1 2 1 2

� � � �, ( , ) , then u � 1;

(3) if i i
2 1

( ) is not defined, i.e., the corresponding element does not belong to the second (first) set and

j j j j
1 2 1 2

� �( ) , then u � 0 ;

(4) if j j
2 1

( ) is not defined, i.e., the corresponding element does not belong to the second (first) set and

i i i i
1 2 1 2

� �( ), then u � 0 ;

(5) if i j i j
1 2 2 1

, ( , ) is not defined, i.e., each element belongs accordingly to its set, then we have u p� .

The parameter p is a controllable penalty for a situation in which the first (second) element is absent in one set but is

present in the other and vice versa. For these experiments, we used p � 1.

The distance D M MK ( , )

1 2

between sets is the sum of penalties of all pairs of elements M M
1 2

� ,

D M M u i jK i j M M( , ) ( , )

,1 2

1 2

�
� �

� . (11)

Here, the described algorithm for calculation of the generalized Kendall distance is changed with a view to applying it

to ordered multisets (values of edit distances from q to nearest strings) as follows. For each value of the edit distance

from S S� � �
1 2

, entering in at least one of the multisets, its each jth occurrence in both multisets is sequentially

transformed into a unique abstract element of a new set and is conditionally denoted by the symbol s j , where the

index corresponds to the serial number under which it enters into this set. In particular, if an element enters in one of

the sets only once, then its index is equal to unity. For example, from the sets S � �
1

12 3 4 4 3 5{ }, , , , , , and

S � �
2

13 3 4 4 3 4{ }, , , , , , , we obtain the following sets of elements: S M� � �
1 1 1 1 1 1 2 2 1

1 2 3 4 4 3 5{ }, , , , , , and S M� � �
2 2

{ }1 3 3 4 4 3 4

1 1 2 1 2 3 3

, , , , , , . We denote the set of elements that is obtained from S � with the help of the described method

by M S( )� .

Thus, the problem of comparison of the ordered multisets
�S
1

and
�S
2

is reduced to the problem of comparison of

ordered sets M S( )
�
1

and M S( )
�
2

.

As in the experiment on the computation of the precision at the level | |S (see item A), the number of strings in S that

are returned by the LSH-forest procedure and that appears in the description of the algorithm as 2L was variable, i.e., the

algorithm returned the mentioned number of strings obtained as a result of ascending LSH trees.

The investigation was pursued on a collection of strings of RandomStrings (see item 3.1). The same 2200 strings of

the length equal to 1000 symbols ( )k
2

126� as in the previous experiment. The set P was stored as a LSH forest with the

help of the procedure considered in item 2.2. A request was applied q to the input of the approximate nearest neighbor search

procedure.

We denote by
�X the multiset of values of actual edit distances (arranged in increasing order) from the center q to its

nearest neighbors, and
�Y is the multiset (ordered during the execution of the LSH-forest procedure) of values of edit
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Fig. 3. Dependence of DK on the number of trees L for the cardinalities of the multiset

| |S � � 50 (a) and multiset | |S � � 200 (b).

a b

D
K D

K

L



distances from the center q to the strings returned by the LSH-forest procedure. We will compute the mentioned distance

D M X M YK ( ( ), ( ))� � by formula (11) for | |
� �S 50 and | |

� �S 200, where the cardinality of the set M X( )� was restricted to the

value of | ( )| | |.M Y S� � �

The results were averaged over 100 random independent realizations of an LSH forest. In Fig. 3, the dependence of

the distance D M X M YK ( ( ), ( ))� � on the number of trees L in a forest is shown under various constraints on the maximal

cardinality of the returned set
�S in using the following methods of its additional filtering:

(1) all (without filtering);

(2) == max (only the strings coincident with the request q at the deepest level for a given S );

(3) == half (the strings coincident at the level from


 �
K

avg

to

� �
K

avg

;

(4) >= half (the strings coincident at a level higher or equal to K
avg

) ,

where K
avg

is the average level value among the returned strings.

As is easily seen, D M X M YK ( ( ), ( ))� � slightly decreases with increasing L, which can be explained by the increase in

| |S . Therefore, as well as in the previous experiment, one can draw the conclusion about the possibility of fixation of a small

value of L .

The filtering methods ==max and ==half take precedence over the other methods and thereby substantiate that the

coincidence of strings at deeper levels testifies to their greater similarity.

4. EXPERIMENTS WITH TEXT COLLECTIONS

The method considered in Sec. 3 was applied in the problem of searching for duplicates in text collections and also in

the email spam filtering problem. The used approach to the solution of these problems is based on the search for approximate

duplicates of text data.

4.1. Problem of Searching for Duplicates in Text Collections

The operation of searching for (approximate) duplicates in text documents requires efficient execution in document

management systems. This operation becomes especially required in Internet search machines. The documents that are

approximate duplicates with respect to one another are widespread in the Internet. Demonstrative examples are collections of

FAQs and guides for programming languages and commands of operational systems. Moreover, some technologies of

involving visitors in sites provide for filling “counterfeit” pages by fragments of texts from legitimate pages with a view to

displaying paid advertising or redirecting visitors to other sites.

Description of collections. Duplicates were searched for in collections of texts of Reuters-21578 collection [17]

(21578 texts of length up to 8316 symbols) and in training texts of the British National Corpus [18] (4054 texts of length up

to 2494232 symbols).

The Reuters-21578 collection is a standard collection for investigations in the field of processing text information.

The collection contains texts of the Reuters news agency that include many complete and approximate duplicates (abridged

versions of detailed news, data on exchange quotation whose dates and numbers in texts are different, etc.).

The British National Corpus (BNC) is a large collection of training texts or samples of modern written and spoken

English. It is a “gold standard” and a source of information on “correct” English (in particular, with the help of the

collection, the probabilities of prefixes, endings, and words used in different problems are computed). Theoretically,

duplicates must be absent in BNC since they distort the statistics of the correct language.

Technique of searching for duplicates. To search for duplicates in text collections, we assume that duplicates are the

strings in which there is at least one coincidence of hash vectors of length K . We find duplicates whose number depends on the

length n � 100, 150, 250, 500, 1000, 2000 symbols of trimming text and also on the number of duplicates for texts without

trimming (equalization according to the maximal length, which is conditionally denoted by n � 0). We use the following

parameters of the LSH scheme: the number of trees L � 1, 5 and dimensions of hash vectors K � 1, 2, 5, 10, 25, 50, 100, 150, 200.

Preliminary text filtering was used that preserves only symbols and figures (the C-function isalnum ()). The headings

of news texts were added to texts, and capital letters were replaced by lowercase ones. Any short text whose length was less

than the length of trimming n was extended to the mentioned length by the same special symbol at the end of the text.

Determination of the number of duplicates found in collections. The found number of approximate duplicates in

the collections Reuters-21578 and BNC, depending on the values of K and n, is given, respectively, in Tables 2 and 3 for

L � 1 and L � 5 . Symbols of the Ñ-function isalnum() were used.
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The number of approximate duplicates naturally decreases with increasing K and is stabilized for large K on values

that approximately correspond to the number of duplicates found by the method considered in [19] (320 duplicates). A great

number of approximate duplicates in the case when fixed-length trimmings not used (and their increase for the experiment

with symbols of isalnum () for n � 2000) is explained by a high similarity of many strings since identical symbols has been

501

TABLE 2

K

Number of Found Approximate Duplicates

L � 1

n �100 n � 150 n � 250 n � 500 n �750 n �1000 n �2000 n �0

1 21347 21334 21281 21224 21206 21213 21275 21458

2 20310 20183 19761 19312 19259 19271 19898 21442

5 8715 7780 5670 5450 7507 10244 15595 20725

10 409 379 806 2124 3273 4721 11109 19199

25 371 350 329 553 1504 1875 4280 17533

50 371 349 325 376 990 1444 3409 15227

100 370 346 322 305 268 271 584 4960

150 370 346 322 305 267 262 479 4823

200 369 346 322 305 267 261 264 2748

K L � 5

1 20709 20637 19326 21207 20860 21015 21034 21575

2 19531 19185 19439 19676 19094 20157 20384 21453

5 15513 14532 11858 9593 10393 12436 16536 20658

10 973 1251 2418 4552 6442 8407 14815 20664

25 689 629 615 1832 3168 3769 7238 17401

50 674 600 523 672 1459 2245 4266 14372

100 666 595 513 487 462 505 1592 6497

150 662 592 513 474 437 447 1253 5625

200 661 591 511 467 429 422 591 3499

TABLE 3

K

Number of Found Approximate Duplicates

L � 1

n �100 n �150 n �250 n �500 n �750 n �1000 n �2000 n �0

1 3943 3933 3915 3902 3888 3857 3832 4027

2 3545 3470 3346 3203 3044 2941 2619 4027

5 895 668 297 84 39 31 15 3523

10 10 9 9 8 8 9 9 3447

25 9 9 9 8 8 8 7 3403

50 9 9 9 8 8 8 7 2421

100 9 9 9 8 8 8 7 1263

150 9 9 9 8 8 8 7 1263

200 9 9 9 8 8 8 7 246

K L � 5

1 3587 3867 3782 3680 3543 3706 3645 4052

2 3618 3716 3613 3374 3503 3489 3349 4037

5 2187 1855 1020 378 168 81 37 4008

10 12 10 9 8 8 10 18 3997

25 9 9 9 8 8 8 9 3493

50 9 9 9 8 8 8 7 2430

100 9 9 9 8 8 8 7 1738

150 9 9 9 8 8 8 7 –

200 9 9 9 8 8 8 7 –



added to them to equalize their lengths. With increasing L , the number of duplicates also increases since the probability of

coincidence of K elements increases in at least one tree. However, as a result of a visual check, some duplicates have turned

out to be exact. A decrease in the number of duplicates with increasing the length of trimming for K 
 10 during a visual

check is caused by insignificant misprints in texts. For smaller values of K , these misprints are not necessarily cause

mismatches of hash vectors.

The time of searching for all duplicates equals the time of traversal of all the leaves in the corresponding LSH tree

and does not exceed 0.2 sec on a usual computer AMD Athlon XP 2600 with 1.5 GB of memory.

Comparative results of searching for duplicates. The results of searching for duplicates were compared with those

of the deterministic embedding method described in [21]. As the “gold standard,” pairs of duplicates were chosen for which

the value of the function PERL String::Similarity (based on the edit distance) is no smaller than 0.85 (the same approach was

used in creating a collection of duplicates in [20]).

We denote by T
sim

a set of texts for which the value of the function String::Similarity is larger or equal to sim.

Successively assuming the sets T T
0 95 0 99. .

, in the capacity of the “gold standard,” one can estimate the quality of our method

with the help of diagrams precision–completeness by a modification of the value of K (the values of K � 5, 10, 25, 50, 100,

150, 200) were used. As is obvious from Fig. 4, with increasing the threshold T
sim

by the value of the function

String::Similarity, the completeness increases, i.e., a larger portion of “correct” duplicates is added to the multiset S ,

reaching unity when sim � 1(only complete duplicates are considered). The decrease in precision with increasing the length

of trimming n is explained by a more frequent “successful application” of the method to a large number of special symbols

with the help of which text lengths were equalized.

Similar diagrams were constructed in Fig. 5 for the method of deterministic embedding (BY) described in [21] for the

lengths of trimming n � 100, 150, 250, 500, 750 (for larger values of n, we failed to obtain results in acceptable time). To

construct diagrams, we changed the threshold for Hamming distances between the obtained vectors and its value that

determined whether it can be considered to be a duplicate. Only the texts were checked in which the Hamming distance did

not exceed 15% of that maximally possible for a given length n.

To compare pairs of values precision–completeness, the integral estimate F-measure was used for which � � 1 and

that was specified as F r r
�

� �� � �( ) / ( )1 p p [22], where r denotes completeness and p denotes precision. For each curve

depicted in Figs. 4 and 5, the maximal value of F
1max

obtained at points of this curve was computed. The obtained values of

n � 250 and n � 500 are presented in Fig. 6. The points (crosses) presented in the legend of BY correspond to the algorithm

from [21] and the pluses correspond to the search algorithm using an LSH forest.

The results demonstrate the absence of essential distinctions between the two methods being compared with respect to the

“gold standard,” but the times of solution of the problem are essentially different. The order of search time for duplicates over the

entire collection with allowance made for the construction of trees in the method based on the application of an LSH forest

amounts to minutes, whereas this time varies from hours to days in the case of using the deterministic method BY from [21].
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Fig. 4. Dependence of the precision p on the completeness r for the values of

sim � 095. (a) and sim � 099. (b) when L � 5.

b

r

p p

a



We also investigated the quality of searching for duplicates using the standard base “Duplicates of Web-pages of the

collection ROMIP” [20] (granted by the company “Yandex”) that contains a list consisting of more than 10 million pairs of

Web-pages whose similarity is no smaller than 0.85 according to the value of the function PERL String::Similarity. The

above modification of the method of searching for duplicates (the search for duplicates was performed only among the

documents whose length is approximately equal to the length of a request). The values of the estimate F-measure up to 0.88

are obtained depending on the threshold for the value of the function PERL String::Similarity and the parameters K and L .

4.2. Problem of Estimation of the Amount of Spam in Collections of Electronic Letters

The detection of email spam is the urgent problem since the amount of spam among all email messages of an average user

has already attained 80–85% in 2005 [23] and continues to increase. Spam is detected by various methods and its detection

basically consists of checking spam letters for specific distinctive features of spam letters such as the presence of the address of a

sender in a blacklist, the use of HTML marking in a letter, and suspicious enclosures. Bayesian classification is also used [24].

A widespread spam technology that makes it possible to overcome simplest frequency filters is a modification of the

text of a letter (for example, a specific way of writing of words that cease to be exact copies of one another and distort the

picture of probabilities of words or prevent the preliminary processing of letters by filters [25]). To struggle against such

technologies, some researchers propose to detect spam using the comparison of letters with earlier saved ones [26]. We

investigated a realization of this idea on the basis of the developed methods of direct comparison of text letter strings. Thus,

we estimated the amount of spam that can be detected only with the help of comparison with earlier received spam letters

without use of specific knowledge and a detailed analysis of spam technologies.
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Fig. 6. Values of F
1max

for n � 250 (a) and n � 500 (b).

a b

F F

sim

Fig. 5. Dependence of the precision p on the completeness r for the method BY

when sim � 095. (a) and sim � 099. (b).

a b
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Description of used collections. The test base TREC 2006 Spam Track [27] was used, which is widely applied by

developers of spam detection systems in testing their products. It contains email messages marked by experts as spam and as

nonspam. The English-based part of the base TREC 2006 Spam Track contains | |P � 37822 marked real email messages

whose size amounts to 189 Mb and that include 24912 (66 %) spam messages.

Scheme of experiments and efficiency estimation. Collections in TREC and the used method of estimation of filter

efficiency are constructed with allowance made for the way of real use of spam filters by end users. The destination of filters

being tested is to classify messages applied in chronological order and then to be additionally trained as a result of ranging

each message in its correct class by the expert. This process corresponds to the usual order of actions of a user when he

successively chooses spam from incoming messages and thereby makes it possible to more exactly tune a filter.

According to the conditions of TREC, to each letter must be assigned a parameter, namely, the degree of “spamness”

of the letter (score) according to which it is classified as follows: the messages whose score is larger than a definite threshold

are considered as spam and the others are considered as usual letters. The quality of operation of a filter is estimated from

two key parameters, namely, the percentage of incorrectly classified spam messages sm% (false positives) and the percentage

of incorrectly classified nonspam messages hm% (false negatives). Changing the threshold for the value of score, one can

construct ROC curves (the dependence of sm% on hm%) based on which various algorithms are compared in TREC.

Experiments and assignment of score. A prefilter remained only alphabetic characters (C-function isalpha ()) in

letters and trimmed messages according to the size n � 1000 . Messages from collections were applied in chronological order

as requests to the approximate nearest-neighbor search procedure with the help of an LSH forest. The value of L varied from

1 to 200. The value of K was fixed according to formula (9) of the LSH scheme for given p
2

and P (see Sec. 2).

Based on the experiments considered in Sec. 3, the following two ways of assigning score to letters are chosen

according to their level in the LSH forest to which belongs approximate nearest neighbors of the input letters: according to

the maximum level k K
max

� and according to the average level k
avg

.

If a message was actually marked by the expert as “spam” in a collection, then it was added to the set Ð and the next

message was applied for classification.

Results. Figure 7 presents ROC curves for the method of assigning score depending on the maximum level (the

method based on the mean level yields similar results). As is easily seen, at the level hm% %� �5 10 , approximately 80% of

spam messages for the Spam Track 2006 are successfully detected.

As is experimentally established, after realizing the idea of spam detection based on approximate duplicates, its

significant part can be filtered, which allows one to estimate the applicability of this approach in large email servers as a
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Fig. 7. Dependence of the value of sm%

on hm% for the collection TRACK 2006

Spam Track with assigning score according

to the maximum level. The length of n �

1000.

sm%

hm%



component technology (a module) in more complex systems. The higher the centralization of an email service and the larger

the number of its users, the larger percentage of filtered spam can be obtained.

As is seen from ROC curves in Fig. 7, when L � 1, the obtained values of hm% are often smaller than when L � 1. This is

explained by a high degree of similarity of a part of legitimate letters to spam, for example, in view of using the html format that

remains in a letter in contrast to real spam detection systems in which html codes are usually analyzed and/or eliminated.

5. CONCLUSIONS

The experiments performed have confirmed the efficiency of the method of embedding an edit distance into a vector

space and also of a randomized method based on it as methods of finding approximately nearest strings [6]. The possibility

of applying the randomized method in real practical problems of searching for duplicates and detecting spam is

demonstrated. Taking into account that, in solving these problems, information on the specificity of an object domain is

intentionally ignored (although such a specificity must necessarily be used in solving real-world problems in practice), the

proposed method showed good results in solving the problem of estimating the amount of email spam and can be used as a

component part in spam detection systems.

We assume that systems based on the detection of spam as approximate duplicates will be especially efficient in large

email services of the type of Gmail. Since spam is always distributed among a large number of addressees, it might be

supposed that it can be detected much easily in an email service than in email boxes of individual users in which the amount

of spam is much smaller. A similar approach can be applied to individual users by passing to cooperative spam detection. An

example is the distributed spam detection system Vipul that uses sketches of messages marked as spam by the participants in

the system. Our hash vectors can be considered as such sketches.

Later on, we supposedly apply the approach to the search for approximate duplicates on the basis of the proposed

method of embedding an edit distance to other practical problems such as the search for genes or analysis of logs in

computer systems.
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