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ABSTRACT
We present here the contribution of the MADSPAM consor-
tium to the ECML/PKDD Discovery Challenge 2010. The
submitted method is based on both a RankBoost algorithm
and on propagation techniques.

1. INTRODUCTION
The ECML/PKDD Discovery Challenge 2010 was focused

on Web content quality. It involved three different tasks:

• task 1 was a categorization task (for English sites);

• task 2 was a quality ranking task (for English sites);

• task 3 was a multilingual transfer from task 2 for Ger-
man and French sites.

These tasks involved 10 different categories: spam, news,
commercial, educational, discussion lists, personal, neutral,
biased, trust and quality. These categories where not inde-
pendent (for instance spam vs. trust or neutral vs. biased).
For each category, the teams had to provide a global order-
ing of the sites with highly ranked sites first. These ordering
were evaluated with NDCG, an information retrieval metric
which emphasizes the top of lists.

The challenge dataset [1] was very rich: it included 85
compressed text files providing a wide variety of informa-
tion about web sites including training labels, URLs and
hyperlinks, several content-based and link-based features,
term frequencies and weightings, natural language process-
ing features and many others.

2. PROPOSED APPROACH

2.1 Formal definition of the problem
We denote I the set of host instances. This set is par-

titioned in two subsets Itrain and Itest, respectively for
training and testing. We consider also a set C of categories
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(|C| = 10 in this challenge). Reference scores yci are indexed
by training instance i ∈ Itrain and category c ∈ C. These
scores are known for the training hosts only. While the goal
of the challenge was to provide a rank for each remaining
host and for each category, we consider a task where we pre-
dict a numerical score ŷci for all test hosts i ∈ Itest. The final
ranking for category c is derived by sorting all the testing
instances by decreasing scores ŷci . To lighten the notations,
we drop the c superscripts when the category is clear from
context.

2.2 Outline of the approach
To combine efficiently the relational information and the

instance-based information, we used a semi-transductive two-
steps approach:

• the first step, described in section 2.3, was inductive:
we trained a ranking model on instance-based features;

• the second step, described in section 2.4, was trans-
ductive: we used the relational data to regularize the
predictions of the ranking model of the first step.

For the first step we built independent models for each
category, for the second one we also tested a global multi-
categories discriminant model. Our experiments and results
are described in section 3.

2.3 Instance-based model
As a baseline we used the pair-wise ranking algorithm

RankBoost [5] to train a ranking model for each category.
Each host instance i is assigned a vector of features xi =
(x1
i , . . . , x

d
i ). These features are composed of the informa-

tion extracted from both the content of the hosts and the
relations between them. In the experiments section 3, we
describe different possible set of features.

For a given number of training steps T the RankBoost
algorithm learns a scoring function H which is a linear com-
bination of ”simple” functions ht called weak learners. The
final ranking function is defined as:

H(xi) =

TX
t=1

αtht(xi) ,

where each αt is the weight assigned to the weak function
ht at step t of the learning process. We used the simplest
family of weak learners – decision stumps that depend on
one feature only:

h(xi) = [[xki > θ]] ,



where k is the selected feature index and θ is a learnt thresh-
old. These learners were trained using the approximate ”3-rd
method” described in [5].

In order to learn the final scoring function H, we minimize
a convex approximation of the pair-wise loss L(H):

L(H) =
X

i,j∈Itrain : yi<yj

D(i, j)[[H(xi) ≥ H(xj)]].

The positively-valued preference matrix D encodes the or-
derings observed in the training set: the higher the value
of D(i, j) is the more important it is to preserve the order
of hosts i and j. If D is chosen constant, the optimized
criterion is Kendall τ (equivalent to AUC when labels are
binary). For this challenge, to give more emphasis on score

differences, we choose D(i, j) =
yj−yi

ZD
, where ZD is a global

normalization factor.

2.4 Propagation schemes
While the RankBoost algorithm computes a score for each

host and each category using (among others) precomputed
relation-based features (section 3.1.4), it does not directly
consider inter-dependencies between the predicted scores of
the different hosts. We present here two methods to make
use of the graph structure information that aim at prop-
agating both the real scores of the training hosts and the
predicted scores of the testing hosts through inter-host links:

• The first one (section 2.4.1) is based on the minimiza-
tion of a regularized loss function and is very sim-
ilar to the work presented in [4].

• The second one (section 2.4.2) is based on the itera-
tive algorithm proposed in [7] and aims at learning a
propagation scheme that learns and uses correlations
between different labels resulting in a more complex
propagation scheme.

In the following, we will not consider the content of the graph
nodes (host instances), and will denote ŷci the instance-based
score predicted by the method described in section 2.3, i.e.
ŷci = Hc(xi) where Hc is the RankBoost model learned for
category c. We consider that wi,j is the weight of the link
between instances i and j. This weight is equal to 0 if there is
no edge between two hosts. We denote zci the score of node
i for category c obtained by using one of the propagation
methods presented below.

2.4.1 Regularization-based propagation
We define a loss function based on two assumptions. First,

a good final ranking of nodes is a ranking that is close the
ranking resulting from the instance-based model. Second, it
has to associate close ranks to connected nodes. This second
assumption is called smoothness and has been studied in
different recent works.

For a category c, the loss is defined as:

Lc =
X
i∈I

(zci − ŷci )2 + λ
X
i,j∈I

wi,j(z
c
i − zcj )2.

The first term corresponds to the first assumption while the
second is the smoothness regularization term. Parameter λ
corresponds to the balance between the two hypothesis and
is tuned by cross validation.

1: ∀i, zci ← ŷci
2: repeat
3: Choose node xi from the testing set randomly
4:

zci ←

P
j

λwi,jz
c
j + 2ŷciP

j

λwi,j + 2

5: until convergence

Figure 1: Inference algorithm for the regularization-
based propagation model.

1: repeat
2: Choose node xi from the testing set randomly
3: zci ← gθc(i)
4: until convergence

Figure 2: Inference algorithm for the iteration-based
propagation model. For each category c, gθc is
learned from the set of training nodes.

With such a loss function, the final scores ŷc∗i are com-
puted as:

(zc∗1 , ..., z
c∗
|I|) = argminzc

1,...,z
c
|I|
Lc.

Different optimization methods for minimizing the loss
can be used. We propose here to use a coordinate gradient
descend algorithm that proceeds by iteratively computing
the score of a node from the scores of its neighbors. The
algorithm is described in Figure 1.

2.4.2 Iteration-based propagation
The iteration-based propagation is a method presented in

Figure 2 which relies on fewer assumptions than the regulari-
zation-based method presented previously. The idea is to
learn a discriminant propagation scheme from the training
nodes and then to apply it iteratively on the whole graph.
Instead of considering the smoothness assumption, such a
method aims at automatically deducing how labels propa-
gate on the graph structure. It has two main advantages:
first it is based on less constraints than the regularization
model and is thus more expressive, second, it is able to han-
dle complex propagation schemes that correspond to propa-
gation of scores between different categories, capturing cor-
relations between the different classes, while the previous
model considers different categories as separate problems.
The iteration-based approach has recently shown good per-
formances on the problem of the annotation of nodes in a
multi-relational graph [7].

For this model, we consider a regression function gθc which
corresponds to the propagation scheme of scores for cate-
gory c. This function depends on a set of parameters θc
that will be learnt from the training nodes. Basically, this
model not only uses the scores of the neighboring nodes for
category c, but also both:

• the scores of the neighboring nodes for other cate-
gories, trying to learn a propagation between differ-
ent categories – e.g., spam scores propagates to trust
scores

• the scores of the considered node for other categories,



trying to learn ”rules” such as: if I am spam, then my
trust score is low.

This information is handled through a vectorial represen-
tation of the node i denoted by Φ(i, c) which is composed
of the previously defined information – ŷci scores, current zci
scores of the node and its neighbors. Due to lack of space, Φ
is not described in this paper and we refer to [7] for a de-
tailed description of the method. The propagation function
used here is a linear function gθc(i) = 〈θc; Φ(i, c)〉 learned
by minimizing a classical pairwise ranking loss.

3. EXPERIMENTS
We made a 5-fold cross validation using 4/5th of the 2449

provided labels to train rankers and kept 1/5th of labels to
evaluate and calibrate the models.

3.1 Datasets

3.1.1 Labels
Training labels for Task 2 and 3 were extracted from the

v2-en.labels-unified.csv file. In the experiments we didn’t
use any special handling of German and French languages,
the model learned on English labels was used on two other
languages (no quality labels were provided for other lan-
guages in the collection). A larger set of labels was also ob-
tained by collecting all labels from ∗.useful-labels.csv and re-
calculating the quality with the formula provided by the or-
ganizers (was used with nPR submission, see section 3.1.4).

3.1.2 Relational data
The provided link-graph was weighted by the number of

links between hosts. To enhance this graph, we reweighted
the edges according to textual similarity:

wi,j = ni,j · (δ + (1− δ) costfidf (xi,xj)) , (1)

where ni,j is the number of links between two hosts i, j ∈ I
and δ ∈ [0, 1] is a parameter tuned to balance the relative
importance of Web-links and textual content similarity.

3.1.3 Instance-level data
The instance-level features we used were of three types:

• 96 content-based synthetic features;

• 176 link-based synthetic features;

• a vocabulary of around 70K words weighted by tfidf .

As some hosts did not have features, we completed the fea-
tures with a w-weight-aware version of the PageRank [2]
for 10 different values of δ = 0, 0.1, . . . , 0.9 in (1) and 100
propagation steps on an unlabeled graph (www-hosts and
nowww-hosts were not merged):

R∗(j) = δf
X
i

R∗(j)w(i, j)

w(i, ·) + (1− δf )R0 , (2)

where w(i, ·) =
P
l w(i, l) is a weighted out-degree normal-

ization factor, R0 = 1/|I|, and δf = 0.85 as suggested in [2].

3.1.4 Feature sets
To train RankBoost we used several feature sets:

Figure 3: Boosting steps calibration: a rather stable
performance.

1. ”basic set”: all content- and the link-based features
provided by the organizers concatenated, amounting
totally to 272 numerical features.

2. ”PR set”: basic set augmented with the 10 more fea-
tures graph obtained using the formula (2) for values
of δ = 0, . . . , 0.9.

3. ”nPR set”: PR set but labeled with the larger set of
labels, as explained above.

4. ”PR1K set”: PR set with the set of tfidf values for
one thousand words having the largest tfidf values.

5. ”PR100W set”: PR set with the set of tfidf values for
one hundred most frequent words for each host.

6. ”PRall set”: PR set with the set of tfidf values for
about 70K words, covering almost full vocabulary of
the training set.

The number of training steps T was fixed by cross-validation
(c.f. Fig. 3).

3.2 Results

3.2.1 Selected features
The sum of RankBoost weights for feature f is denoted αf .

It estimates the contribution of this feature to the global pre-
diction. Table 2 gives the most important features according
to this criterion for the spam subtask.

Feature top_1000_query_prec_hp is one of the spam fea-
tures defined in [3], it evaluates the rate of top-query words
in a Web-site: this is a strong Web-spam indicator because
spammers often target the most frequent queries. On the
other hand, top_500_corpus_prec_avg evaluates the rate
of frequent words in a site: this is a good non-spam indica-
tor as spammers often neglect to add frequent grammatical
words in their forgery [6].

Features starting with PR_D are the weighted-PageRank
features as detailed in section 3.1.2 for different values of
δ. The traditional – mostly links-based – PageRank (like
PR_D0.80) is a good spam indicator because this ranking
criterion is often over optimized by spammers. On the other
hand, the content sensitive PageRank (like PR_D0.20) re-
mains a good quality indicator.



feature αf

top 1000 query prec hp 1.99
PR D0.80 1.29
top 100 query prec hp 1.16
“http” 1.05
frac visible hp 1.03
. . .
PR D0.20 -0.66
“money” -0.92
compress rate hp -0.96
avg length avg -1.25
top 500 corpus prec avg -1.57

Table 2: Most informative features for spam accord-
ing to RankBoost cumulative weighting. A negative
αf means a negative contribution.

3.2.2 Propagation models
The regularization-based model described in section 2.4.1

used the scores computed by the RankBoost algorithm using
the PRall set of features. We have used different values of
the λ and δ parameters. The best results presented here have
been obtained with λ = 0.01 and δ = 0.9. These results
clearly show the good influence of the propagation model
in comparison to the instance-based model. The iteration
scheme also obtained its best performances on the δ = 0.9
graph. We can see that it outperforms the regularization-
based propagation model on the full set. This shows the
ability of this model to handle complex propagation schemes
that are not considered by the regularization model which is
based on a too strong assumption. Particularly, this model
is able to learn correlations between the different categories.

4. CONCLUSION
We have described the three models submitted to the Dis-

covery Challenge 2010 by the MADSPAM consortium. The
first model is a classical RankBoost method, while the two
other methods are able to handle the dependencies between
the predicted scores. Mainly, we have proposed a classi-
cal regularization-based propagation model and also an it-
erative algorithm able to handle more complex propagation
schemes. The results presented show the effectiveness of the
approaches. All these models are able to handle large scale
datasets and many different categories. Moreover, all the
selected features and keywords for the categories well cor-
respond to the intuition (section 3.2.1) and show that these
models can be used to understand different tasks. The qual-
ity of Web-pages was evaluated with NDCG. Because the
quality is not query-dependent, it could be interesting, as
in [8], to use a non-discounted metric. To go further with

method
task 1 task 2 task 3 task 3

(en) (de) (fr)
basic 0.6387 0.9277 0.8378 0.8372

Rank- PR 0.5744 0.9303 0.8504 0.8332
Boost nPR 0.6215 0.9188 0.8453 0.8252

PR1K 0.6497 0.9389 0.8125 0.8415
PR100W 0.6367 0.9302 0.8465 0.8296

Propa- Reg/PRall 0.7019 0.8166 0.8520 0.7969
gation Iter/PR1K 0.6592 0.9299 0.8347 0.8232

Table 3: Results on the validation subset.

method
task 1 task 2 task 3 task 3

(en) (de) (fr)
basic 0.6571 0.9048 0.7969 0.8212

Rank- PR 0.6191 0.9164 0.8030 0.8184
Boost nPR 0.6318 0.9108 0.8157 0.8203

PR1K 0.6489 0.9228 0.8207 0.8455
PR100W 0.6319 0.9183 0.8049 0.8244

Propa- Reg/PRall 0.6956 0.8350 0.8032 0.7940
gation Iter/PR1K 0.7010 0.9233 0.8157 0.8362

Table 4: Results on the full test set.

query-dependence, if we consider the quality of a Web-site as
its ability to be frequently a good answer to popular queries,
the best way to evaluate static ranking is probably to use
average query-level NDCG. Static and dynamic ranking al-
gorithms could then be evaluated on the same ground.
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