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Performance Discrepancy in SMT (1)

Anatomy of a SMT system:

1. build a (large) search space of hypotheses translation

2. define a linear-scoring function

» linear combination of ~ 20 features
> weights are chosen to maximize BLEU score on a dev set
(MERT)

3. look for the highest-scoring hypothesis (MAP inference)

Research in SMT:

» change any of the previous point...
> and be happy with a 0.5-1 BLEU point improvement...

» ...until we search for oracle hypotheses



Performance Discrepancy in SMT (2)

Oracle decoding [Wisniewski 10, Sokolov 12]

» failure analysis procedure

» use knowledge of the reference to guide search during

decoding
» find the “best” hypotheses (i.e.: highest BLEU score
achievable)
found by decoder lattice oracles
BLEU fr — en ~ 28 ~ 50
BLEU de — en ~ 22 ~ 38
BLEU en — de ~ 16 ~ 30

= potentially two-fold improvement



How to Solve the Performance Discrepancy Problem?

> oracles not reachable even with “advanced” learning:

lattice MERT [Macherey 08, Kumar 09, Sokolov 11]
exact MERT [Galley 11]

MIRA [Chiang 08]

» tuning as ranking [Hopkins 11]
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» adding more features has only limited impact
» eg.: +1,5 BLEU with 11,001 features [Chiang 09]
» is scoring function main bottleneck?

» poor and few features?
» wrong models? +this presentation

Goal of this work:
Can conventional SMT systems benefit from non-linear
scoring?



More Precisely

Goal: first attempt to assess the impact of using a non-linear
scoring function

First attempt:
> n-best re-ranking to avoid a tight integration with the decoder

» only consider the standard features used by a Moses system



Reranking Model

“Classical reranking” model:

1. Training:
» run full training (MERT)
> take last iteration’s n-best lists
> train the re-scoring function
2. Testing:
> generate n-best lists
» score all hypotheses with the non-linear function
> select the best scoring hypothesis



Non-linear Scoring Function

“New" scoring function:

T
H(e,f) = a;-hi (g f))
t=1

where:
» g(e,f) feature vector
> oy weights

> hy “simple” non-linear functions (weak-learner)

= class of functions considered by boosting algorithms



Learning Criterion

Loss function

» hypotheses naturally ordered under sentence-level BLEU score

» ensure that two sentences are ordered in the same order
according to their score and their sentence-level BLEU
approximation

» deduce parameters comparing even mediocre or bad
hypothesis

Tuning with Ranking
» first introduced by [Hopkins 11]

» earlier ranking approaches redefined losses, not scoring
functions



Hyper-Parameters

1. Number of Components
» T = number of weak learners to combine

2. Weak Functions
» one weak learner per features

| |

decision stumps: piece-wise linear learners
» simplest weak-learner » number of pieces is chosen
> state-of-the-art performance automatically

in many tasks > linear as a special case



Experimental Setup (1)

Decoder

» NCode: in-house phrase-based decoder

» similar results with Moses

Two Configurations

» basic: 11 features (found in any decoder), 100-best
» language model
» distortion and reordering models,
» translation model (lexicalized)
» words and phrases penalties

» extended: 23 features (WMT'12 best system for fr<»en),
300-best
> lexicalized reordering models
» add neural-network models features (LM & TM)



Experimental Setup (2)

Datasets
All experiments were done on the WMT data

» WMT'09 for training (both MERT & RankBoost)
» test on WMT'10, WMT'11 and WMT'12

MERT setup

» MERT is unstable = 8 independent (re)runs, each with:

» 20 init. points restarts
» 30 random direction (additional to axes)



Feature Transformations

For each feature, we considered:

> the normalized feature value: feature value divided by the
number of words and phrases

» the scaled feature value: re-scale all features to [0, 1]

» the corresponding rank-features: sort according to feature &
take its rank

» score of the linear model

configuration feature sets #features

basic — 12
extended — 24
basic scale 33
scale & rank 45

extended scale 69

scale & rank 93



Impact of hyper-parameters
On WMT'10 test set:
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Results

Using a validation set:

val./test WMT'10 WMT'1l WMT'12 MERT 300-best oracle

WMT'10 — 29.68 29.58 29.38 39.72
WMT'11 30.42 — 30.41 30.16 41.11
WMT'12 30.50 30.52 — 30.38 40.64

extended condition, all scores are averaged over 8 runs

» always improving baseline
» still far from oracle scores

> better improvements if using an homogeneous validation set
(eg. cross-validation)



Impact of Non-Linearity

Selection phases of models/features:
1. T < 10 select MERT linear model score
2. 10 < T < 50 use other features, only linear models
3. 50 < T non-linearity starts to appear
4. T 2z M: over-fitting



Maximum Relative Gains
Maximum relative gains in BLEU for 8 re-runs on WMT'10:
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» worse MERT runs improve more (not surprising)
» reranked worst MERT surpasses best MERT (surprising)



Conclusions

Conclusions

» non-linear approach to reranking n-best lists
» proof-of-concept to avoid tight decoder integration

» approach boosts performance by at least +0.4 BLEU-points

Limits/Future Works

> very small gain = hypotheses translation are selected with a
linear function
» future directions:

» non-linear lattice rescoring / decoding with a non-linear
scoring function
» add more features



Thank you for your attention!
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