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Performance Discrepancy in SMT (1)

Anatomy of a SMT system:

1. build a (large) search space of hypotheses translation

2. define a linear-scoring function
I linear combination of ' 20 features
I weights are chosen to maximize BLEU score on a dev set

(MERT)

3. look for the highest-scoring hypothesis (MAP inference)

Research in SMT:

I change any of the previous point...

I and be happy with a 0.5-1 BLEU point improvement...

I ...until we search for oracle hypotheses



Performance Discrepancy in SMT (2)

Oracle decoding [Wisniewski 10, Sokolov 12]

I failure analysis procedure

I use knowledge of the reference to guide search during
decoding

I find the “best” hypotheses (i.e.: highest BLEU score
achievable)

found by decoder lattice oracles

BLEU fr → en ∼ 28 ∼ 50
BLEU de → en ∼ 22 ∼ 38
BLEU en → de ∼ 16 ∼ 30

⇒ potentially two-fold improvement



How to Solve the Performance Discrepancy Problem?

I oracles not reachable even with “advanced” learning:
I lattice MERT [Macherey 08, Kumar 09, Sokolov 11]
I exact MERT [Galley 11]
I MIRA [Chiang 08]
I tuning as ranking [Hopkins 11]

I adding more features has only limited impact
I e.g.: +1,5 BLEU with 11,001 features [Chiang 09]

I is scoring function main bottleneck?
I poor and few features?
I wrong models? ←this presentation

Goal of this work:
Can conventional SMT systems benefit from non-linear
scoring?



More Precisely

Goal: first attempt to assess the impact of using a non-linear
scoring function

First attempt:

I n-best re-ranking to avoid a tight integration with the decoder

I only consider the standard features used by a Moses system



Reranking Model

“Classical reranking” model:

1. Training:
I run full training (MERT)
I take last iteration’s n-best lists
I train the re-scoring function

2. Testing:
I generate n-best lists
I score all hypotheses with the non-linear function
I select the best scoring hypothesis



Non-linear Scoring Function

“New” scoring function:

H(e, f) =

T∑
t=1

αt · ht (ḡ(e, f))

where:

I ḡ(e, f) feature vector

I αt weights

I ht “simple” non-linear functions (weak-learner)

⇒ class of functions considered by boosting algorithms



Learning Criterion

Loss function

I hypotheses naturally ordered under sentence-level BLEU score

I ensure that two sentences are ordered in the same order
according to their score and their sentence-level BLEU
approximation

I deduce parameters comparing even mediocre or bad
hypothesis

Tuning with Ranking

I first introduced by [Hopkins 11]

I earlier ranking approaches redefined losses, not scoring
functions



Hyper-Parameters

1. Number of Components
I T = number of weak learners to combine

2. Weak Functions
I one weak learner per features
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decision stumps:

I simplest weak-learner

I state-of-the-art performance
in many tasks
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piece-wise linear learners

I number of pieces is chosen
automatically

I linear as a special case



Experimental Setup (1)

Decoder

I NCode: in-house phrase-based decoder

I similar results with Moses

Two Configurations

I basic: 11 features (found in any decoder), 100-best
I language model
I distortion and reordering models,
I translation model (lexicalized)
I words and phrases penalties

I extended: 23 features (WMT’12 best system for fr↔en),
300-best

I lexicalized reordering models
I add neural-network models features (LM & TM)



Experimental Setup (2)

Datasets
All experiments were done on the WMT data

I WMT’09 for training (both MERT & RankBoost)

I test on WMT’10, WMT’11 and WMT’12

MERT setup

I MERT is unstable ⇒ 8 independent (re)runs, each with:
I 20 init. points restarts
I 30 random direction (additional to axes)



Feature Transformations

For each feature, we considered:

I the normalized feature value: feature value divided by the
number of words and phrases

I the scaled feature value: re-scale all features to [0, 1]

I the corresponding rank-features: sort according to feature &
take its rank

I score of the linear model

configuration feature sets #features
basic — 12

extended — 24

basic
scale 33

scale & rank 45

extended
scale 69

scale & rank 93



Impact of hyper-parameters
On WMT’10 test set:
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I overfitting ⇒ need a stopping criterion
I piece-wise linear weak learners perform best



Results

Using a validation set:

val./test WMT’10 WMT’11 WMT’12 MERT 300-best oracle
WMT’10 — 29.68 29.58 29.38 39.72
WMT’11 30.42 — 30.41 30.16 41.11
WMT’12 30.50 30.52 — 30.38 40.64

extended condition, all scores are averaged over 8 runs

I always improving baseline

I still far from oracle scores

I better improvements if using an homogeneous validation set
(eg. cross-validation)



Impact of Non-Linearity

Selection phases of models/features:

1. T . 10 select MERT linear model score

2. 10 . T . 50 use other features, only linear models

3. 50 . T non-linearity starts to appear

4. T &M : over-fitting



Maximum Relative Gains
Maximum relative gains in BLEU for 8 re-runs on WMT’10:
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I worse MERT runs improve more (not surprising)

I reranked worst MERT surpasses best MERT (surprising)



Conclusions

Conclusions

I non-linear approach to reranking n-best lists

I proof-of-concept to avoid tight decoder integration

I approach boosts performance by at least +0.4 BLEU-points

Limits/Future Works

I very small gain ⇒ hypotheses translation are selected with a
linear function

I future directions:
I non-linear lattice rescoring / decoding with a non-linear

scoring function
I add more features



Thank you for your attention!
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