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Paper Highlights

4 replaces random feature hashes with learned feature hashes

4 simple greedy algorithm for learning hashes

4 learning optimizes task objective

4 data-dependent hashing improves classi�cation accuracy:

H for high-dimensional features

H in case of tight memory constrains (many collisions)

New hash function HASHnew that:

• is informed of the �nal learning task

• can be done in preprocessing

• leverages existing optimization procedures

Classical Random Feature Hashing [Ganchev and Dredze, 2008, Shi et al., 2009, Weinberger et al., 2009]

Consider classi�cation task (for simplicity):

á sparse high-dimensional labeled data:
(φn, yn) ∈ RD × {−1,+1}, D � 1

á linear scoring f(φ;w) = 〈w,φ〉

4 high dimension D ⇒ approximate separability

6 But we need to access w rapidly:

á must keep w in RAM → may not �t

á storage model matters:

- (un)ordered associative tables need RAM
and/or are slow

4 linear arrays are fastest ⇒
need integer feature indexes

Common solution:

• feature hashing trick (alphabet elimination/random feature mixing)

• Idea:
� per-coordinate mapping into a lower-dimension feature space

� with data-independent pseudo-random function HASH:

φ′d′ =
∑

d:HASH(d)=d′

φd, where d is a feature key (usually a string)

4 ||φ′|| ' ||φ|| with high probability

4 works surprisingly well: little or no sacri�ce in quality!

4 implemented in many learning kits (Vowpal Wabbit, etc.)

Can we do even better with data-dependant hashing ?©

Learning Feature Hashes by Optimizing Hinge Loss with Boosting

1 : greedy learning of Hamming representation H
• will look for wd representable as

∑
t≤T αtht(ν(d))

• close H(ν(d)) = [h1(ν(d)), . . . , hT (ν(d))] for di�erent d ⇒
close values of respective wd.

Hinge loss: L =
∑
n

(
1− yn

∑
d

∑
t≤T αtht(ν(d))φn,d

)
+

Learning H(νd) in a boosting fashion:

• Ht−1(ν) = [h1(ν), . . . , ht−1(ν)] ∈ {0, 1}t−1

• Ht(ν) is obtained by appending a bit-function �
a per-coordinate decision stump ht = [[νk∗ > θ∗]]:

k∗, θ∗ = arg max
k,θ

∣∣∣ ∑
n:yn〈wt,φn〉<1

yn
∑
d

φn,d[[νd,k ≥ θ]]
∣∣∣

2 : distance-sensitive projection B
• Task: compress H(ν) into short codes that have a high collision
probability for close H(ν).

• we use the KOR random traces [Kushilevitz et al., 1998]:

� for a bit-vector h = [h1, . . . , hT ]

� and random Bernoulli vectors rm = [rm,1, . . . , rm,T ]

� the trace is t = [t1, . . . , tM ], s.t. tm = 〈h, rm〉 mod 2.

• tm has a bias towards closer h, ampli�ed by repeating M times

• collision probability decays with DH(h1,h2) and M :

P
[
t1 = t2|DH(h1,h2) ≤ ∆

]
≥
(1

2
+

1

2
(1− 2p)∆

)M

Idea Overview

Intuition: hashing d, d′ together entails less loss change if wd ' wd′

⇒ approximate wd − wd′ as dist. between learnable representations:

0 Equip each feature d with a vector ν(d) ∈ RV
(e.g. some NLP stats about d's usage in the wild)

1 Learn a map ν(d) 7→ H(ν(d)) ∈ {0, 1}T , s.t. the Hamming dist.
between H(ν(d1)),H(ν(d2)) captures d1, d2's similarity for task

2 Apply surjection B : {0, 1}T → {0 . . .M}, s.t. close Hamming
vectors get projected into the same integer

3 De�ne HASHnew = H◦B, interpret outputs as RAM addresses.

Proof-of-Concept Experiments

H dataset #1: 20-newsgroups

� 3 (one vs. all) class. tasks for
comp, sci, talk

� 70% train / 30% test

� feature dim.: 700K (all 2-grams)

H dataset #2: RCV1

� hashes learned on 100K examples

� Vowpal Wabbit ran on full train set

� feature dim.: 40K
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• vectors ν �lled with 1/2-gram DICE coe�cients:
ν′d(d) = dice(d, d′) for all d, d′

• Vowpal Wabbit was trained on preprocessed data
(with learned hashes)

• plots: classi�cation accuracy vs. # of bits b

• the higher the curve, the better

Conclusion

For the considered classi�cation task:

• the less RAM is available (the smaller b)

• or the higher dim. input feature space has

.. the more sense it makes to learn hashes

Future work:

• ranking objectives

• tasks with very large dimension:

� information retrieval

� collaborative �ltering
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