
Learning to Translate Queries for CLIR

Artem Sokolov∗
Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

sokolov@cl.uni-
heidelberg.de

Felix Hieber∗
Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

hieber@cl.uni-
heidelberg.de

Stefan Riezler
Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

riezler@cl.uni-
heidelberg.de

ABSTRACT
The statistical machine translation (SMT) component of
cross-lingual information retrieval (CLIR) systems is often
regarded as black box that is optimized for translation qual-
ity independent from the retrieval task. In recent work [10],
SMT has been tuned for retrieval by training a reranker on
k-best translations ordered according to their retrieval per-
formance. In this paper we propose a decomposable proxy
for retrieval quality that obviates the need for costly inter-
mediate retrieval. Furthermore, we explore the full search
space of the SMT decoder by directly optimizing decoder
parameters under a retrieval-based objective. Experimen-
tal results for patent retrieval show our approach to be a
promising alternative to the standard pipeline approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.7 [Artificial Intelligence]:
Natural Language Processing

General Terms
Algorithms, Experimentation

Keywords
Machine translation, cross-lingual retrieval, patent search

1. INTRODUCTION
Cross-Lingual Information Retrieval (CLIR) addresses the

problem of ranking documents whose language differs from
the query language. One of the simplest yet well perform-
ing approaches to CLIR is based on query translation using
an existing Statistical Machine Translation (SMT) system
which is treated as a black box. Thus, a monolingual re-
trieval engine does not need to be altered after translating
queries into the target language. This approach is justified
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in the absence of cross-lingual relevance annotations, but in
the presence of large parallel text corpora for SMT training1.

In this work we argue that one should not only “look in-
side”the black box of the SMT system [16], but directly opti-
mize SMT for the CLIR task at hand. We address this prob-
lem by discriminative training techniques which are widely
used in the SMT community, and use automatically con-
structed relevance judgments from linked data. We show
that a decomposable proxy for retrieval quality in training
alleviates the problem of a costly intermediate retrieval step
in reranking frameworks [10], and allows us to make use of
the full, and lexically more diverse, decoder search space to
optimize query translations for the CLIR task.

Our approach combines information specific to translation
and to retrieval in one model targeted to CLIR: Basic trans-
lation units (phrases [7] or hierarchical phrase rules [1]) are
estimated on parallel training data, while parameter opti-
mization for lexicalized features that can boost or demote
word/phrase translations is done on relevance judgments of
existing queries. We present experiments in the domain of
patent prior-art search where parallel training data for ma-
chine translation and relevance judgments for retrieval are
available in large amounts. The results from our experi-
mental evaluation shows our approach to be a promising
alternative to the standard pipeline approach.

2. RELATED WORK
Common techniques for modulating query expansion with

lexical variations use either comparable corpus statistics [14]
or the k-best lists of an SMT system [16]. Experimental
results show the latter approach to be superior to state-
of-the-art approaches based on direct translation. In [9],
consistent preprocessing of MT and IR training data yielded
some improvements for retrieval and translation speed.

[10] is the work closest to our approach. They present an
approach to learn a reranking model on k-best translations
that are ordered according to retrieval performance. The
approach requires expensive retrieval for each derivation in
the k-best list. They show improvements over a regular SMT
baseline on a small set of parallel queries. However, besides
the need for costly retrieval in training, the features of the
reranking mode cannot be integrated into an SMT decoder,
thus limiting the usefulness of their approach.

A tighter integration with a decoder requires the target
quality to be decomposable over transductions of its search
space. Such approximations were proposed and evaluated

1For example, see Google’s CLIR approach [3].



in [13], however, only for translation-specific measures. Sim-
ilar to this work, we design a decomposable approximation
for CLIR measures (MAP, NDCG) and present a learning
algorithm for tuning SMT towards retrieval quality.

3. QUERY TRANSLATION FOR CLIR

3.1 Cross-Lingual Information Retrieval
In this paper, we will use the following notational con-

ventions: For a translation q of a foreign query f , a (mono-
lingual) real-valued scoring function Sir(q, d) assigns a re-
trieval score to each document d in a collection C. Relevance
judgments for C are expressed by a function rel(f, d) ≥ 0
that assigns to each query f and document d a relevance
level (which is zero for irrelevant documents, and increasing
values indicate higher relevance). The ranking induced by
Sir(q, d) can be evaluated using common rank-based met-
rics, such as Mean Average Precision (MAP) or Normalized
Discounted Cumulative Gain (NDCG). For a term-based
scoring function Sir(q, d), queries and documents are repre-
sented as bag-of-word vectors, and Sir(q, d) is decomposable
over query terms t in q. In this work we use Okapi BM252:
Sir(q, d) ≡ bm25(q, d) =

∑
t∈q bm25(t, d).

3.2 Tuning SMT for CLIR
State-of-the-art SMT systems compute the target-language

query q of a foreign query f by recombining, through con-
catenation and reordering, small bilingual translation units
called phrases (contiguous substrings in phrase-based SMT)
or synchronous grammar rules (in hierarchical phrase-based
SMT). These units are the result of a complex process that
starts with word-to-word alignments and culminates with
assigning various numerical confidence scores (feature func-
tions or models) to the extracted units [7].

The union of complete hypotheses over the large number
of possible input sentence splits, applicable translation op-
tions, and reordering possibilities, is called the search space,
and is commonly structured as directed acyclic graphs (lat-
tices) or hypergraphs. Inference (decoding) in SMT relies on
maximizing the hypothesis score over the search space, i.e.,
maximizing the likeliness of obtaining a word alignment a of
the target q given source f . This is usually parameterized
as a linear model, Ssmt(q, a, f) = w · hq,a,f , where hq,a,f is
a numerical vector of features and w is a parameter vector:

qf = arg max
a,q∈Ef

w · hq,a,f , (1)

Ef is the set of reachable translations/alignments that the
SMT system can produce for the input f . For notational
convenience we will omit dependence of the max operator
and features h on a.

An important computational property of the quantity un-
der arg max is that its components can be decomposed (through
summation) over the scores of the individual units that are
used in the alignment of q and f . This property is required
to obtain a compact representation of the decoder search
space, which can then be explored efficiently with dynamic
programming (e.g., quantities like (1) are computed on lat-
tices using shortest path algorithms). The optimal value
for w is found in a tuning process that tries to replicate
human reference translations by maximizing n-gram-based

2BM25 parameters were set to k1 = 1.2, b = 0.75.

precision measures such as BLEU [11] on a development set
consisting of pairs of source and target sentences.

We use the structured SVM margin-rescaling framework [15]
to learn a new w adapted to the CLIR task. The framework
assumes a unit-decomposable penalty ∆(q, q′) ≥ 0, defined
on structured outputs (translations), suffered for producing
q instead of q′; it is zero if q = q′ and gracefully increases
as q deviates more and more from q′. When optimizing for
translation quality, the following loss function is minimized:

L =
∑
f

max
q∈Ef

(∆(q, q∗f ) + w · hq)−w · hq∗
f
,

where q∗f is either a desired reference translation rf , or its
reachable substitute q∗f = maxq(−∆(q, rf )) with ∆ approx-
imating an inverted SMT quality measure.

In CLIR, a single desired output does not exist, but a set
C+f of relevant documents for each foreign query f . Therefore

we define a new function ∆(q, C+f ) = maxq

(
Srel(q, C+f )

)
−

Srel(q, C+f ), that is the difference in best achievable approxi-
mate retrieval quality and retrieval quality for translation q.
We will define Srel(q, C+f ) in section 3.3. Let us define fear,
hope and oracle derivations [2, 5] for a foreign query f :

qfear = arg max
q∈Ef

(w · hq + ∆(q, C+f )),

qhope = arg max
q∈Ef

(w · hq −∆(q, C+f )),

qoracle = arg max
q∈Ef

(−∆(q, C+f )),

and the corresponding feature vectors, hfear
q ≡ hqfear etc.

The oracle derivation is the best derivation possible, i.e.
with the smallest penalty in Ef . The fear is the deriva-
tion maximizing the model score minus a confidence margin
equal to the penalty (remember that ∆ = 0 if q = qhope). As
the static oracle derivation can be too idiosyncratic for the
linear model to produce, the hope includes the model score
to find a reasonable compromise. Additionally, a hope de-
pending on the (changing) model score increases exploration
of the search space during training.

With the new penalty we consider two losses to minimize:

Lsvm =
∑
f

(w · hfear
q + ∆(qfear, C+f ))−w · horacle

q (2)

Lramp =
∑
f

(w · hfear
q + ∆(qfear, C+f ))−

(w · hhope
q −∆(qhope, C+f )). (3)

For a learning rate α, the respective (sub)gradient descent
updates are:

wi+1 =wi − α

∑
f

hfear
q − horacle

q

 (4)

wi+1 =wi − α

∑
f

hfear
q − hhope

q

 (5)

The update (4) for the standard structured loss (2) [15] in-
creases weights of the features present in the oracle deriva-
tion and decreases for the ones in the fear. The ramp loss
objective in equation (3) [5] boosts weights of features found
in the current hope derivation.



penalty
Moses cdec

MAP NDCG MAP NDCG

junk penalty 0.1797 0.3702 0.1441 0.3236
word penalty 0.1756 0.3663 0.1486 0.3301

Table 1: Oracle performance on the small training set for
phrase-based (Moses) and hierarchical phrase-based (cdec)
SMT decoders.

3.3 Oracle query translations
In this work, we are interested in tuning an SMT system

for retrieval performance. Even though some correlation
between BLEU scores and MAP has been shown [4], we note
that an n-gram based precision metric like BLEU focuses
strongly on the problem of reordering translation units to
accommodate for higher n-gram matches and is thus not a
suitable optimization metric for retrieval models, that do
not take word order into account. A suitable optimization
metric should either directly optimize the rank of relevant
documents (learning-to-rank), or, more related to the task
of translation, optimize lexical choices in the translation to
improve term matching and adjust weights for reordering
and language models correspondingly.

Directly optimizing rank-based metrics is problematic be-
cause a full retrieval for each derivation generated by the
SMT system is required. This usually restricts the search
space for oracle translations to the k-best list of deriva-
tions [10]. To alleviate this problem, we abstract away from
the ranking problem and approximate retrieval quality of a
translation q with its relevance score Srel(q, C+f ) to the set

of relevant documents C+f = {d ∈ C|rel(f, d) > 0}. Let

C+f,k = {d ∈ C|rel(f, d) = k} be the set of relevant docu-
ments in the k-th relevance level. Since BM25 is decompos-
able over query terms, we directly assign partial relevance
scores to terms t in the translated query q:

Srel(q, C+f ) =
∑

t∈q Srel(t, C+f ) =
∑

t∈q
∑

k ωk

∑
d∈C+

f,k

bm25(t,d)

|C+
f,k
|

,

where the ωk are relevance weights adjusting the importance
of each relevance level k in C. To ensure good quality of the
oracle translations, we found optimal values for ωk by grid
search with a step size 0.1 and a constraint

∑
k |ωk| = 1.

So far we only reward terms that appear in C+f . While the
SMT system thrives to generate relevant terms it produces
them in phrases, together with connecting words as dictated
by the translation model. If such ‘by-product’ terms appear
sufficiently often in irrelevant documents, this can inadver-
tently boost their ranks. To counterbalance this effect we
experimented with two penalties, with weight ω0 ≤ 0: (1) a
junk-word penalty that fires on insertion of irrelevant terms,
or (2) a word penalty that acts on each word in the deriva-
tion. A comparison of oracle configurations in terms of the
maximal performance (over the tested range of ωk and ω0)
found on the training set is given in Table 1. For training
we used oracles found with junk penalty for Moses, and with
word penalty for cdec.

4. EXPERIMENTS
We conducted experiments on the BoostCLIR3 dataset,

3www.cl.uni-heidelberg.de/statnlpgroup/boostclir

a corpus of Japanese (JP) & English (EN) patent abstracts
[12], using two open-source MT decoders, phrase-based Moses4

and hierarchical SCFG decoder cdec5.
We took NTCIR-7 data (1.8M parallel sentences) from

the years 1993-2000 for SMT training and the NTCIR-8 test
collection (2k sentences) for parameter tuning. Additionally
to a dozen of vanilla dense SMT features, both decoders in-
cluded lexicalized sparse features based on word alignments,
indicating source word deletions, target word insertions, and
word-to-word mappings. Both baseline systems were tuned
with their respective MIRA [2] implementations. On held-
out parallel test data, Moses and cdec achieved 0.2640 and
0.2829 BLEU, respectively.

For the ranking data, EN patents are regarded as relevant
to the query JP patent, if they are cited by either the ap-
plicant or the patent examiner [6]. We assigned relevance
level (2) for examiner citations, level (1) for applicants’ own
citations, and level (0) otherwise. A patent abstract con-
tains about 5 sentences on average. Before running mono-
lingual BM25-based retrieval, sentence-split query transla-
tions were concatenated back into a single query. The data
was split into two training subsets of 200 and 1,000 queries
(resp., ' 1k and ' 5k sentences) and dev/test subsets (of
400 queries each), all sampled without replacement. Oracle
tuning and the training to determine the best learning con-
figuration (see below) were done on the smaller training set
and evaluated on the development set. We ran our train-
ing for 20k iterations starting from the MIRA weights found
during the SMT tuning step of respective decoders, with the
learning rate α = 0.001.

Figure 1 shows experimental MAP6 retrieval results for
our approach evaluated for phrase-based (Moses) and hier-
archical phrase-based (cdec) translation models. Small but
stable improvements are gained only for the phrase-based
system.7 We show results for both updates (4) and (5). We
see that ramp loss updates generally perform better than
SVM updates for Moses. This is due to the ability to trade
off the capabilities of the model against the best possible
approximate performance on the retrieval task in the ramp
loss setting. The SVM update is forced to perform “bold up-
dates” towards the oracle which can result in updates that
overfit to particular oracles [8]. Furthermore, we find it to be
beneficial to constrain updates by freezing the dense features
after MIRA training on parallel data, and tune only parame-
ters of sparse lexicalized features that promote or demote the
insertion, deletion, and translation of particular words. Ad-
ditionally, we test two decoding evaluation setups of search
space rescoring and redecoding. The former reuses hyper-
graphs/lattices produced with the MIRA-tuned weights and
applies new weights to find an alternative, CLIR-optimized,
derivation. The latter runs the decoder directly with the new
weights. Both constraints (freezing and rescoring) show that
the farther the setup strays away from the original MIRA
model, the more difficult becomes generalization to unseen
data. This suggests that it is crucial to find the optimal com-
bination of translation- and retrieval-specific information for
both inference and learning.

4www.statmt.org/moses
5www.cdec-decoder.org
6Evaluating with NDCG results in the same optimal config-
urations for both decoders.
7An implementation of the reranking approach [10] with our
set of features scored about ' 0.002 MAP above baseline.
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Figure 1: MAP on dev data for CLIR-tuning of phrase-based (Moses) and hierarchical (cdec) translation. For Moses the
’redecode, svm’ curve is below the visible part of the plot.

config
Moses cdec

MAP NDCG MAP NDCG

baseline 0.0438 0.1498 0.0515 0.1600
rescore 0.030.0498 0.020.1575 0.110.0473 0.080.1548
redecode 0.280.0463 0.260.1532 0.230.0487 0.270.1571

Table 2: Test performance of the chosen learning con-
figurations for Moses (rescore: ramp/frz@9k, redecode:
svm/frz@8k) and cdec (svm/frz: rescore@2k, redecode@6k).
Superscripts denote p-values obtained by a paired random-
ization test with respect to the baseline.

Table 2 shows test results for models trained on the bigger
training set using the best settings found on the develop-
ment set (see caption). For the hierarchical system improv-
ing over the significantly (at level p = 0.01) stronger baseline
proves to be difficult. One reason could be a relatively harsh
pruning strategy in cdec, governed by the language model,
which produces lexically less diverse search spaces. This is
supported by much worse oracles (Table 1) and fewer ac-
tive sparse features in the learned models when compared
to Moses (17k vs. 23k on the small training set).

5. CONCLUSION
We presented an approach for tuning an SMT system for

cross-lingual retrieval. Our approach is efficient since it uses
a decomposable proxy for retrieval quality that can be com-
puted directly on the translation hypergraph or lattice in
training. It is effective since optimal weights of retrieval-
governing sparse features are accessible to the decoder, which
combines this information with translation-specific dense fea-
tures for optimal query translation in a cross-lingual re-
trieval setup.
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