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Learning SMT from Human Post-Edits

Human post-editing is limited
m by cost of professional translators
m by the required user expertise
m by time constraints, e.g., simultaneous translation
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Learning SMT from Human Post-Edits

Human post-editing is limited
m by cost of professional translators
m by the required user expertise
m by time constraints, e.g., simultaneous translation

Adaptive Learning of SMT from post-edits is limited by

m unclear mapping of post-edits to SMT operations
m small number of post-edits

Goals
m adaptive learning of SMT from partial feedback
m faster and easier interaction (for user and learner)
m long-term goal: personalized adaptive SMT!
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Learning from Partial Feedback

A look at online advertising

m estimate click-through-rate (CTR) for ads
m tradeoff between exploration (display new ad) and exploitation
(display ad with current best estimate of CTR)

m only one-point/bandit feedback (click on ad/pull arm of slot
machine) available for learning
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A look at online advertising
m estimate click-through-rate (CTR) for ads
m tradeoff between exploration (display new ad) and exploitation
(display ad with current best estimate of CTR)
m only one-point/bandit feedback (click on ad/pull arm of slot
machine) available for learning

Online learning from bandit feedback
observe input structure x;
H sample output structure g
Fl receive feedback to sampled structure, e.g., task loss at point y;

[ update parameters

Partial feedback: learner does not know correct structure nor what
would have happened if it had predicted differently!
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Contributions

Contributions

m Theory

= algorithm for structured prediction from bandit feedback

= applied to expected loss objective (Och, 2003; Smith and Eisner,
2006; Gimpel and Smith, 2010)

= convergence analysis in the stochastic optimization framework of
pseudogradient adaptation (Polyak and Tsypkin, 1973)

m Practice

= simulated bandit feedback: evaluate task loss (BLEU) against

reference only for sampled structure

= re-ranking experiment: improve out-of-domain SMT model based on
bandit feedback from in-domain data by 1.26 to 1.52 BLEU points
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Expected Loss (EL) Minimization

m X — structured input space

m )Y(z) — set of possible output structures for

m Ay(y):Y —[0,1] - loss suffered for predicting ' instead of y
m underlying Gibbs distribution

pw(ylz) =
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Expected Loss (EL) Minimization

m X — structured input space

m )Y(z) — set of possible output structures for

m Ay(y):Y —[0,1] - loss suffered for predicting ' instead of y
m underlying Gibbs distribution

p’w(y|$) = Zw(l') 9
EL objective
B @iz (efl) | ZP zy) Y. Ay )puy|w)
y'€Y(z)

Inference
m MBR: g, (x) = arg ming ey Zy/ey(x) Ay (Y )pw(y'|z)
m MAP: g, (z) = arg MaXyecy(z) puw(ylT)
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EL Minimization under Full Information

Full information case

m p(z,y) can be approximated by the empirical distribution p(z,y)

Ep(e,y)pu(ylz) [Dy Z > AL )P |7)

t Oyeyxt)

m continuous and differentiable, but typically non-convex

m still, most approaches rely on gradient-descent techniques
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Ej(z.g)pu(ylo) [2 Z S AL )pu o)

t Oyeyxt)

m continuous and differentiable, but typically non-convex

m still, most approaches rely on gradient-descent techniques

Gradient

VEs(ay)puyle) [Dy ()]
= Epay) [Em(y'm [Ay(¥)(2, 4] = Ep (312 [ Ay ()] Epy (3112 [, 4]

Eﬁ(:r,y)pw(y’kﬁ) [Ay(y/)(¢($, y/) - Epw(y/\z) [¢($, y/)])
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Bandit Structured Prediction

Bandit feedback means that the gold standard y is not revealed
B we can neither calculate the gradient of the objective function

m nor evaluate the task loss A as in the full information case
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Bandit Structured Prediction

Bandit feedback means that the gold standard y is not revealed
B we can neither calculate the gradient of the objective function

m nor evaluate the task loss A as in the full information case

m solution

= pass the evaluation of A(y) to the user
= slightly change the objective

J(W) = Epayp, (i) AW =D _p@) D> AW )puy|2)

y'eY(x)

= reflects that we don’t model unseen y
= natural for SMT: no single true translation
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Algorithm

Algorithm 1 Bandit Structured Prediction
1: Input: sequence of learning rates
2: Initialize wy
3: fort=0,...,T do
4: Observe x4
5: Calculat(i Ep,, (') [P(,Y)]
6 Sample gy ~ pu, (y'|7¢)
7 Obtain feedback A(7)
8 Update Wit1 = Wi — Yt A(?jt) ((b(xt,gt) - Epwt (y’\wt)w(xt?y/)])

simultaneous exploration/exploitation by sampling from Gibbs distribution
compare the feature vector of g; to the average feature vector

step into opposite direction of this difference, depending on feedback A(g;)
step size is bigger for high loss

extreme case: no update if ¢ is correct, i.e. A(g:) =0
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Analysis Framework

Pseudogradient adaptation framework (Polyak and Tsypkin, 1973)

m iterative process/algorithm

Wiyl = Wt — 7Vt St (1)

= ~, >0 is a learning rate
= w, and s; are random vectors in R
= the distribution of s; depends on wy,...,w;
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Analysis Framework

Pseudogradient adaptation framework (Polyak and Tsypkin, 1973)

m iterative process/algorithm

Wiyl = Wt — 7Vt St (1)

= ~, >0 is a learning rate
= w, and s; are random vectors in R
= the distribution of s; depends on wy,...,w;

Pseudogradient condition

Random vector s; is a pseudogradient of an objective J(w) if
VJ (we) "Elsi] > 0,

i.e., ¢ is on average at an acute angle with V.J(w).
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Analysis Framework

Technical conditions:
m boundedness of the update vector

E[|}sell] < 0o

m learning rate does not decrease too fast

v > 0, Z% 00, Z’yt<oo

m J(w) is lower bounded and differentiable

m gradient V.J(w) is Lipschitz continuous s.t. for all w,w’, there exists
L >0, such that

HVJ(w—i—w') —VJ(w)H < LHw'H
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Convergence Theorem

Theorem (Polyak and Tsypkin (1973), Thm. 1)
Under the above conditions, for any starting wq in process (1):

J(w) = J* almost surely, and tlim VJ (wi) "E(s) = 0.
—00
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Convergence Theorem

Theorem (Polyak and Tsypkin (1973), Thm. 1)
Under the above conditions, for any starting wq in process (1):

J(w) = J* almost surely, and tlim VJ (wi) "E(s) = 0.
—00

Significance
m conditions can be checked easily
E no need to know the gradient on every step to verify the condition

m applies to a wide range of cases, including non-convex functions
(convergence to a critical point)
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Stochastic Approximation Analysis

Algorithm 1 as stochastic approximation algorithm

J(w) = Ep(r)pw(y’|1‘) [A(y,)]
VI (w) = Ej@pu(yz) | Dy () (0@, 1) = Ep (g2 [0z, 4)])
st = A(Ge)(P(ze, Gt) — By, (ylen) [B(21, 9)])

m pseudogradient condition holds since s; is an unbiased estimate of the
true gradient s.t. Eyp)p,,, (y/]0)[5t] = VJ () and
VI () Ep@pa, i[5t = [V (wp)|[* > 0
m assuming ||¢(z,y')|] < R and A(y') € [0,1] for all z,y':

E [Is¢ll] < 4R?

p(@)puy (v'|2) |
m decreasing learning rate, e.g. v = 1/t
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Structured Dueling Bandits

Algorithm 2 Structured Dueling Bandits

1: Input: ~, 6, wo
2. fort=0,...,T do
3: Observe x;
Sample unit vector u; uniformly
Set wy = wy + duy
Compare A(§u, (1)) to A(Gu; (zt))
if w] wins then
Wiyl = W + YUy
else
10: W41 = Wt

© N

m generic algorithm (Yue and Joachims, 2009) applied to structured prediction
m explicit control of exploration () and exploitation (7)
B requires much stronger two-point feedback
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General setup

m simulated bandit feedback by evaluating task loss against
gold-standard structures without revealing them to the learner

online learning for parameter estimation
online-to-batch conversion of last model at test time

results on the test set under MAP inference

final results averaged over 5 independent runs
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SMT reranking setup

m idea: Simulate personalized SMT by adapting out-of-domain system
to a user by single-point bandit feedback

m simulation: SMT domain adaptation by 5k-best list reranking using
simulated bandit feedback from in-domain data

Data
m WMT'07 shared task, Europarl to NewsCommentary, FR-EN
m out-of-domain parallel data: 1.6 million Europarl

m in-domain parallel data: train/dev/test: 43,194/1,064/2,007
NewsCommentary

m language model for both: Europarl target side + in-domain
NewsCommentary
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Models
m phrase-based (?), 4-gram language model (?), 15 dense features
Tuning
m full information:
= MERT tuning on out-of-domain or in-domain dev set, respectively
= MERT runs repeated 7 times, median result reported
m bandit learning:

= online bandit learning on in-domain train set, started from
out-of-domain median model, smoothed per-sentence 1-BLEU task loss

= in-domain dev set for meta-parameter tuning (learning rate, exploration
parameter)

= testing by online-to-batch conversion of last model after 100 epochs by
corpus-BLEU on in-domain test set
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Experimental Results

bandit information
DuelingBandit BanditStruct

full information
in-domain SMT out-domain SMT

0.2854 0.2579 ‘ 0.273149.001 0.270540.001

m BanditStruct and DuelingBandit very close, despite the latter is using
twice as much information

m both are considerable improvements over out-of-domain model
(remember: out-domain SMT uses in-domain Im!)

= BanditStruct: +1.26 BLEU points
= DuelingBandit: +1.52 BLEU points

m all results statistically significant
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Experimental Results

0.275
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Dueling s
BanditStruct s

out-domain SMT
0.265
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0.260
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m per-sentence BLEU is a difficult metric for bandit feedback

m smoother and faster convergence curve for Dueling Bandits since
relative information can be exploited
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Discussion

Conclusion

m convergent algorithm for structured prediction from single-point
feedback

m promising empirical results, both compared to two-point feedback
and to full information scenarios

m strength where correct structures are unavailable and two-point
feedback is infeasible
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Discussion

Current and future work

m other “banditizable” objectives for structured prediction

= pairwise preference learning under single-point feedback
= strongly convex objective for improved convergence rate

m real-world feedback
= deployment in CAT course for translation students
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Discussion

Current and future work

m other “banditizable” objectives for structured prediction

= pairwise preference learning under single-point feedback
= strongly convex objective for improved convergence rate

m real-world feedback
= deployment in CAT course for translation students

Thank you!
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