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Learning SMT from Human Post-Edits

Human post-editing is limited

n by cost of professional translators

n by the required user expertise

n by time constraints, e.g., simultaneous translation

Adaptive Learning of SMT from post-edits is limited by

n unclear mapping of post-edits to SMT operations

n small number of post-edits

Goals

n adaptive learning of SMT from partial feedback

n faster and easier interaction (for user and learner)

n long-term goal: personalized adaptive SMT!
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Learning from Partial Feedback

A look at online advertising

n estimate click-through-rate (CTR) for ads

n tradeoff between exploration (display new ad) and exploitation
(display ad with current best estimate of CTR)

n only one-point/bandit feedback (click on ad/pull arm of slot
machine) available for learning

Online learning from bandit feedback

1 observe input structure xt

2 sample output structure yt

3 receive feedback to sampled structure, e.g., task loss at point yt

4 update parameters

Partial feedback: learner does not know correct structure nor what
would have happened if it had predicted differently!
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Contributions

Contributions

n Theory

á algorithm for structured prediction from bandit feedback
á applied to expected loss objective (Och, 2003; Smith and Eisner,

2006; Gimpel and Smith, 2010)
á convergence analysis in the stochastic optimization framework of

pseudogradient adaptation (Polyak and Tsypkin, 1973)

n Practice

á simulated bandit feedback: evaluate task loss (BLEU) against
reference only for sampled structure

á re-ranking experiment: improve out-of-domain SMT model based on
bandit feedback from in-domain data by 1.26 to 1.52 BLEU points
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Expected Loss (EL) Minimization

n X – structured input space

n Y(x) – set of possible output structures for x

n ∆y(y′) : Y → [0, 1] – loss suffered for predicting y′ instead of y

n underlying Gibbs distribution

pw(y|x) =
exp(w>φ(x, y))

Zw(x)
,

EL objective

Ep(x,y)pw(y′|x)
[
∆y(y′)

]
=
∑
x,y

p(x, y)
∑

y′∈Y(x)

∆y(y′)pw(y′|x)

Inference

n MBR: ŷw(x) = arg miny∈Y(x)
∑

y′∈Y(x) ∆y(y′)pw(y′|x)

n MAP: ŷw(x) = arg maxy∈Y(x) pw(y|x)
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EL Minimization under Full Information

Full information case

n p(x, y) can be approximated by the empirical distribution p̃(x, y)

Ep̃(x,y)pw(y′|x)
[
∆y(y′)

]
=

1

T

T∑
t=0

∑
y′∈Y(xt)

∆yt(y
′)pw(y′|xt)

n continuous and differentiable, but typically non-convex

n still, most approaches rely on gradient-descent techniques

Gradient

∇Ep̃(x,y)pw(y′|x)
[
∆y(y′)

]
= Ep̃(x,y)

[
Epw(y′|x)[∆y(y′)φ(x, y′)]− Epw(y′|x)[∆y(y′)] Epw(y′|x)[φ(x, y′)]

]
= Ep̃(x,y)pw(y′|x)

[
∆y(y′)(φ(x, y′)− Epw(y′|x)[φ(x, y′)])

]
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Bandit Structured Prediction

Bandit feedback means that the gold standard y is not revealed

n we can neither calculate the gradient of the objective function

n nor evaluate the task loss ∆ as in the full information case

n solution

á pass the evaluation of ∆(y) to the user
á slightly change the objective

J(w) = Ep(x)pw(y′|x) [∆(y′)] =
∑
x

p(x)
∑

y′∈Y(x)

∆(y′)pw(y′|x)

á reflects that we don’t model unseen y
á natural for SMT: no single true translation
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Algorithm

Algorithm 1 Bandit Structured Prediction

1: Input: sequence of learning rates γt
2: Initialize w0

3: for t = 0, . . . , T do
4: Observe xt
5: Calculate Epwt (y

′|xt)[φ(xt, y
′)]

6: Sample ỹt ∼ pwt(y
′|xt)

7: Obtain feedback ∆(ỹt)

8: Update wt+1 = wt − γt ∆(ỹt)
(
φ(xt, ỹt)− Epwt (y

′|xt)[φ(xt, y
′)]
)

n simultaneous exploration/exploitation by sampling from Gibbs distribution

n compare the feature vector of ỹt to the average feature vector

n step into opposite direction of this difference, depending on feedback ∆(ỹt)

n step size is bigger for high loss

n extreme case: no update if ỹt is correct, i.e. ∆(ỹt) = 0

Stefan Riezler 8 / 20



Analysis Framework

Pseudogradient adaptation framework (Polyak and Tsypkin, 1973)

n iterative process/algorithm

wt+1 = wt − γt st (1)

á γt ≥ 0 is a learning rate

á wt and st are random vectors in Rd

á the distribution of st depends on w0, . . . , wt

Pseudogradient condition

Random vector st is a pseudogradient of an objective J(w) if

∇J(wt)
>E[st] ≥ 0,

i.e., st is on average at an acute angle with ∇J(w).

Stefan Riezler 9 / 20



Analysis Framework

Pseudogradient adaptation framework (Polyak and Tsypkin, 1973)

n iterative process/algorithm

wt+1 = wt − γt st (1)

á γt ≥ 0 is a learning rate

á wt and st are random vectors in Rd

á the distribution of st depends on w0, . . . , wt

Pseudogradient condition

Random vector st is a pseudogradient of an objective J(w) if

∇J(wt)
>E[st] ≥ 0,

i.e., st is on average at an acute angle with ∇J(w).

Stefan Riezler 9 / 20



Analysis Framework

Technical conditions:

n boundedness of the update vector

E[||st||2] <∞

n learning rate does not decrease too fast

γt ≥ 0,

∞∑
t=0

γt =∞,
∞∑
t=0

γ2t <∞

n J(w) is lower bounded and differentiable

n gradient ∇J(w) is Lipschitz continuous s.t. for all w,w′, there exists
L ≥ 0, such that∣∣∣∣∇J(w + w′)−∇J(w)

∣∣∣∣ ≤ L ∣∣∣∣w′∣∣∣∣
Stefan Riezler 10 / 20



Convergence Theorem

Theorem (Polyak and Tsypkin (1973), Thm. 1)

Under the above conditions, for any starting w0 in process (1):

J(wt)→ J∗ almost surely, and lim
t→∞
∇J(wt)

>E(st) = 0.

Significance

n conditions can be checked easily

n no need to know the gradient on every step to verify the condition

n applies to a wide range of cases, including non-convex functions
(convergence to a critical point)
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Stochastic Approximation Analysis

Algorithm 1 as stochastic approximation algorithm

J(w) = Ep(x)pw(y′|x)[∆(y′)]

∇J(w) = Ep̃(x)pw(y′|x)

[
∆y(y′)(φ(x, y′)− Epw(y′|x)[φ(x, y′)])

]
st = ∆(ỹt)(φ(xt, ỹt)− Epwt (y|xt)[φ(xt, y)])

n pseudogradient condition holds since st is an unbiased estimate of the
true gradient s.t. Ep(x)pwt (y

′|x)[st] = ∇J(wt) and

∇J(wt)
>Ep(x)pwt (y

′|x)[st] = ||∇J(wt)||2 ≥ 0

n assuming ||φ(x, y′)|| ≤ R and ∆(y′) ∈ [0, 1] for all x, y′:

Ep(x)pwt (y
′|x)[||st||2] ≤ 4R2

n decreasing learning rate, e.g. γt = 1/t
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Structured Dueling Bandits

Algorithm 2 Structured Dueling Bandits

1: Input: γ, δ, w0

2: for t = 0, . . . , T do
3: Observe xt
4: Sample unit vector ut uniformly
5: Set w′t = wt + δut
6: Compare ∆(ŷwt(xt)) to ∆(ŷw′t(xt))
7: if w′t wins then
8: wt+1 = wt + γut
9: else

10: wt+1 = wt

n generic algorithm (Yue and Joachims, 2009) applied to structured prediction

n explicit control of exploration (δ) and exploitation (γ)

n requires much stronger two-point feedback
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Experiments

General setup

n simulated bandit feedback by evaluating task loss against
gold-standard structures without revealing them to the learner

n online learning for parameter estimation

n online-to-batch conversion of last model at test time

n results on the test set under MAP inference

n final results averaged over 5 independent runs
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Experiments

SMT reranking setup

n idea: Simulate personalized SMT by adapting out-of-domain system
to a user by single-point bandit feedback

n simulation: SMT domain adaptation by 5k-best list reranking using
simulated bandit feedback from in-domain data

Data

n WMT’07 shared task, Europarl to NewsCommentary, FR-EN

n out-of-domain parallel data: 1.6 million Europarl

n in-domain parallel data: train/dev/test: 43,194/1,064/2,007
NewsCommentary

n language model for both: Europarl target side + in-domain
NewsCommentary
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Experiments

Models

n phrase-based (?), 4-gram language model (?), 15 dense features

Tuning

n full information:
á MERT tuning on out-of-domain or in-domain dev set, respectively
á MERT runs repeated 7 times, median result reported

n bandit learning:
á online bandit learning on in-domain train set, started from

out-of-domain median model, smoothed per-sentence 1-BLEU task loss
á in-domain dev set for meta-parameter tuning (learning rate, exploration

parameter)
á testing by online-to-batch conversion of last model after 100 epochs by

corpus-BLEU on in-domain test set
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Experimental Results

full information bandit information
in-domain SMT out-domain SMT DuelingBandit BanditStruct

0.2854 0.2579 0.2731±0.001 0.2705±0.001

n BanditStruct and DuelingBandit very close, despite the latter is using
twice as much information

n both are considerable improvements over out-of-domain model
(remember: out-domain SMT uses in-domain lm!)

á BanditStruct: +1.26 BLEU points
á DuelingBandit: +1.52 BLEU points

n all results statistically significant
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Experimental Results
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n per-sentence BLEU is a difficult metric for bandit feedback

n smoother and faster convergence curve for Dueling Bandits since
relative information can be exploited
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Discussion

Conclusion

n convergent algorithm for structured prediction from single-point
feedback

n promising empirical results, both compared to two-point feedback
and to full information scenarios

n strength where correct structures are unavailable and two-point
feedback is infeasible
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Discussion

Current and future work

n other “banditizable” objectives for structured prediction

á pairwise preference learning under single-point feedback
á strongly convex objective for improved convergence rate

n real-world feedback

á deployment in CAT course for translation students
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