A Coactive Learning View of Online Structured Prediction in SMT

<u>Artem Sokolov</u>*, Stefan Riezler*, Shay B. Cohen[‡] *Heidelberg University, [‡]University of Edinburgh

Online learning protocol

- **1** observe input structure x_t
- **2** predict output structure y_t
- 3 receive feedback (gold-standard or post-edit)
- 4 update parameters

A tool of choice in SMT

- memory & runtime efficiency
- interactive scenarios with user feedback

Usual assumptions

- convexity (for regret bounds)
- reachable feedbacks (for gradients)

Reality

- SMT has latent variables (non-convex)
- most references live outside the search space (nonreachable)
- references/full-edits are expensive (= professional translation)

Intuition

- light post-edits are cheaper
- have better chance to be reachable

Question

Should editors put much effort into correcting SMT outputs anyway?

Goals

- demonstrate feasibility of learning from weak feedback for SMT
- propose a new perspective on learning from surrogate translations
- note: the goal is not to improve over any full-information model

Contributions

- Theory
 - ➡ extension of the coactive learning model to latent structure
 - ➡ improvements by a derivation-dependent update scaling
 - straight-forward generalization bounds
- Practice
 - learning from weak post-edits does translate to improved MT quality
 - surrogate references work better if they admit an underlying linear model

[Shivaswami & Joachims, ICML'12]

\blacksquare rational user: feedback \bar{y}_t improves some utility over prediction y_t

$$U(x_t, \bar{y}_t) \ge U(x_t, y_t)$$

 $lacksymbol{I}$ regret: how much the learner is 'sorry' for not using optimal y_t^*

$$\operatorname{REG}_T = \frac{1}{T} \sum_{t=1}^T U(x_t, y_t^*) - U(x_t, y_t) \longrightarrow \min$$

feedback is α-informative if

$$U(x_t, \bar{y}_t) - U(x_t, y_t) \ge \alpha(U(x_t, y_t^*) - U(x_t, y_t))$$

no latent variables

Feedback-based Structured Perceptron

- 1: Initialize $w \leftarrow 0$
- 2: for $t = 1, \ldots, T$ do
- 3: Observe x_t
- 4: $y_t \leftarrow \arg \max_y w_t^\top \phi(x_t, y)$
- 5: Obtain weak feedback \bar{y}_t
- 6: **if** $y_t \neq \bar{y}_t$ **then**

7:
$$w_{t+1} \leftarrow w_t + \left(\phi(x_t, \bar{y}_t) - \phi(x_t, y_t)\right)$$

Feedback-based Latent Structured Perceptron

1: Initialize $w \leftarrow 0$ 2: for t = 1, ..., T do 3: Observe x_t 4: $(y_t, h_t) \leftarrow \arg \max_{(y,h)} w_t^\top \phi(x_t, y, h_t)$ 5: Obtain weak feedback \bar{y}_t 6: if $y_t \neq \bar{y}_t$ then 7: $\bar{h}_t \leftarrow \arg \max_h w_t^\top \phi(x_t, \bar{y}_t, h)$ 8: $w_{t+1} \leftarrow w_t + \Delta_{\bar{h}_t, h_t} (\phi(x_t, \bar{y}_t, \bar{h}_t) - \phi(x_t, y_t, h_t))$ Under the same assumptions as in [Shivaswami & Joachims'12]:

- Interaction linear utility: $U(x_t, y_t) = w_*^{\top} \phi(x_t, y_t)$
- w_* is the optimal parameter, known only to the user
- $||\phi(x_t, y_t, h_t)|| \le R$
- some violations of α-informativeness are allowed

$$U(x_t, \bar{y}_t) - U(x_t, y_t) \ge \alpha (U(x_t, y_t^*) - U(x_t, y_t)) - \xi_t$$

Convergence

Let
$$D_T = \sum_t^T \Delta_{\overline{h}_t, h_t}^2$$
. Then
 $\operatorname{REG}_T \leq \frac{1}{\alpha T} \sum_{t=1}^T \xi_t + \frac{2R ||w_*||}{\alpha} \frac{\sqrt{D_T}}{T}$

- standard perceptron proof [Novikoff'62]
- better than $\mathcal{O}(1/\sqrt{T})$ if D_T doesn't grow too fast
- Shivaswami & Joachims'12] is a special case of $\Delta_{ar{h}_t,h_t}=1$

Generalization

Let $0 < \delta < 1$, and let x_1, \ldots, x_T be a sequence of observed inputs. Then with probability at least $1 - \delta$,

$$\mathbb{E}_{x_1,\dots,x_T}[\operatorname{REG}_T] \le \operatorname{REG}_T + 2||w_*||R\sqrt{\frac{2}{T}\ln\frac{1}{\delta}}.$$

how far the expected regret is from the empirical regret we observe

- proof uses the results of [Cesa-Bianchi'04]
- see the paper for more

LIG corpus [Potet et al.'10]

- ➡ news domain, FR→EN
- → (FR input, MT output, EN post-edit, EN reference), 11k in total
- ➡ split
 - train 7k online input data
 dev 2k to get w_{*} for simulation/checking convergence
 test 2k testing
- Moses, 1000-best lists
- cyclic order

User simulation:

- scan the n-best list for derivations that are α -informative
- return the first $\bar{y}_t \neq y_t$ that satisfies

$$U(x_t, \bar{y}_t) - U(x_t, y_t) \ge \alpha (U(x_t, y_t^*) - U(x_t, y_t)) - \xi_t$$

(with minimal ξ_t , if no $\xi_t = 0$ found for a given α)

- convergence in regret when learning from weak feedback of differing strength
- simultaneous improvement TER (on test)
- stronger feedback leads to faster improvements of regret/TER
- setting $\Delta_{\bar{h}_t,h_t}$ to Euclidean distance between feature vectors leads to even faster regret/TER improvements

- so far the feedback was simulated
- what about real post-edits?
- main question: how do the practices for extracting surrogates from user post-edits for discriminative SMT match with the coactive learning?

1 oracle - closest to the post-edit in the full search graph

 $\bar{y} = \operatorname*{arg\,min}_{y' \in \mathcal{Y}(x_t; w_t)} \mathsf{TER}(y', y)$

2 local – closest to the post-edit from the *n*-best list [Liang et al.'06]

 $\bar{y} = \operatorname*{arg\,min}_{y' \in n\text{-best}(x_t; w_t)} \mathsf{TER}(y', y)$

3 filtered – first hyp in the n-best list w/ better TER than the 1-best $\mathsf{TER}(\bar{y},y) < \mathsf{TER}(y_t,y)$

4 hope – hyp that maximizes model score and negative TER [Chiang'12] $\bar{y} = \underset{y' \in n\text{-best}(x_t;w_t)}{\arg \max} (-\mathsf{TER}(y', y) + w_t^\top \phi(x_t, y', h))$

Degrees of model-awareness

- oracle model-agnostic
- local constrained to the n-best list, but ignores the ordering
- filtered & hope letting the model score/ordering influence the surrogate

- regret diverges when learning with model-unaware surrogates
- convergence in regret when learning with model-aware surrogates

	% strictly α -informative
local	39.46%
filtered	47.73%
hope	83.30%

- regret & generalization bounds
 - ➡ latent variables
 - changing feedback
- concept of weak feedback in online learning in SMT
 - ➡ still can learn without observing references
 - surrogate references should admit an underlying linear model

- regret & generalization bounds
 - latent variables
 - changing feedback
- concept of weak feedback in online learning in SMT
 - ➡ still can learn without observing references
 - ➡ surrogate references should admit an underlying linear model

Thank you!