Learning Structured Predictors from Bandit Feedback for Interactive NLP

Artem Sokolov^{,*}, Julia Kreutzer^{*}, Christopher Lo^{†,*}, Stefan Riezler^{‡,*}

*Computational Linguistics & [‡]IWR, Heidelberg University, Germany [†]Dept. of Mathematics, Tufts University, USA

^oAmazon Development Center, Germany

Data:

- ➡ cost of professional translators
- ➡ required editor expertise
- ➡ slow in general

Data:

- ➡ cost of professional translators
- ➡ required editor expertise
- slow in general
- Learning:
 - ➡ unclear mapping of post-edits to SMT operations, reachability
 - editors omit/add information, rewrite from scratch
 - ➡ small total number of post-edits

Data:

- ➡ cost of professional translators
- required editor expertise
- slow in general
- Learning:
 - ➡ unclear mapping of post-edits to SMT operations, reachability
 - editors omit/add information, rewrite from scratch
 - small total number of post-edits
- Resulting model:
 - mismatch between human editors and real users

Data:

- ➡ cost of professional translators
- ➡ required editor expertise
- slow in general
- Learning:
 - ➡ unclear mapping of post-edits to SMT operations, reachability
 - editors omit/add information, rewrite from scratch
 - small total number of post-edits
- Resulting model:
 - mismatch between human editors and real users

Ideally we need

- weaker-than-post-edit feedbacks
- that are easy to directly elicit from users
- fast learning

How to Learn from User Feedback?

Online Bandit Learning

- **1** observe input structure x_t
- **2** propose output structure y_t
- **3** receive feedback to y_t (e.g. task loss, but not the true y)
- 4 update parameters

How to Learn from User Feedback?

Online Bandit Learning

- **1** observe input structure x_t
- **2** propose output structure y_t
- **3** receive feedback to y_t (e.g. task loss, but not the true y)
- 4 update parameters

Learner does not know correct structure nor what would have happened if it had predicted differently

How to Learn from User Feedback?

Online Bandit Learning

- **1** observe input structure x_t
- **2** propose output structure y_t
- **3** receive feedback to y_t (e.g. task loss, but not the true y)
- 4 update parameters

Learner does not know correct structure nor what would have happened if it had predicted differently

'One-armed bandits' (slot machines)

- have to find a machine that gives you most money
- can try only one machine per time
- exploration/exploitation dilemma

- learning from bandit feedback
 - ➡ goal: minimize expected regret for selecting an arm
 - ➡ set of arms is usually small Auer et al. (2002b,a)
 - this work: exponential set of arms (outputs)
 - ➡ stochastic assumptions on the input but not on the feedback + context

learning from bandit feedback

- ➡ goal: minimize expected regret for selecting an arm
- ➡ set of arms is usually small Auer et al. (2002b,a)
- this work: exponential set of arms (outputs)
- \Rightarrow stochastic assumptions on the input but not on the feedback + context

reinforcement learning

- goal: maximize expected reward in an MDP
- ➡ closest approach: policy gradient Sutton et al. (2000)
- this work can be seen as one-state MDP
- ➡ action = structured output

learning from bandit feedback

- ➡ goal: minimize expected regret for selecting an arm
- ➡ set of arms is usually small Auer et al. (2002b,a)
- ➡ this work: exponential set of arms (outputs)
- \Rightarrow stochastic assumptions on the input but not on the feedback + context

reinforcement learning

- goal: maximize expected reward in an MDP
- ➡ closest approach: policy gradient Sutton et al. (2000)
- this work can be seen as one-state MDP
- ➡ action = structured output
- pairwise preference learning
 - full information setting
 - ➡ analysized under zero order optimization Yue and Joachims (2009); Agarwal et al. (2010)
 - this work: stochastic first-order optimization approach

Many potential NLP applications:

- numerical judgments on output quality
 - ⇒ action learning Branavan et al. (2009)
 - ➡ machine translation Sokolov et al. (2015)
 - requires impractically many feedback
 - numerical feedback is hard to elicit

Many potential NLP applications:

numerical judgments on output quality

- ➡ action learning Branavan et al. (2009)
- ➡ machine translation Sokolov et al. (2015)
 - requires impractically many feedback
 - numerical feedback is hard to elicit

This Work

- extending previous work with focus on
 - 1 learning speed: by strong convexification of the objective
 - 2 elicitability: by learning from pairwise preferences
- 'banditize' two new objectives
- empirical evaluation on several NLP tasks

underlying Gibbs distribution

$$p_w(y|x) \propto e^{w^{\top}\phi(x,y)}$$

- $\Delta_y(y';x)$ loss for predicting y' instead of y
- expected loss (aka risk) Och (2003); Gimpel and Smith (2010); Yuille and He (2012)

$$J(w) = \mathbb{E}_{p(x,y)p_w(y'|x)} \left[\Delta_y(y') \right]$$

underlying Gibbs distribution

$$p_w(y|x) \propto e^{w^{\top}\phi(x,y)}$$

- $\Delta_y(y'; x)$ loss for predicting y' instead of y
- expected loss (aka risk) Och (2003); Gimpel and Smith (2010); Yuille and He (2012)

$$J(w) = \mathbb{E}_{p(x,y)p_w(y'|x)} \left[\Delta_y(y') \right]$$

Full Information

expected loss is replaced by empirical risk minimization

$$J(w) = \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}_{p_w(y'|x_t)} \Delta_{y_t}(y') p_w(y'|x_t)$$

- continuous and differentiable, although typically non-convex
- most approaches rely on gradient techniques
- need to know gold-standard y_t to calculate $\Delta_{y_t}(y')$ and
- evaluate it for all y' in the expectation

- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?

- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?
- **p**ass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?
- **p**ass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

Learning with Bandit Information

- 1: Input: learning rate γ
- 2: Initialize w_0
- 3: for $t = 0, \ldots, T$ do
- 4: Observe x_t
- 5: Sample $\tilde{y}_t \sim p_{w_t}(y|x_t)$
- 6: Obtain feedback $\Delta(\tilde{y}_t)$
- 7: Update $w_{t+1} = w_t \gamma s_t$
- 8: Choose a solution \hat{w} from the list $\{w_0, \ldots, w_T\}$

- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?
- **p**ass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

Learning with Bandit Information

- 1: Input: learning rate γ
- 2: Initialize w_0
- 3: for $t = 0, \ldots, T$ do
- 4: Observe x_t
- 5: Sample $\tilde{y}_t \sim p_{w_t}(y|x_t)$ simultaneous exploration/exploitation
- 6: Obtain feedback $\Delta(\tilde{y}_t)$
- 7: Update $w_{t+1} = w_t \gamma s_t$
- 8: Choose a solution \hat{w} from the list $\{w_0, \ldots, w_T\}$

- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?
- pass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

Learning with Bandit Information

- 1: Input: learning rate γ 2: Initialize w_0 3: for t = 0, ..., T do
 - Observe x_t 4:
 - 5: Sample $\tilde{y}_t \sim p_{w_t}(y|x_t)$
 - Obtain feedback $\Delta(\tilde{y}_t)$ 6:

7: Update
$$w_{t+1} = w_t - \gamma s_t$$

simultaneous exploration/exploitation

$$\mathbb{E}_x \mathbb{E}_{\tilde{y}}[s_t] = \nabla_w J$$

8: Choose a solution \hat{w} from the list $\{w_0, \ldots, w_T\}$

Instantiation for the expected loss Branavan et al. (2009); Sokolov et al. (2015)

$$J(w) = \mathbb{E}_x \mathbb{E}_y[\Delta(y)]$$

$$\tilde{y} \sim p_w(y|x)$$

$$s_t = \Delta(\tilde{y}) \big(\phi(x, \tilde{y}) - \mathbb{E}_y[\phi(x, y)] \big)$$

Instantiation for the expected loss Branavan et al. (2009); Sokolov et al. (2015)

$$J(w) = \mathbb{E}_x \mathbb{E}_y[\Delta(y)]$$

$$\tilde{y} \sim p_w(y|x)$$

$$s_t = \Delta(\tilde{y}) \big(\phi(x, \tilde{y}) - \mathbb{E}_y[\phi(x, y)] \big)$$

- non-convex stochastic first-order optimization
- converges to a local minimum Polyak and Tsypkin (1973)
- iteration complexity is $\mathcal{O}(\varepsilon^{-2})$ Ghadimi and Lan (2012)
 - i.e. number of steps until $\mathbb{E}[\|
 abla J(w_t) \|^2] \leq arepsilon$

Instantiation for the expected loss Branavan et al. (2009); Sokolov et al. (2015)

$$J(w) = \mathbb{E}_x \mathbb{E}_y[\Delta(y)]$$

$$\tilde{y} \sim p_w(y|x)$$

$$s_t = \Delta(\tilde{y}) \big(\phi(x, \tilde{y}) - \mathbb{E}_y[\phi(x, y)] \big)$$

- non-convex stochastic first-order optimization
- converges to a local minimum Polyak and Tsypkin (1973)
- iteration complexity is $\mathcal{O}(arepsilon^{-2})$ Ghadimi and Lan (2012)
 - i.e. number of steps until $\mathbb{E}[\|
 abla J(w_t)\|^2] \leq \varepsilon$
- 1 for easier feedback elicitability:
 - pairwise preference loss
- 2 for faster convergence: (strongly) convexify the loss to get $\mathcal{O}(\varepsilon^{-1})$ complexity
 - cross-entropy loss

$$J(w) = \mathbb{E}_{x} \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\Delta(\langle y_{i}, y_{j} \rangle)]$$

$$\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle \sim p_{w}(\langle y_{i}, y_{j} \rangle | x) \propto e^{w^{\top}(\phi(x, y_{i}) - \phi(x, y_{j}))}$$

$$s_{t} = \Delta(\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) (\phi(x, \langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) - \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\phi(x, \langle y_{i}, y_{j} \rangle)])$$

$$J(w) = \mathbb{E}_{x} \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\Delta(\langle y_{i}, y_{j} \rangle)]$$

$$\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle \sim p_{w}(\langle y_{i}, y_{j} \rangle | x) \propto e^{w^{\top}(\phi(x, y_{i}) - \phi(x, y_{j}))}$$

$$s_{t} = \Delta(\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) (\phi(x, \langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) - \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\phi(x, \langle y_{i}, y_{j} \rangle)])$$

⇒ arguably easier for users to judge (binary judgment) Thurstone (1927)
 ⇒ but it's just expected loss on pairs, so still O(ε⁻²) complexity

$$J(w) = \mathbb{E}_{x} \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\Delta(\langle y_{i}, y_{j} \rangle)]$$

$$\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle \sim p_{w}(\langle y_{i}, y_{j} \rangle | x) \propto e^{w^{\top}(\phi(x, y_{i}) - \phi(x, y_{j}))}$$

$$s_{t} = \Delta(\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) (\phi(x, \langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) - \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\phi(x, \langle y_{i}, y_{j} \rangle)])$$

- ➡ arguably easier for users to judge (binary judgment) Thurstone (1927)
- \implies but it's just expected loss on pairs, so still $\mathcal{O}(\varepsilon^{-2})$ complexity

2 Cross-Entropy

$$\begin{split} J(w) &= \mathbb{E}_x \mathbb{E}_{g(y)}[-\log p_w(y|x)], \text{ gain function } g(y) = 1 - \Delta(y) \\ \tilde{y} &\sim p_w(y|x) \\ s_t &= \frac{1 - \Delta(\tilde{y})}{p_w(\tilde{y}|x)} \big(-\phi(x, \tilde{y}) + \mathbb{E}_y[\phi(x, y)] \big) \end{split}$$

$$J(w) = \mathbb{E}_{x} \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\Delta(\langle y_{i}, y_{j} \rangle)]$$

$$\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle \sim p_{w}(\langle y_{i}, y_{j} \rangle | x) \propto e^{w^{\top}(\phi(x, y_{i}) - \phi(x, y_{j}))}$$

$$s_{t} = \Delta(\langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) (\phi(x, \langle \tilde{y}_{i}, \tilde{y}_{j} \rangle) - \mathbb{E}_{\langle y_{i}, y_{j} \rangle} [\phi(x, \langle y_{i}, y_{j} \rangle)])$$

- ➡ arguably easier for users to judge (binary judgment) Thurstone (1927)
- \implies but it's just expected loss on pairs, so still $\mathcal{O}(\varepsilon^{-2})$ complexity

2 Cross-Entropy

$$\begin{split} J(w) &= \mathbb{E}_x \mathbb{E}_{g(y)}[-\log p_w(y|x)], \text{ gain function } g(y) = 1 - \Delta(y) \\ \tilde{y} &\sim p_w(y|x) \\ s_t &= \frac{1 - \Delta(\tilde{y})}{p_w(\tilde{y}|x)} \big(-\phi(x, \tilde{y}) + \mathbb{E}_y[\phi(x, y)] \big) \end{split}$$

- can be made strongly convex by adding a regularizer
- ➡ expecting faster $\mathcal{O}(\varepsilon^{-1})$ convergence
- \blacksquare this loss upper bounds the expected loss, if g(y) is a distribution
- but in the bandit setup normalizing is not possible

Experiments

task	features	structure	task loss Δ	dataset
text class.	sparse	4 classes	error rate	RCV1
word OCR NP-chunking	dense sparse	CRF bigram-CRF	Hamming F1	Taskar et al. (2003) CoNLL-2000
SMT	dense sparse	<i>n</i> -best list hypergraph	BLEU	EuroParl→ NewsComm

task	features	structure	task loss Δ	dataset
text class.	sparse	4 classes	error rate	RCV1
word OCR NP-chunking	dense sparse	CRF bigram-CRF	Hamming F1	Taskar et al. (2003) CoNLL-2000
SMT	dense sparse	<i>n</i> -best list hypergraph	BLEU	EuroParl→ NewsComm

Setup

- simulated bandit feedback by evaluating task loss against gold-standard structures *without* revealing them to the learner
- \blacksquare constant learning rates in most experiments, $\ell_2\text{-regularization},$ momentum, annealing
- \blacksquare empirical convergence assessed as the # of steps before overfitting on dev
- test results for the best model found on dev (under MAP inference, averaged)

	task	loss / gain	full information		partial information		
	Lask	ioss/gain			expected loss	pairwise	cross-entropy
	Text classification	$0/1\downarrow$	percep., $\lambda=10^{-6}$	0.040	0.031	0.083	0.035
CRF	Word OCR (dense) Chunking (sparse)	Hamming ↓ F1-score ↑	likelihood likelihood	0.099 0.935	0.261 0.923	0.332 0.914	0.257 0.891
			out-of-domain	in-domain			
SMT	News (<i>n</i> -best list, dense) News (hypergraph, sparse)	BLEU ↑	0.259 0.265	0.284 0.283	0.269 0.267	0.275 0.273	0.276 0.271

	task	loss /gain	full informa	ation	partial information		
	Lask	ioss/gain			expected loss	pairwise	cross-entropy
	Text classification	$0/1\downarrow$	percep., $\lambda=10^{-6}$	0.040	0.031	0.083	0.035
CRF	Word OCR (dense) Chunking (sparse)	$\begin{array}{l} Hamming \downarrow \\ F1\text{-score} \uparrow \end{array}$	likelihood likelihood	0.099 0.935	0.261 0.923	0.332 0.914	0.257 0.891
			out-of-domain	in-domain			
SMT	News (<i>n</i> -best list, dense) News (hypergraph, sparse)	BLEU ↑	0.259 0.265	0.284 0.283	0.269 0.267	0.275 0.273	0.276 0.271

	task	loss / gain	full informa	full information		partial information		
	Lask	ioss/gain			expected loss	pairwise	cross-entropy	
	Text classification	$0/1\downarrow$	percep., $\lambda=10^{-6}$	0.040	0.031	0.083	0.035	
CRF	Word OCR (dense) Chunking (sparse)	Hamming ↓ F1-score ↑	likelihood likelihood	0.099 0.935	0.261 0.923	0.332 0.914	0.257 0.891	
			out-of-domain	in-domain				
SMT	News (<i>n</i> -best list, dense) News (hypergraph, sparse)	BLEU ↑	0.259 0.265	0.284 0.283	0.269 0.267	0.275 0.273	0.276 0.271	

	task	full information		ntion	partial information		
	Lask	ioss/gain			expected loss	pairwise	cross-entropy
	Text classification	$0/1\downarrow$	percep., $\lambda=10^{-6}$	0.040	0.031	0.083	0.035
RF	Word OCR (dense)	Hamming \downarrow	likelihood	0.099	0.261	0.332	0.257
ΰ	Chunking (sparse)	F1-score ↑	likelihood	0.935	0.923	0.914	0.891
			out-of-domain	in-domain			
٩T	News (n-best list, dense)	BLELL↑	0.259	0.284	0.269	0.275	0.276
S	News (hypergraph, sparse)	DELO	0.265	0.283	0.267	0.273	0.271

	took	loss (min	full information		partial information		
	Lask	ioss/gain			expected loss	pairwise	cross-entropy
	Text classification	$0/1\downarrow$	percep., $\lambda=10^{-6}$	0.040	0.031	0.083	0.035
CRF	Word OCR (dense) Chunking (sparse)	$\begin{array}{l} Hamming \downarrow \\ F1\text{-}score \uparrow \end{array}$	likelihood likelihood	0.099 0.935	0.261 0.923	0.332 0.914	0.257 0.891
			out-of-domain	in-domain			
SMT	News (<i>n</i> -best list, dense) News (hypergraph, sparse)	BLEU ↑	0.259 0.265	0.284 0.283	0.269 0.267	0.275 0.273	0.276 0.271

	task	full information		ntion	partial information		
	Lask	ioss/gain			expected loss	pairwise	cross-entropy
	Text classification	$0/1\downarrow$	percep., $\lambda=10^{-6}$	0.040	0.031	0.083	0.035
CRF	Word OCR (dense) Chunking (sparse)	$\begin{array}{l} Hamming \downarrow \\ F1\text{-score} \uparrow \end{array}$	likelihood likelihood	0.099 0.935	0.261 0.923	0.332 0.914	0.257 0.891
			out-of-domain	in-domain			
SMT	News (<i>n</i> -best list, dense) News (hypergraph, sparse)	BLEU ↑	0.259 0.265	0.284 0.283	0.269 0.267	0.275 0.273	0.276 0.271

Iterations to meet stopping criterion on dev data

	theory	$O(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-2})$	$\mathcal{O}(\varepsilon^{-1})$
	task\loss	expected loss	pairwise	cross-entropy
	Text classification	2.0M	0.5M	1.1M
CRF	Word OCR Chunking	14.4M 7.5M	9.3M 4.7M	37.9M 5.9M
SMT	News (<i>n</i> -best, dense) News (h-graph, sparse)	3.8M 370k	1.2M 115k	1.2M 281k

Possible reasons

- \blacksquare different hidden constants in the $\mathcal{O}(\cdot)$ notations
- \blacksquare in particular, high variance σ^2

$$\mathbb{E}[\|
abla J(w_T)\|^2] \propto rac{L^2}{T} + ext{const} \cdot rac{L\sigma}{\sqrt{T}}$$
 Ghadimi and Lan (2012)

Possible reasons

- \blacksquare different hidden constants in the $\mathcal{O}(\cdot)$ notations
- \blacksquare in particular, high variance σ^2

$$\mathbb{E}[\|
abla J(w_T)\|^2] \propto rac{L^2}{T} + ext{const} \cdot rac{L\sigma}{\sqrt{T}}$$
 Ghadimi and Lan (2012)

We empirically estimated (same T and $\gamma,$ SMT hypergraph task):

- average gradient norm $\langle \|s_T\|^2
 angle$
- Lipschitz constant L of the gradient ∇J as $\max_{t,t'} \frac{\|s_t s_{t'}\|}{\|w_t w_{t'}\|}$

• variance σ^2 as $\max_{t=0,...T} \|s_t - \frac{1}{T} \sum_{t=0}^T s_t \|^2$

	$\langle \ s_T\ ^2 \rangle$	L	σ^2
expected loss	$0.02_{\pm 0.03}$	$11_{\pm 12}$	$0.7_{\pm 0.9}$
pairwise	$2e-6_{\pm 3e-8}$	$\boldsymbol{0.08}_{\pm 0.01}$	$\boldsymbol{0.0008}_{\pm 0.0000}$
cross-entropy	$3.04_{\pm 0.02}$	$0.62_{\pm 0.2}$	$677_{\pm 115}$

Possible reasons

- \blacksquare different hidden constants in the $\mathcal{O}(\cdot)$ notations
- \blacksquare in particular, high variance σ^2

$$\mathbb{E}[\|
abla J(w_T)\|^2] \propto rac{L^2}{T} + ext{const} \cdot rac{L\sigma}{\sqrt{T}}$$
 Ghadimi and Lan (2012)

We empirically estimated (same T and $\gamma,$ SMT hypergraph task):

- average gradient norm $\langle \|s_T\|^2
 angle$
- Lipschitz constant L of the gradient ∇J as $\max_{t,t'} \frac{\|s_t s_{t'}\|}{\|w_t w_{t'}\|}$

• variance σ^2 as $\max_{t=0,\dots T} \|s_t - \frac{1}{T} \sum_{t=0}^T s_t\|^2$

	$\langle \ s_T\ ^2 \rangle$	L	σ^2
expected loss	$0.02_{\pm 0.03}$	$11_{\pm 12}$	0.7 _{±0.9}
pairwise	$2e-6_{\pm 3e-8}$	$0.08_{\pm0.01}$	$0.0008 _{\pm 0.0000}$
cross-entropy	$3.04_{\pm 0.02}$	$0.62_{\pm 0.2}$	$677_{\pm 115}$

- **two new objectives** for learning structured predictors from weak feeedback
 - applicable to cases with no gold-standard structures and only feedback available
- consistent advantage of pairwise feedback
 - surprising, since theory predicts the fastest convergence for strongly convex losses
 - ➡ can be explained by empirical factors: variance, Lipschitz constant
- additionally, pairwise learning requires only relative feedback (good for users)

- **two new objectives** for learning structured predictors from weak feeedback
 - applicable to cases with no gold-standard structures and only feedback available
- consistent advantage of pairwise feedback
 - surprising, since theory predicts the fastest convergence for strongly convex losses
 - ➡ can be explained by empirical factors: variance, Lipschitz constant
- additionally, pairwise learning requires only relative feedback (good for users)

Learning Curves of BLEU

- SMT hypergraph re-decoding on the development set
- averaged over 3 independent runs

- pairwise ranking reaches peak performance fastest
- still large variance of cross-entropy learning (despite clipping)

	task	expected loss	pairwise	cross-entropy
	Text classification	$\gamma_t = 1.0$	$\gamma_t = 10^{-0.75}$	$\gamma_t = 10^{-1}$
CRF	OCR Chunking	$ \begin{vmatrix} T_0 = 0.4, \gamma_t = 10^{-3.5} \\ \gamma_t = 10^{-4} \end{vmatrix} $	$\begin{array}{c} T_0 = 0.1, \gamma_t = 10^{-4} \\ \gamma_t = 10^{-4} \end{array}$	$\begin{split} \lambda &= 10^{-5}, k = 10^{-2}, \gamma_t = 10^{-6} \\ \lambda &= 10^{-6}, k = 10^{-2}, \gamma_t = 10^{-6} \end{split}$
SMT	News (<i>n</i> -best, dense) News (h-graph, sparse)	$ \begin{vmatrix} \gamma_t = 10^{-5} \\ \gamma_t = 10^{-5} \end{vmatrix} $	$\gamma_t = 10^{-4.75}$ $\gamma_t = 10^{-4}$	$\begin{array}{l} \lambda = 10^{-4}, \mu = 0.99, \gamma_t = 10^{-6}/\sqrt{t} \\ \lambda = 10^{-6}, k = 5\cdot 10^{-3}, \gamma_t = 10^{-6} \end{array}$

Table: Metaparameter settings determined on *dev* sets for constant learning rate γ_t , temperature coefficient T_0 for annealing under the schedule $T = T_0 / \sqrt[3]{\text{epoch} + 1}$, momentum coefficient $\min\{1 - 1/(t/2 + 2), \mu\}$, clipping

constant k used to replace $p_{w_t}(\tilde{y}_t|x_t)$ with $\max\{p_{w_t}(\tilde{y}_t|x_t), k\}$, ℓ_2 regularization constant λ . Unspecified parameters are set to zero.

full information		bandit information	
in-domain SMT	out-domain SMT	dueling bandits	expected loss
0.2854	0.2579	$0.2731_{\pm 0.001}$	$0.2705_{\pm 0.001}$

- Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In *COLT*, Haifa, Israel.
- Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47:235–256.
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic multiarmed bandit problem. SIAM J. on Computing, 32(1):48–77.
- Branavan, S., Chen, H., Zettlemoyer, L. S., and Barzilay, R. (2009). Reinforcement learning for mapping instructions to actions. In *ACL*, Suntec, Singapore.
- Ghadimi, S. and Lan, G. (2012). Stochastic first- and zeroth-order methods for nonconvex stochastic programming. *SIAM J. on Optimization*, 4(23):2342–2368.
- Gimpel, K. and Smith, N. A. (2010). Softmax-margin training for structured log-linear models. Technical Report CMU-LTI-10-008, Carnegie Mellon University, Pittsburgh, PA.
- Och, F. J. (2003). Minimum error rate training in statistical machine translation. In *HLT-NAACL*, Edmonton, Canada.

- Polyak, B. T. and Tsypkin, Y. Z. (1973). Pseudogradient adaptation and training algorithms. *Automation and remote control*, 34(3):377–397.
- Sokolov, A., Riezler, S., and Urvoy, T. (2015). Bandit structured prediction for learning from user feedback in statistical machine translation. In *MT Summit XV*, Miami, FL.
- Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In *NIPS*, Vancouver, Canada.
- Taskar, B., Guestrin, C., and Koller, D. (2003). Max-margin markov networks. In *NIPS*, Vancouver, Canada.
- Thurstone, L. L. (1927). A law of comparative judgement. *Psychological Review*, 34:278–286.
- Yue, Y. and Joachims, T. (2009). Interactively optimizing information retrieval systems as a dueling bandits problem. In *ICML*, Montreal, Canada.
- Yuille, A. and He, X. (2012). Probabilistic models of vision and max-margin methods. Frontiers of Electrical and Electronic Engineering, 7(1):94–106.