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Example: Learning SMT from Human Post-Edits

n Data:

á cost of professional translators

á required editor expertise

á slow in general

n Learning:

á unclear mapping of post-edits to SMT operations, reachability

á editors omit/add information, rewrite from scratch

á small total number of post-edits

n Resulting model:

á mismatch between human editors and real users

Ideally we need

n weaker-than-post-edit feedbacks

n that are easy to directly elicit from users

n fast learning
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How to Learn from User Feedback?

Online Bandit Learning

1 observe input structure xt
2 propose output structure yt
3 receive feedback to yt (e.g. task loss, but not the true y)

4 update parameters

Learner does not know correct structure nor what would have
happened if it had predicted differently

‘One-armed bandits’ (slot machines)

n have to find a machine that gives you most money

n can try only one machine per time

n exploration/exploitation dilemma
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Related work

n learning from bandit feedback

á goal: minimize expected regret for selecting an arm
á set of arms is usually small Auer et al. (2002b,a)

á this work: exponential set of arms (outputs)
á stochastic assumptions on the input but not on the feedback + context

n reinforcement learning

á goal: maximize expected reward in an MDP
á closest approach: policy gradient Sutton et al. (2000)

á this work can be seen as one-state MDP
á action = structured output

n pairwise preference learning

á full information setting
á analysized under zero order optimization Yue and Joachims (2009); Agarwal et al. (2010)

á this work: stochastic first-order optimization approach
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Learning from Bandit Feedback

Many potential NLP applications:

n numerical judgments on output quality

á action learning Branavan et al. (2009)

á machine translation Sokolov et al. (2015)

requires impractically many feedback
numerical feedback is hard to elicit

This Work

n extending previous work with focus on

1 learning speed: by strong convexification of the objective

2 elicitability: by learning from pairwise preferences

n ‘banditize’ two new objectives

n empirical evaluation on several NLP tasks
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Problem Setup

n underlying Gibbs distribution

pw(y|x) ∝ ew>φ(x,y)

n ∆y(y
′;x) – loss for predicting y′ instead of y

n expected loss (aka risk) Och (2003); Gimpel and Smith (2010); Yuille and He (2012)

J(w) = Ep(x,y)pw(y′|x)
[
∆y(y

′)
]

Full Information

n expected loss is replaced by empirical risk minimization

J(w) =
1

T

T∑
t=0

Epw(y′|xt)∆yt(y
′)pw(y′|xt)

n continuous and differentiable, although typically non-convex

n most approaches rely on gradient techniques

n need to know gold-standard yt to calculate ∆yt(y
′) and

n evaluate it for all y′ in the expectation
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Bandit Information

n what to do if the gold-standard yt is unknown and

n we cannot evaluate all candidates y′?

n pass the evaluation of ∆(y′) to the user (dropping yt in the subscript)

n replace gradient with its unbiased estimate

Learning with Bandit Information

1: Input: learning rate γ
2: Initialize w0

3: for t = 0, . . . , T do
4: Observe xt
5: Sample ỹt ∼ pwt(y|xt)
6: Obtain feedback ∆(ỹt)
7: Update wt+1 = wt − γ st
8: Choose a solution ŵ from the list {w0, . . . , wT }
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Convergence

Instantiation for the expected loss Branavan et al. (2009); Sokolov et al. (2015)

J(w) = ExEy[∆(y)]

ỹ ∼ pw(y|x)

st = ∆(ỹ)
(
φ(x, ỹ)− Ey[φ(x, y)]

)

n non-convex stochastic first-order optimization

n converges to a local minimum Polyak and Tsypkin (1973)

n iteration complexity is O(ε−2) Ghadimi and Lan (2012)

i.e. number of steps until E[‖∇J(wt)‖2] ≤ ε

1 for easier feedback elicitability:

n pairwise preference loss

2 for faster convergence: (strongly) convexify the loss to get O(ε−1)
complexity

n cross-entropy loss
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Bandit Prediction with Different Losses

1 Pairwise Loss

J(w) = ExE〈yi,yj〉[∆(〈yi, yj〉)]

〈ỹi, ỹj〉 ∼ pw(〈yi, yj〉|x) ∝ ew>(φ(x,yi)−φ(x,yj))

st = ∆(〈ỹi, ỹj〉)
(
φ(x, 〈ỹi, ỹj〉)− E〈yi,yj〉[φ(x, 〈yi, yj〉)]

)

á arguably easier for users to judge (binary judgment) Thurstone (1927)

á but it’s just expected loss on pairs, so still O(ε−2) complexity

2 Cross-Entropy

J(w) = ExEg(y)[− log pw(y|x)], gain function g(y) = 1−∆(y)

ỹ ∼ pw(y|x)

st =
1−∆(ỹ)

pw(ỹ|x)

(
− φ(x, ỹ) + Ey[φ(x, y)]

)
á can be made strongly convex by adding a regularizer
á expecting faster O(ε−1) convergence
á this loss upper bounds the expected loss, if g(y) is a distribution
á but in the bandit setup normalizing is not possible
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Experiments

task features structure task loss ∆ dataset

text class. sparse 4 classes error rate RCV1

word OCR dense CRF Hamming Taskar et al. (2003)
NP-chunking sparse bigram-CRF F1 CoNLL-2000

SMT
dense n-best list

BLEU
EuroParl→

sparse hypergraph NewsComm

Setup

n simulated bandit feedback by evaluating task loss against gold-standard
structures without revealing them to the learner

n constant learning rates in most experiments, `2-regularization, momentum,
annealing

n empirical convergence assessed as the # of steps before overfitting on dev

n test results for the best model found on dev (under MAP inference,
averaged)
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Experiments

n Results

task loss/gain
full information partial information

expected loss pairwise cross-entropy

Text classification 0/1 ↓ percep., λ = 10−6 0.040 0.031 0.083 0.035

C
R

F Word OCR (dense) Hamming ↓ likelihood 0.099 0.261 0.332 0.257
Chunking (sparse) F1-score ↑ likelihood 0.935 0.923 0.914 0.891

out-of-domain in-domain

S
M

T News (n-best list, dense)
BLEU ↑ 0.259 0.284 0.269 0.275 0.276

News (hypergraph, sparse) 0.265 0.283 0.267 0.273 0.271

n Iterations to meet stopping criterion on dev data

theory O(ε−2) O(ε−2) O(ε−1)

task\loss expected loss pairwise cross-entropy

Text classification 2.0M 0.5M 1.1M

C
R

F Word OCR 14.4M 9.3M 37.9M
Chunking 7.5M 4.7M 5.9M

S
M

T News (n-best, dense) 3.8M 1.2M 1.2M
News (h-graph, sparse) 370k 115k 281k
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Why the unexpected convergence speed?

Possible reasons

n different hidden constants in the O(·) notations

n in particular, high variance σ2

E[‖∇J(wT )‖2] ∝ L2

T
+ const · Lσ√

T
Ghadimi and Lan (2012)

We empirically estimated (same T and γ, SMT hypergraph task):

n average gradient norm 〈‖sT ‖2〉
n Lipschitz constant L of the gradient ∇J as maxt,t′

‖st−st′‖
‖wt−wt′‖

n variance σ2 as maxt=0,...T ‖st − 1
T

∑T
t=0 st‖2

〈‖sT ‖2〉 L σ2

expected loss 0.02±0.03 11±12 0.7±0.9
pairwise 2e-6±3e−8 0.08±0.01 0.0008±0.0000
cross-entropy 3.04±0.02 0.62±0.2 677±115
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Conclusion

n two new objectives for learning structured predictors
from weak feeedback

á applicable to cases with no gold-standard structures and
only feedback available

n consistent advantage of pairwise feedback
á surprising, since theory predicts the fastest convergence

for strongly convex losses
á can be explained by empirical factors: variance, Lipschitz constant

n additionally, pairwise learning requires only relative feedback
(good for users)
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Thank you!
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Learning Curves of BLEU

n SMT hypergraph re-decoding on the development set

n averaged over 3 independent runs
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n pairwise ranking reaches peak performance fastest

n still large variance of cross-entropy learning (despite clipping)
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Metaparameters

task expected loss pairwise cross-entropy

Text classification γt = 1.0 γt = 10−0.75 γt = 10−1

C
R

F OCR T0 = 0.4, γt = 10−3.5 T0 = 0.1, γt = 10−4 λ = 10−5, k = 10−2, γt = 10−6

Chunking γt = 10−4 γt = 10−4 λ = 10−6, k = 10−2, γt = 10−6

S
M

T News (n-best, dense) γt = 10−5 γt = 10−4.75 λ = 10−4, µ = 0.99, γt = 10−6/
√
t

News (h-graph, sparse) γt = 10−5 γt = 10−4 λ = 10−6, k = 5 · 10−3, γt = 10−6

Table: Metaparameter settings determined on dev sets for constant learning rate
γt, temperature coefficient T0 for annealing under the schedule
T = T0/

3
√

epoch + 1, momentum coefficient min{1− 1/(t/2 + 2), µ}, clipping
constant k used to replace pwt

(ỹt|xt) with max{pwt
(ỹt|xt), k}, `2 regularization

constant λ. Unspecified parameters are set to zero.
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Dueling Bandits (Moses, n-best)

full information bandit information
in-domain SMT out-domain SMT dueling bandits expected loss

0.2854 0.2579 0.2731±0.001 0.2705±0.001
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