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MT supervision cost noise/signal
references $39 low
post-edits/quasi-refs ~ $% middle

feedback $ high
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MT supervision cost noise/signal downstream fit
references $39 low hard
post-edits/quasi-refs ~ $% middle hard
feedback $ high easy/trivial

Sweet spot for bandit MT:
costs drop faster than noise/signal increases = lots of data

HF downstream performance is hard to wrap into an automatic metric
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Bandit learning

One-armed bandits — slot-machines:
m pull an arm to play
m get some reward (or none)

B try a new machine or stick to the best
among discovered so far?

One-armed Bandit



Bandit learning

Multi-armed bandits:
® many arms (actions)
B each arm has an unknown reward distribution
m find an arm-picking strategy to maximize total
reward

0]
T T
Multi-armed Bandit

3/ 14



Bandit learning

Multi-armed bandits for structured prediction (MT):

B observe context
(source sentence)

m pick one out of exponentially many outputs
(translations)

B each structure results in some reward
(BLEU)

B tune an arm-picking strategy
(decoder weights)

Exponential number
of arms
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Bandit learning

Multi-armed bandits for structured prediction (MT):

B observe context
(source sentence)

m pick one out of exponentially many outputs
(translations)

m each structure results in some reward

(BLEU)
B tune an arm-picking strategy MIIINHIH
(decoder weights) MT - Partial info

m note: only one translation is scored,
others are not



Shared Task

Participant Amazon Server
source reference
MT |« < Sample —D—I
| candidate |
I—bMagic > p| Evaluate
| feedback |
Learn |« | < |

fort=0,...,7 do
Request source sentence x; from service
Propose a translation g
Obtain feedback A(y;) from service
Improve MT model



Data & Phases

DE-EN (pre-processed)
domain-adaptation: general (WMT17) — e-commerce (Amazon)
all participants received the same sequence of x;

feedback was sent-BLEU (plans for more realistic feedback dropped
to avoid complicating the task)

m organizers provided the service, client SDK and baselines
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Data & Phases

DE-EN (pre-processed)

domain-adaptation: general (WMT17) — e-commerce (Amazon)
all participants received the same sequence of x;

feedback was sent-BLEU (plans for more realistic feedback dropped
to avoid complicating the task)

m organizers provided the service, client SDK and baselines

Participants had to do:
pick Python or Java
K download a short client snippet
El wrap it around an MT system

phase sentences  passes purpose
mock (since 13 Mar) 40 unlimited test client API
dev (since 5 Apr) 40k unlimited tune hyperparams
train (25 Apr - Jun 9) 1.3M only one final evaluation
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Evaluation

® cumulative reward
T

Z Ayy)

t=1
m corpus-BLEU at regular intervals on an embedded test set:

= 700 sent. at 4 locations in 40k dev sent.
= 4000 sent. at 12 locations in 1.3M train sent.

H regret
1 T
T Z Aly;) — Alye)
t=1

(average cumulative reward difference w.r.t. to an in-domain system)
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Challenges

m different domains = high OOV rate
m learning from one-shot feedback

m real-world data:

= typos/errors in sources
= mixed direction of data
= translators improved readability/corrected errors/deleted irrelevancies
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m different domains = high OOV rate

m learning from one-shot feedback
m real-world data:

= typos/errors in sources
= mixed direction of data
= translators improved readability/corrected errors/deleted irrelevancies
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Participants

m 3 teams registered
B 4 used the dev service
m 2 started full training:

UNIVERSITE

P PARIS
SW  Guillaume Wisniewski
Limsi

= UCB-style selection from a pool of MT systems
= online linear regression to predict rewards
= additional exploration

S
18 /= Amr Sharaf, Shi Feng, Khanh Nguyen, Kianté Brantley, Hal Daumé
A S
/”’/R\ >

= domain-adaptation (Moore-Lewis)
= online non-linear regression for rewards
= policy gradient with adaptive control variate (Advantage Actor-Critic)



Baselines

m NMT (word- and BPE-based; NeuralMonkey)
m SMT (dense features; cdec)

stochastic approximation of the expected loss

7

policy-gradient gradient-free
Egpu i) [A ()] Ecnon[A@(w + €))]

fort=1,...,7 do fort=1,...,T do
Observe z; Observe x;
Sample §; ~ puw, (y|z¢) Sample e, ~ N (0,1)
Obtain A(g;) Decode g; with w; + &

Obtain A(7;)
Wi = wy — YA(Ge)V 10g puy, (Je|z¢) wer1 = wi + YA(Je) et
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Checkpoints (corpus-BLEU

corpus-BLEU
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Checkpoints (sent-BLEU

average sentence-BLEU
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Static system:
* UMD domain adaptation got the best BLEU and lowest regret

14/ 14



Static system:
* UMD domain adaptation got the best BLEU and lowest regret

Learning systems:
® cumulative reward:
* BNMT-EL is the only to beat its static NMT baseline

B +lowest regret of all learning systems
B +best sent-BLEU overall

* SMT-EL-CV came very close
m corpus-BLEU:

* SMT-EL-CV improves over its SMT baseline
= none of the submissions show monotonic learning curves
(or are too short)

14/ 14



Conclusion

Static system:
* UMD domain adaptation got the best BLEU and lowest regret

Learning systems:

® cumulative reward:
* BNMT-EL is the only to beat its static NMT baseline

B +lowest regret of all learning systems
B +best sent-BLEU overall

* SMT-EL-CV came very close
m corpus-BLEU:

* SMT-EL-CV improves over its SMT baseline
= none of the submissions show monotonic learning curves
(or are too short)

Conclusion:
m difficult task (even with all simplifications)
m difficult data

m we need more research!:)
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