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Motivation

MT supervision cost noise/signal

downstream fit

references $$$ low

hard

post-edits/quasi-refs $$ middle

hard

feedback $ high

easy/trivial

Sweet spot for bandit MT:

1 costs drop faster than noise/signal increases ⇒ lots of data

2 downstream performance is hard to wrap into an automatic metric
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Bandit learning

One-armed bandits – slot-machines:

n pull an arm to play

n get some reward (or none)

n try a new machine or stick to the best
among discovered so far?

One-armed Bandit
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Bandit learning

Multi-armed bandits:

n many arms (actions)

n each arm has an unknown reward distribution

n find an arm-picking strategy to maximize total
reward

Multi-armed Bandit
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Bandit learning

Multi-armed bandits for structured prediction (MT):

n observe context
(source sentence)

n pick one out of exponentially many outputs
(translations)

n each structure results in some reward
(BLEU)

n tune an arm-picking strategy
(decoder weights)

n note: only one translation is scored,
others are not

Exponential number
of arms
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Shared Task

for t = 0, . . . , T do
Request source sentence xt from service
Propose a translation yt
Obtain feedback ∆(yt) from service
Improve MT model
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Data & Phases

n DE-EN (pre-processed)

n domain-adaptation: general (WMT17) → e-commerce (Amazon)

n all participants received the same sequence of xt
n feedback was sent-BLEU (plans for more realistic feedback dropped

to avoid complicating the task)

n organizers provided the service, client SDK and baselines

Participants had to do:

1 pick Python or Java

2 download a short client snippet

3 wrap it around an MT system

phase sentences passes purpose

mock (since 13 Mar) 40 unlimited test client API
dev (since 5 Apr) 40k unlimited tune hyperparams
train (25 Apr - Jun 9) 1.3M only one final evaluation

6 / 14



Data & Phases

n DE-EN (pre-processed)

n domain-adaptation: general (WMT17) → e-commerce (Amazon)

n all participants received the same sequence of xt
n feedback was sent-BLEU (plans for more realistic feedback dropped

to avoid complicating the task)

n organizers provided the service, client SDK and baselines

Participants had to do:

1 pick Python or Java

2 download a short client snippet

3 wrap it around an MT system

phase sentences passes purpose

mock (since 13 Mar) 40 unlimited test client API
dev (since 5 Apr) 40k unlimited tune hyperparams
train (25 Apr - Jun 9) 1.3M only one final evaluation

6 / 14



Data & Phases

n DE-EN (pre-processed)

n domain-adaptation: general (WMT17) → e-commerce (Amazon)

n all participants received the same sequence of xt
n feedback was sent-BLEU (plans for more realistic feedback dropped

to avoid complicating the task)

n organizers provided the service, client SDK and baselines

Participants had to do:

1 pick Python or Java

2 download a short client snippet

3 wrap it around an MT system

phase sentences passes purpose

mock (since 13 Mar) 40 unlimited test client API
dev (since 5 Apr) 40k unlimited tune hyperparams
train (25 Apr - Jun 9) 1.3M only one final evaluation

6 / 14



Evaluation

n cumulative reward
T∑
t=1

∆(yt)

n corpus-BLEU at regular intervals on an embedded test set:

á 700 sent. at 4 locations in 40k dev sent.
á 4000 sent. at 12 locations in 1.3M train sent.

n regret

1

T

T∑
t=1

∆(y∗t )−∆(yt)

(average cumulative reward difference w.r.t. to an in-domain system)
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Challenges

n different domains ⇒ high OOV rate

n learning from one-shot feedback

n real-world data:

á typos/errors in sources
á mixed direction of data
á translators improved readability/corrected errors/deleted irrelevancies

source reference

schwarz gr.xxl / xxxl black , size xxl / xxxl
, 147 cm 147 cm
für starke , glänzende nägel great for strengthen your nails and enhance shine
seemless verarbeitung seamless processing
maschinenwaschbar bei 30 ° c machine washable at 30 degrees .
32 unzen volumen 32-ounce capacity
material : 1050 denier nylon . material : 1050d nylon .
für e-gitarre entworfen designed for electric guitar
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Participants

n 8 teams registered

n 4 used the dev service

n 2 started full training:

Guillaume Wisniewski

á UCB-style selection from a pool of MT systems
á online linear regression to predict rewards
á additional exploration

Amr Sharaf, Shi Feng, Khanh Nguyen, Kianté Brantley, Hal Daumé

á domain-adaptation (Moore-Lewis)
á online non-linear regression for rewards
á policy gradient with adaptive control variate (Advantage Actor-Critic)
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Baselines

n NMT (word- and BPE-based; NeuralMonkey)

n SMT (dense features; cdec)

stochastic approximation of the expected loss
=⇒ =⇒

policy-gradient gradient-free

Eỹ∼pw(y|x)[∆(ỹ)] Eε∼N (0,1)[∆(ŷ(w + ε))]

for t = 1, . . . , T do
Observe xt
Sample ỹt ∼ pwt(y|xt)
Obtain ∆(ỹt)

wt+1 = wt − γ∆(ỹt)∇ log pwt(ỹt|xt)

for t = 1, . . . , T do
Observe xt
Sample εt ∼ N (0, 1)
Decode ŷt with wt + εt
Obtain ∆(ŷt)
wt+1 = wt + γ∆(ŷt)εt
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Checkpoints (corpus-BLEU)
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Checkpoints (sent-BLEU)
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Results

Static system:

H UMD domain adaptation got the best BLEU and lowest regret

Learning systems:

n cumulative reward:
H BNMT-EL is the only to beat its static NMT baseline

+lowest regret of all learning systems
+best sent-BLEU overall

H SMT-EL-CV came very close

n corpus-BLEU:

H SMT-EL-CV improves over its SMT baseline
á none of the submissions show monotonic learning curves

(or are too short)

Conclusion:

n difficult task (even with all simplifications)

n difficult data

n we need more research!:)
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