A Shared Task on Bandit Learning for Machine Translation

<u>Artem Sokolov</u>[◊], Julia Kreutzer*, Kellen Sunderland[◊], Pavel Danchenko[◊], Witold Szymaniak[◊], Hagen Fürstenau[◊], Stefan Riezler^{*,‡}

WMT17

MT supervision	cost	noise/signal	
references	\$\$\$	low	
post-edits/quasi-refs	\$\$	middle	
feedback	\$	high	

Motivation

MT supervision	cost	noise/signal	downstream fit
references	\$\$\$	low	hard
post-edits/quasi-refs	\$\$	middle	hard
feedback	\$	high	easy/trivial

Motivation

MT supervision	cost	noise/signal	downstream fit
references	\$\$\$	low	hard
post-edits/quasi-refs	\$\$	middle	hard
feedback	\$	high	easy/trivial

Sweet spot for bandit MT:

- **1** costs drop faster than noise/signal increases \Rightarrow lots of data
- 2 downstream performance is hard to wrap into an automatic metric

One-armed bandits - slot-machines:

- pull an arm to play
- get some reward (or none)
- try a new machine or stick to the best among discovered so far?

One-armed Bandit

Multi-armed bandits:

- many arms (actions)
- each arm has an unknown reward distribution
- find an arm-picking strategy to maximize total reward

Multi-armed Bandit

Multi-armed bandits for structured prediction (MT):

- observe context (source sentence)
- pick one out of exponentially many outputs (translations)
- each structure results in some reward (BLEU)
- tune an arm-picking strategy (decoder weights)

Exponential number of arms

Multi-armed bandits for structured prediction (MT):

- observe context (source sentence)
- pick one out of exponentially many outputs (translations)
- each structure results in some reward (BLEU)
- tune an arm-picking strategy (decoder weights)

MT - Full info

Multi-armed bandits for structured prediction (MT):

- observe context (source sentence)
- pick one out of exponentially many outputs (translations)
- each structure results in some reward (BLEU)
- tune an arm-picking strategy (decoder weights)
- note: only one translation is scored, others are not

MT - Partial info

Shared Task

for $t = 0, \ldots, T$ do

Request source sentence x_t from service Propose a translation y_t Obtain feedback $\Delta(y_t)$ from service Improve MT model

- DE-EN (pre-processed)
- domain-adaptation: general (WMT17) \rightarrow e-commerce (Amazon)
- all participants received the same sequence of x_t
- feedback was sent-BLEU (plans for more realistic feedback dropped to avoid complicating the task)
- organizers provided the service, client SDK and baselines

- DE-EN (pre-processed)
- domain-adaptation: general (WMT17) → e-commerce (Amazon)
- all participants received the same sequence of x_t
- feedback was sent-BLEU (plans for more realistic feedback dropped to avoid complicating the task)
- organizers provided the service, client SDK and baselines

Participants had to do:

- 1 pick Python or Java
- 2 download a short client snippet
- **3** wrap it around an MT system

- DE-EN (pre-processed)
- domain-adaptation: general (WMT17) → e-commerce (Amazon)
- all participants received the same sequence of x_t
- feedback was sent-BLEU (plans for more realistic feedback dropped to avoid complicating the task)
- organizers provided the service, client SDK and baselines

Participants had to do:

- 1 pick Python or Java
- 2 download a short client snippet
- 3 wrap it around an MT system

phase	sentences	passes	purpose
mock (since 13 Mar)	40	unlimited	test client API
dev (since 5 Apr)	40k	unlimited	tune hyperparams
train (25 Apr - Jun 9)	1.3M	only one	final evaluation

cumulative reward

$$\sum_{t=1}^{T} \Delta(y_t)$$

corpus-BLEU at regular intervals on an embedded test set:

- ➡ 700 sent. at 4 locations in 40k dev sent.
- ➡ 4000 sent. at 12 locations in 1.3M train sent.

regret

$$\frac{1}{T}\sum_{t=1}^{T}\Delta(y_t^*) - \Delta(y_t)$$

(average cumulative reward difference w.r.t. to an in-domain system)

- different domains ⇒ high OOV rate
- learning from one-shot feedback
- real-world data:
 - ➡ typos/errors in sources
 - mixed direction of data
 - translators improved readability/corrected errors/deleted irrelevancies

- different domains \Rightarrow high OOV rate
- learning from one-shot feedback
- real-world data:
 - ➡ typos/errors in sources
 - mixed direction of data
 - translators improved readability/corrected errors/deleted irrelevancies

source	reference
schwarz gr.xxl / xxxl , 147 cm	black <mark>, size</mark> xxl / xxxl 147 cm
für starke , glänzende nägel	great for strengthen your nails and enhance shine
seemless verarbeitung maschinenwaschbar bei 30 ° c	seamless processing machine washable at 30 degrees .
32_unzen volumen material : 1050 denier nylon . für e-gitarre entworfen	32-ounce capacity material : 1050d nylon . designed for electric guitar

- 8 teams registered
- 4 used the dev service
- 2 started full training:

Guillaume Wisniewski

- ➡ UCB-style selection from a pool of MT systems
- online linear regression to predict rewards
- additional exploration

Amr Sharaf, Shi Feng, Khanh Nguyen, Kianté Brantley, Hal Daumé

- domain-adaptation (Moore-Lewis)
- online non-linear regression for rewards
- policy gradient with adaptive control variate (Advantage Actor-Critic)

gradient-free

- NMT (word- and BPE-based; NeuralMonkey)
- SMT (dense features; cdec)

stochastic approximation of the expected loss

policy-gradient

$$\begin{split} \mathbb{E}_{\tilde{y} \sim p_w(y|x)}[\Delta(\tilde{y})] \\ \text{for } t = 1, \dots, T \text{ do} \\ \text{Observe } x_t \\ \text{Sample } \tilde{y}_t \sim p_{w_t}(y|x_t) \\ \text{Obtain } \Delta(\tilde{y}_t) \end{split}$$

$$w_{t+1} = w_t - \gamma \Delta(\tilde{y}_t) \nabla \log p_{w_t}(\tilde{y}_t | x_t)$$

 $\mathbb{E}_{\varepsilon \sim \mathcal{N}(0,1)}[\Delta(\hat{y}(w + \varepsilon))]$ **for** $t = 1, \dots, T$ **do** Observe x_t Sample $\varepsilon_t \sim \mathcal{N}(0, 1)$ Decode \hat{y}_t with $w_t + \varepsilon_t$ Obtain $\Delta(\hat{y}_t)$ $w_{t+1} = w_t + \gamma \Delta(\hat{y}_t)\varepsilon_t$

Checkpoints (corpus-BLEU)

Static system:

★ UMD domain adaptation got the best BLEU and lowest regret

Static system:

★ UMD domain adaptation got the best BLEU and lowest regret

Learning systems:

- cumulative reward:
 - ★ BNMT-EL is the only to beat its static NMT baseline
 - +lowest regret of all learning systems
 - +best sent-BLEU overall
 - ★ SMT-EL-CV came very close
- corpus-BLEU:
 - ★ SMT-EL-CV improves over its SMT baseline
 - none of the submissions show monotonic learning curves (or are too short)

Static system:

★ UMD domain adaptation got the best BLEU and lowest regret

Learning systems:

- cumulative reward:
 - ★ BNMT-EL is the only to beat its static NMT baseline
 - +lowest regret of all learning systems
 - +best sent-BLEU overall
 - ★ SMT-EL-CV came very close
- corpus-BLEU:
 - ★ SMT-EL-CV improves over its SMT baseline
 - none of the submissions show monotonic learning curves (or are too short)

Conclusion:

- difficult task (even with all simplifications)
- difficult data
- we need more research!:)

task idea, NMT baselines

API, SDK, leaderboard & operation

task design, data, SMT baselines, etc.

task idea, NMT baselines and bandit pictures!

API, SDK, leaderboard & operation

task design, data, SMT baselines, etc.