Ruprecht-Karls-Universität Heidelberg
Institut für Computerlinguistik

Bilder vom Neuenheimer Feld, Heidelberg und der Universität Heidelberg

Graph-based Methods for Natural Language Processing

Kursbeschreibung

Studiengang Modulkürzel Leistungs-
bewertung
BA-2010 AS-CL 8 LP
NBA AS-CL 8 LP
ABA V01 6 LP
Master SS-CL, SS-TAC 8 LP
Magister - -
Dozenten/-innen Simone Paolo Ponzetto
Veranstaltungsart Hauptseminar
Veranstaltungsbeginn 21.10.2010
Zeit und Ort Do, 13:3015:45, INF 325 / SR 24 (SR)

Teilnahmevoraussetzungen

Voraussetzungen sind die bestandene Zwischenprüfung (Magister) und Programmierprüfung. Vorkenntnisse in statistischer NLP oder Maschinellem Lernen sind von Vorteil.

Leistungsnachweis

Aktive Teilnahme und regelmäßige Abgabe von Projektenarbeit in kleinen Gruppen. Vortrag/Präsentation.

Zusammensetzung der Endnote:

  • 1/3: Präsentation
  • 1/3: Beteiligung an den Seminarprojekten
  • 1/3: Beteiligung an den Diskussionen im Seminar

Inhalt

In the last years Natural Language Processing (NLP) researchers have shown a considerable amount of interest in developing methods based on graph theoretic models, with a large variety of NLP applications adopting efficient and elegant solutions from graph-theoretical frameworks.

This seminar will provide a gentle introduction to state-of-the-art graph-based methods for NLP applications. These include, but are not limited to:

  • Word sense disambiguation
  • Information extraction
  • Automatic summarization
  • Co-reference resolution
  • Named entity recognition and disambiguation

The course will be offered as a project seminar. Students will present current work from the literature in short, seminar-format presentations (i.e., Referate). In addition, they will be expected to form small groups of 2-3 people and work on a project, e.g. implement and/or extend an existing state-of-the-art graph-based NLP method. Each one of the groups is expected to submit a short report (2-4 pages), as well as to regularly give an update on the status of their project -- i.e. as a very short, informal presentation on a regular basis. Students are expected to *actively* participate in the class discussions during their fellow students' presentations, as well as in the seminar's projects. This means that you'll have to read the papers *before* the class period in which they will be presented and discussed, as well as *clearly* present to the audience what your specific work was as part of the seminar's projects.

Kursübersicht

Seminarplan

Datum Sitzung Materialien
21.10 Organisatorisches, Einfuehrung I Folien
28.10 Themenvergabe, Einfuehrung II Folien
4.11 Katharina Waeschle
WikiWalk: Random walks on Wikipedia for Semantic Relatedness
Eleftherios Matios
Pageranking WordNet synsets: An application to opinion mining
Folien

Folien
11.11 Cai Jie
Learning from Labeled and Unlabeled Data using Graph Mincuts
Andreas Doerr
Graph-Based Generation of Referring Expressions
18.11 Samuel Broscheit
Experiments in Graph-based Semi-Supervised Learning Methods for Class-Instance Acquisition
Eva Mujdricza-Maydt
Chinese Whispers - an Efficient- Graph Clustering Algorithm and its Application to Natural Language Processing Problems
Folien

Folien
25.11 Xiaoxi Pang
The PageRank Citation Ranking: Bringing Order to the Web
Thierry Goeckel
A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
Folien

Folien
2.12 Faellt aus
9.12 Amin Kiem
PageRank on Semantic Networks, with application to Word Sense Disambiguation
Huiqin Qu
Coreference resolution (TBD)
Folien

Folien
16.12 Wrap-up

Literatur

We will mostly read and meditate on papers from NLP conferences such as ACL, NAACL, EMNLP, COLING etc. and related workshops (i.e. the TextGraphs workshop series). Students are encouraged to select and read 1-2 papers from this list (DOC/PDF) before the beginning of the course, in order to have a taste of its content.

» weitere Kursmaterialien

Check out the slides from Rada Mihalcea here.
zum Seitenanfang